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Bacteria produce and release a large diversity of small molecules including organic
and inorganic volatile compounds, hereafter referred to as bacterial volatile compounds
(BVCs). Whereas BVCs were often only considered as wasted metabolic by-product
sometimes perceived by animal olfactory systems, it is increasingly clear that they can
also mediate cross-kingdom interactions with fungi, plants and animals. Recently, in vitro
studies also reported the impact of BVCs on bacterial biology through modulation of
antibiotic resistance, biofilm formation and virulence. Here, we review BVCs influence
on bacterial adaptation to their environment and discuss the biological relevance of
recently reported inter- and intra-species bacterial interactions mediated by BVCs.
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INTRODUCTION

While the contribution of diffusible soluble secondary metabolites in bacterial ability to
communicate, compete or cooperate with neighboring microorganisms has been actively
investigated, bacteria also produce and release a wide diversity of volatile compounds that can
be readily detected in the bacterial headspace (Schulz and Dickschat, 2007). Nevertheless, the
potential biological role(s) of organic and inorganic bacterial volatile compounds or gases (BVCs)
was often overlooked. Recent studies, however, demonstrated that they could mediate a variety
of interactions between bacteria and their environment. Indeed, several BVCs were shown to
influence growth and differentiation in fungi, to induce systemic resistance against bacterial
pathogens in plants or to affect behaviors in invertebrates (Figure 1; Gallagher and Manoil, 2001;
Ryu et al., 2003; Kai et al., 2008, 2009; Niu et al., 2010; Effmert et al., 2012). In addition of
their action on a wide range of eukaryotic organisms, several reports also revealed the potential
impact of BVCs on bacteria themselves (Audrain et al., 2015). This review will present the
current knowledge on BVCs influence on inter- and intra-species bacterial interactions and will
discuss their biological relevance and the interest to further study this particular class of bacterial
metabolites.

ROLE OF BVCs IN BACTERIAL COMPETITION

Bacteria often compete for space, nutrients or others resources through production of metabolic
by-products providing them with an advantage over surrounding bacteria. Several BVCs display
a direct negative effect, as it is the case for some volatile compounds emitted from rhizosphere
bacteria Bacillus, Pseudomonas, Serratia, or Streptomyces affecting bacterial growth. For instance,
dimethyl disulfide emitted from Pseudomonas fluorescens and Serratia plymuthica displays
bacteriostatic effects against two plant bacterial pathogens, Agrobacterium tumefaciens and A. vitis
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FIGURE 1 | Role of volatile compounds released by bacteria and their potential interests and applications. Graphical representation of the focus of the
review on bacteria-bacteria interactions mediated by bacterial volatile compounds (BVCs). The figure also mentions BVCs impact on other organisms and illustrates
the potential interests/applications of the study of BVCs as indicators of bacterial metabolism and pool of molecules with diagnostic or biocontrol potentials.

(Dandurishvili et al., 2011). Moreover, albaflavenone produced
by Streptomyces sp. exhibits antibacterial activity against Bacillus
subtilis (Gurtler et al., 1994).

Some soluble short-chain fatty acids (acetate, succinate,
propionate, or isobutyrate) are also able to inhibit growth of
several enteropathogens (Salmonella enteritidis, S. typhimurium
and Escherichia coli) (Hinton, 1995), and also growth and
sporulation of Clostridium perfringens (Wrigley, 2004). Although
these experiments were performed using short-chain fatty acids
in solution, these metabolites are produced by Veillonella species
or Bacteroides fragilis (Hinton, 1995) and several other members
of the intestinal microbiota (Effmert et al., 2012) suggesting
that volatile short-chain fatty acids could also play a role in
control of competing commensals and also enteropathogens in
the intestinal tract.

Some BVCs are also able to modulate at a distance
the production of antimicrobials. Indeed, volatile compounds
produced by Collimonas pratensis increased production of
secondary metabolites in P. fluorescens that showed antimicrobial
activity against Bacillus sp (Garbeva et al., 2014). In P. aeruginosa,
the production of molecules with antimicrobial activity such as
pyocyanin seems also to be influenced by volatile compounds
(Venkataraman et al., 2011, 2014). A recent study reported
that 2,3-butanediol, produced by co-habitant fermenter bacteria
such as S. marcescens enhances production of P. aeruginosa

pyocyanin exhibiting antimicrobial activity, which then could
help P. aeruginosa to occupy a niche, especially in cystic fibrosis
lungs (Venkataraman et al., 2014); 2,3-Butanediol and its volatile
precursor 2,3-butanedione have thus been detected in airways of
cystic fibrosis patients (Whiteson et al., 2014). All these study
therefore suggest a potential direct and indirect role of BVCs in
bacterial competition.

