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There is increasing evidence that volatile organic compounds (VOCs) play an important
role in the interactions between fungi and bacteria, two major groups of soil inhabiting
microorganisms. Yet, most of the research has been focused on effects of bacterial
volatiles on suppression of plant pathogenic fungi whereas little is known about
the responses of bacteria to fungal volatiles. In the current study we performed a
metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains
under different nutrient conditions and growth stages. The metabolomics analysis of the
tested fungal and oomycetal strains revealed different volatile profiles dependent on the
age of the strains and nutrient conditions. Furthermore, we screened the phenotypic
responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas
pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their
motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a
unique volatile blend, including several terpenes. Four of these terpenes were selected
for further tests to investigate if they influence bacterial motility. Indeed, these terpenes
induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and
swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner.
Overall the results of this work revealed that bacteria are able to sense and respond
to fungal volatiles giving further evidence to the suggested importance of volatiles as
signaling molecules in fungal–bacterial interactions.

Keywords: soil microorganisms, fungal–bacterial interactions, volatiles, terpenes, signaling, motility

INTRODUCTION

In terrestrial ecosystems fungi and bacteria live in complex multi-species networks (Frey-Klett
et al., 2011; Hung et al., 2015). Within those networks, both fungi and bacteria produce a
plethora of secondary metabolites of diverse chemical classes (Schulz and Dickschat, 2007; Morath
et al., 2012; Muller et al., 2013). Several of these secondary metabolites are diffusible molecules,
such as antibiotics and antibiotic-like substances or signaling molecules, which are important in
interactions between fungi and bacteria (Ryan and Dow, 2008; Frey-Klett et al., 2011; Haq et al.,
2014).

A group of metabolites that is increasingly recognized to play important roles in microbial
interactions and communications are volatile organic compounds (VOCs). Those compounds
are low molecular weight carbon-containing compounds (<400 Da) that evaporate easily at
normal temperatures and air pressures (Schulz and Dickschat, 2007; Bitas et al., 2013). Their
physico-chemical properties facilitate evaporation and diffusion through both water- and gas-filled
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pores in soil and rhizosphere environments (Schmidt et al.,
2015). Hence, they possess important functions for long distance
fungal–bacterial interactions in the porous soil matrix.

Although it is known that many soil microorganisms
produce a wide range of volatile compounds (Wheatley,
2002; Effmert et al., 2012) relatively little attention has been
paid to fungal volatiles and to their ecological role. In
these studies, over 300 distinct volatiles have been identified
from fungi, belonging to different chemical classes including
alcohols, benzenoids, aldehydes, alkenes, acids, esters, and
ketones (Morath et al., 2012; Piechulla and Degenhardt, 2014).
However, most research focused on volatiles produced by
single species growing under nutrient rich conditions which
is far from the nutrient-limited growth that most microbes
experience in soil (Garbeva and de Boer, 2009; Kai et al., 2009;
Weise et al., 2012). Furthermore, it has been shown that the
composition of volatiles can vary depending on several factors,
such as the fungal growth stage, moisture, temperature and
pH (Wheatley, 2002; Insam and Seewald, 2010; Romoli et al.,
2014).

Within the past years, it has become evident that microbial
volatiles can play two major roles in long-distance interactions
within soil microbial communities: (i) as infochemical
molecules affecting the behavior, population dynamics and
gene expression in responding microorganisms and (ii) as
interference competition tools suppressing or eliminating
potential enemies (Effmert et al., 2012; Garbeva et al., 2014a,b;
Schmidt et al., 2015). Currently, most research on microbial
volatiles is focused on the effect of bacterial volatiles on other
bacteria and/or fungi whereas the effect of fungal volatiles on
bacteria remains largely unknown.

In this study, we aimed to profile volatiles emitted by a range
of fungal and oomycetal soil strains and to test the effect of these
volatiles on the behavior of phylogenetically different soil bacteria
which are known from previous studies to interact with fungi
(Leveau et al., 2010; Mela et al., 2011; Garbeva et al., 2014b). The
main research questions we addressedwere (1) Can bacteria sense
the presence of fungal and oomycetal volatiles and react with
specific phenotypical responses and (2) Is the response dependent
on the nutrient conditions and growth stage of the fungal and
oomycetal strains?

Materials and Methods
Bacterial, Fungal, and Oomycetal Strains
and Growth Conditions
All bacterial, fungal and oomycetal strains used in this study
(Table 1) have been isolated from bulk or rhizosphere soil.
The bacterial strains Collimonas fungivorans Ter331 and Ter6,
C. pratensis Ter91, Ter291, and C. arenae Ter10 and Ter282,
Burkholderia sp. AD24, Pedobacter sp. V48 and Paenibacillus
sp. AD87 are strains from sandy dune soils in The Netherlands
(De Boer et al., 1998; de Boer, 2004). Serratia plymuthica
PRI-2C strain was isolated from maize rhizosphere, The
Netherlands (Garbeva et al., 2004). Bacterial strains were pre-
cultured from frozen glycerol stocks on 0.1 Tryptic Soya
Broth plates (0.1 TSB; 5 g L−1 NaCl, 1 g L−1 KH2PO4,

3 g L−1 TSB, 20 g L−1 Merck Agar; pH = 6.5; Garbeva
and de Boer, 2009) and grown for 3 days at 20◦C prior
usage.