VOLATILE-DEPENDENT BACTERIAL
RESPONSES TO THE ENVIRONMENT

Several studies described BVCs as potential airborne chemical
cues modulating gene expression, membrane permeability or
enzyme activation resulting in alteration of bacterial behaviors.
For instance, P. fluorescens transcriptional response differs
upon exposure to volatiles emitted by rhizospheric bacteria
such as C. pratensis and S. plymuthica, including dimethyl
disulfide and benzonitrile, which stimulate the growth of
P. fluorescens (Garbeva et al., 2014). BVCs can therefore provide
positive information about surrounding microorganisms or
environment. Alternatively, aerial exposure to glyoxylic acid
and 2,3-butanedione, both produced by B. subtilis reduces
Burkholderia glumae, P. aeruginosa, Paenibacillus polymyxa
and E. coli surface motility (Kim et al., 2013). In the
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case of E. coli, this reduced motility correlates with the
downregulation of 30 genes involved in chemotaxy and motility
in E. coli (Kim et al., 2013). Several other BVCs such as 1-
butanol, indole, 2-butanone or acetoin were also shown to
influence E. coli and P. aeruginosa motility (Letoffe et al.,
2014).

Bacterial volatile compounds cues also contribute to the
development of bacterial community by influencing biofilm
formation of Gram-negative and Gram-positive bacteria.
Although still mechanistically unclear, volatile compounds such
as indole, 1-butanol, 2-butanone, acetoin, ammonia, ethanol,
hexadecane, glyoxylic acid, and trimethylamine display positive
or negative influence on biofilm formation in one or several
tested bacterial species (B. subtilis, E. coli, P. aeruginosa, and
Staphylococcus aureus) (Letoffe et al., 2014). Recent studies
also demonstrated that volatile acetic acid, a short-chain fatty
acid, or ammonia can stimulate biofilm formation in B. subtilis
and S. aureus (Nijland and Burgess, 2010; Letoffe et al., 2014;
Chen et al., 2015). Whereas exposure to nitric oxide (NO) can
positively affects biofilm formation of Shewanella oneidensis,
Azospirillum brasilense or Vibrio harveyi (Henares et al., 2013;
Barraud et al., 2014), it triggers biofilm dispersion in several
Gram-negative and positive bacteria including P. aeruginosa,
E. coli, V. cholerae, B. licheniformis, S. marcescens, Fusobacterium
nucleatum (Barraud et al., 2009b), S. woodyi (Liu et al., 2012),
S. enterica (Marvasi et al., 2014), and Neisseria gonorrhoeae
(Potter et al., 2009). In P. aeruginosa, the dispersing role of NO
could be correlated to degradation of cyclic-di-GMP, a bacterial
small molecule playing a central role in the switch between
biofilm and planktonic lifestyle (Barraud et al., 2009a; Liu et al.,
2012).

The development of high cell density bacterial communities
can also lead to the accumulation of organic and inorganic
BVCs altering bacterial environment and triggering response to
different stresses, including exposure to antibiotics (Heal and
Parsons, 2002). For instance, ammonia emitted by bacterial
population increases at a distance resistance to tetracycline and
ampicillin, and decreases resistance to aminoglycosides in all
tested Gram-negative and Gram-positive bacteria exposed to
ammonia (Bernier et al., 2011). In E. coli, ammonia mode
of action involved its import through the AmtB channel
followed by an increase in polyamine synthesis leading to
modulation of antibiotic resistance profiles (Bernier et al.,
2011). Interestingly, at a distance alkalinization of bacterial
growth medium (up to pH 8.5) upon exposure to volatile
ammonia was reported and involved in the increased resistance
to ampicillin of S. marcescens and S. rubidaea (Cepl et al., 2014).
Similarly, volatile trimethylamine (TMA), produced by reduction
of trimethylamine-oxide (TMAO) in TMAO-rich environments
such as animal gut and tissues (Barrett and Kwan, 1985; Bos
et al., 2013), can also modulate bacterial resistance to several
classes of antibiotics through medium alkalinization that affects
proton motive force and membrane permeability (Letoffe et al.,
2014).

Another inorganic BVC produced by many bacteria, hydrogen
sulfide (H2S), confers multidrug resistance upon different
pathogens (B. anthracis, P. aeruginosa, S. aureus, and E. coli)

under aerobic conditions via the mitigation of oxidative stress
induced by antibiotic treatment upon suppression of DNA-
damaging Fenton reaction (Gusarov et al., 2009). Exposure
to volatile 2,3-butanedione and glyoxylic acid, both naturally
produced by B. subtilis GB03, alter E. coli antibiotic resistance
profiles, which could be correlated to the upregulation of
hipA, encoding an anti-toxin module previously described
as mediating persistence (Kim et al., 2013). Alteration of
antibiotic resistance by BVCs can also occur at the level
of persistence. Indeed, volatile 2-amino-acetophenone (2-AA)
enhances antibiotic tolerance by increasing accumulation of
persistent bacteria in P. aeruginosa and B. thailandensis but
also in the non-2-AA producer Acinetobacter baumanii (Que
et al., 2013), two pathogens isolated during co-infection with
P. aeruginosa. Since 2-AA promotes persistence by altering
bacterial translation, an highly conserved machinery, and it can
affect both producing and non-producing bacteria, this suggests
that volatile 2-AA could be involved in the ability of Gram-
negative bacteria to tolerate antibiotic treatment in polymicrobial
infections.

Finally, P. putida exposure to indole produced by E. coli
induces an efflux pump leading to an increased antibiotic
resistance (Molina-Santiago et al., 2014). However, although it is
well established that soluble indole influences drug resistance in
several Gram-negative bacteria (Hirakawa et al., 2005; Lee et al.,
2008, 2009; Nikaido et al., 2008; Molina-Santiago et al., 2014), its
role as a significant airborne signal affecting drug resistance still
needs to be confirmed.

CONCLUDING REMARKS

BVCs, an Untapped Pool of Bioactive
Compounds?
Beyond its fundamental ecological interest, a better
understanding of BVC roles, biosynthesis pathways and
mechanisms of action could provide new information
on the extent of bacterial metabolic potential and lead
to clinical or industrial applications (Figure 1). Indeed,
several soil-associated bacteria were not only shown to
have positive effects on plant resistance but also to control
plant diseases by exhibiting antibacterial activity against
plant pathogens (Berg, 2009; Pieterse et al., 2014). BVCs
can also influence bacterial pathogenesis by altering the
production of virulence factors (i.e., 2,3-butanediol increasing
virulence factor production in P. aeruginosa) or by affecting
host cell functions (i.e., colonic homeostasis, T- and B cell
proliferation responses or cytokine production; Kurita-
Ochiai et al., 1995; Smith et al., 2013; Venkataraman et al.,
2014).

Considering bacterial potential for metabolic adaptation to
available environmental resources, characterization of the volatile
secondary metabolites produced in nature could provide leads
for the development of diagnostic tool using BVC as potential
biomarker in some pathological situations (Probert et al., 2009).
However, most bacteria releasing complex blends of molecules,
unraveling the chemical nature and roles of BVCs emitted in
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mixed-species contexts will certainly constitute a major challenge
of the field.

Laboratory Conditions vs. Nature: A True
Biological Functions for BVCs?
In the studied described above, experimental set-up using
physically separated source of volatile compounds and recipient
bacteria unambiguously demonstrated that exposure to BVCs
could have important biological functions. While some highly
abundant BVCs are likely to play a role in intra- and inter-
bacterial competition and cooperation phenomena, most, if
not all studies were performed in laboratory conditions, using
artificial media and controlled temperature, atmosphere and BVC
concentrations of unknown physiological relevance. Moreover,
although BVC-dependent interactions between bacteria (and
also plants, fungi, nematodes) are potentially occurring in
environments such as soil or mammalian intestines, the high

solubility of BVCs in the liquids present in these environments
raises the question of the true aerial nature of BVC-mediated
impact on bacteria. Future work will therefore have to clarify
the role played by BVCs in bacterial ability to adapt and/or
respond to their environments by determining the physiological
concentrations of relevant BVCs in diverse environments and
to establish, preferentially in vivo, the importance of airborne
bacterial interactions in microbial ecology.
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