The fungal strains Trichoderma harzianum PVDG2, Mucor
hiemalis PVDG1 and Fusarium culmorum PV were also isolated
from a sandy dune soil in The Netherlands (De Boer et al.,
1998). Verticillium dahliae JR2 was isolated from tomato,
Canada and Rhizoctonia solani AG2.2IIIB was isolated from
sugar beet, the Netherlands (Garbeva et al., 2014b). The fungal
oomycete Pythium ultimum P17 was isolated from tulip bulb
rhizosphere, The Netherlands (Garbeva et al., 2014b). All fungal
and oomycetal strains were pre-cultured on 0.5 Potato Dextrose
Agar plates (19.5 g L−1 PDA, 7.5 g L−1 Merck Agar; pH = 5.5–
6; Fiddaman and Rossall, 1993) and incubated for 6 days at 20◦C
prior usage.

Screening for Volatile-Mediated
Phenotypes
To investigate the effect of fungal volatiles on bacterial
phenotypes, variations of assays in double plate-within-a-plate
system (Lee et al., 2015) were performed (schematically described
in Supplementary Figure S1). A 3.5-cm Petri dish containing
the fungal and oomycetal strains was placed into a partitioned
9-cm Petri dish containing the bacterial strains. Plates containing
only sterile medium was used as a control. The bacterial response
to fungal and oomycetal volatiles was studied by comparing the
phenotypic responses of the bacteria under the two nutrient
conditions.

Test of Bacterial Growth and
Antimicrobial Activity
The 3.5-cm Petri dish contained either 3 mL 0.5 PDAmedium or
1.5% water-agar (5 g L−1 NaCl, 1 g L−1 KH2PO4, 15 g L−1 Merck
Agar; pH 6.5) supplied with artificial root exudates (WA+ARE).
The artificial root exudates stock solution contained 18.4 mM
glucose; 18.4 mM fructose; 9.2 mM saccharose; 4.6 mM citric
acid; 9.2 mM lactic acid; 6.9 mM succinic acid; 18.4 mM L-
serine; 11 mM L-glutamic acid and 18.4 mM L-alanine (C/N
10.4). Per liter of water-agar, 70.4 mL of ARE stock solution
was added. A small plate (3.5 cm) containing the fungal and
oomycetal plugs (6 mm in diameter) was placed into the
partitioned Petri dish (9 cm) and grown for 3 days at 20◦C
(Supplementary Figure S1A). Bacterial strains were grown
in 10 mL 0.1 TSB broth overnight at 20◦C. The cells were
washed twice with sterile 10 mm sodium phosphate buffer
(1.361 g KH2PO4 in 1 L milliQ, pH 6.5), adjusted to a range
of 1 × 106–102 cells/mL, 5 μl of cell suspension was spotted
on 1.5% WA + ARE of the partitioned Petri dish containing
the fungal and oomycetal strains in the other compartment. The
Petri dish was then closed and incubated for 3 days at 20◦C.
On day 6, bacterial growth was determined by comparing the
cfu/mL of bacteria exposed to fungal and oomycetal volatiles
to that of bacteria exposed only to sterile growth media
only.

To test the triggering of antimicrobial activity by bacterial
strains in response to fungal and oomycetal volatiles, an agar
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TABLE 1 | Bacterial, fungal, and oomycetal strains used in this study.

Phylum/Class Source Accession number Reference

Bacterial strains

Collimonas fungivorans Ter331 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

NR_074756 De Boer et al., 1998; de Boer, 2004

Collimonas fungivorans Ter6 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

CP013232 De Boer et al., 1998; de Boer, 2004

Collimonas pratensis Ter91 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

CP013234 De Boer et al., 1998; de Boer, 2004

Collimonas pratensis Ter291 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

CP013236 De Boer et al., 1998; de Boer, 2004

Collimonas arenae Ter10 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

CP013233 De Boer et al., 1998; de Boer, 2004

Collimonas arenae Ter282 Proteobacteria,
β-Proteobacteria

Inner coastal dune soil in
Terschelling, the Netherlands

CP013235 De Boer et al., 1998; de Boer, 2004

Burkholderia sp. AD24 Proteobacteria,
β-Proteobacteria

Rhizosphere and bulk soil of
C. arenaria

KJ685239 De Ridder-Duine et al., 2005

Paenibacillus sp. AD87 Firmicutes, Bacilli Rhizosphere and bulk soil of
C. arenaria

KJ685299 De Ridder-Duine et al., 2005

Pedobacter sp. V48 Bacteroidetes,
Sphingobacteriia

Coastal dune soil, the Netherlands DQ778037 de Boer et al., 2007

Serratia plymuthica PRI-2C Proteobacteria,
y-Proteobacteria

Maize rhizosphere soil, the
Netherlands

AJTB00000000 Garbeva et al., 2004

Fungal and Oomycetal strains

Trichoderma harzianum PVDG2 Ascomycota Coastal dune soil, the Netherlands KC888990 De Boer et al., 1998

Fusarium culmorum PV Ascomycota Coastal dune soil, the Netherlands KT992460 De Boer et al., 1998

Verticillium dahliae JR2 Ascomycota Tomato soil, Canada PRJNA175765 Huang, 2014

Mucor hiemalis PVDG1 Zygomycota Coastal dune soil, the Netherlands KC888987 De Boer et al., 1998

Rhizoctonia solani AG2.2IIIB Basidiomycota Sugar beet rhizosphere soil, the
Netherlands

KT124637 Garbeva et al., 2014b

Pythium ultimum P17 Oomycota Rhizosphere of bulb, the
Netherlands

KT124638 Garbeva et al., 2014b

overlay assay was performed on day 6 (Tyc et al., 2014). The two
indicator organisms Escherichia coli WA321 and Staphylococcus
aureus 533R4 were grown in liquid LB broth overnight at
37◦C, 220 rpm. Fresh LB-agar (1.5% Merck Agar) was prepared,
cooled down to ∼45◦C and the target organisms were added to
6 × 105 cells/mL (E. coli WA321) or 4 × 105 cells/mL (S. aureus
533R4). A volume of 5 mL liquid LB-agar containing the target
organisms was poured over the compartment in which bacteria
were growing. After solidification of the overlay agar, plates
were incubated overnight at 37◦C. The next day, plates with
bacteria exposed to fungal and oomycetal volatiles were examined
for visible zones of inhibition (ZOI) compared to the bacteria
exposed only to sterile media.

Test of Bacterial Motility
The effect of fungal and oomycetal volatiles on bacterial
swarming and swimming motility was assessed on soft
WA + ARE [0.6% wt/vol and 0.3% wt/vol, adapted from
de Bruijn and Raaijmakers (2009)]. After autoclaving, the
medium was cooled down in a water bath to 60◦C. Next, 10 mL
of the medium was pipetted into the partitioned Petri dish and
the plates were kept for 24 h at room temperature (20◦C) prior
to the swarming and swimming assay. For all swarming and
swimming assays, the same conditions (agar temperature and

volume, time period of storage of the poured plates) were kept
constant to maximize reproducibility. A plate containing the
fungal and oomycetal plugs (6 mm in diameter) that were grown
on either 0.5 PDA or 1.5% water-agar supplied with artificial
root exudates (WA + ARE) was placed into the partitioned
Petri dish and grown for 3 days at 20◦C (Supplementary
Figure S1B). Recipient bacteria were grown in 10 mL 0.1 TSB
broth overnight at 20◦C. The cells were washed twice with
sterile 10 mm sodium phosphate buffer (1.361 g KH2PO4
in 1 L milliQ, pH 6.5), adjusted to 1 × 107 cells/mL and
5 μl of cell suspension was spotted in the center of the soft
WA + ARE of the partitioned Petri dish containing the fungal
and oomycetal strains. The Petri dish was then closed and
incubated for 3 days at 20◦C. On day 6, volatile effect was
determined by comparing the motility diameter of bacteria
exposed to fungal and oomycetal volatiles to that exposed
only to media. Motility diameter was calculated by measuring
the radial swimming and swarming zones of the bacteria in
two directions and calculating the mean for each of the three
replicates.

Test of Bacterial Biofilm Formation
The test for biofilm formation was adapted and modified from
O’Toole et al. (1999). A small plate containing the fungal and
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oomycetal plugs (6 mm in diameter) that were grown on either
0.5 PDA or 1.5% water-agar supplied with artificial root exudates
(WA + ARE) was placed into the partitioned Petri dish and
grown for 3 days at 20◦C (Supplementary Figure S1C). Recipient
bacteria were grown in 10 mL 0.1 TSB broth overnight at
20◦C. The cells were washed twice with sterile 10 mm sodium
phosphate buffer, adjusted to 1 × 107 cells/mL and 20 μl of
cell suspension was added into six-wells strip of a flat-bottom
96-well plates made of transparent polystyrene (Greiner) with
180 μl 0.1 TSB broth per well. Part of the 96-well plates was
placed into the partitioned Petri dish containing the fungal
and oomycetal strains in the other compartment. The Petri
dish was then closed and incubated for 2 days at 20◦C. On
day 6, the six-well strip was removed from the large Petri-
dish and 10 μl of 1% crystal violet solution was added to each
well. These were incubated for 15 min at room temperature
and rinsed three times with demi water. Biofilm formation was
estimated by solubilization of crystal violet by adding 200 μl
of 96% ethanol and determining the OD600. Volatile activity
was determined by comparing biofilm formation from bacteria
exposed to fungal and oomycetal volatiles to that of bacteria
exposed to media.

Fungal and Oomycetal Volatile Trapping
and GC-Q-TOF Analysis
For the collection of fungal and oomycetal volatiles, glass Petri
dishes with leads to which a steel trap containing 150 mg
Tenax TA and 150 mg Carbopack B (Markes International Ltd.,
Llantrisant, UK) could be fixed were used (Garbeva et al., 2014a).
Fungi/oomyctes were grown on either 0.5 PDA or 1.5% water-
agar supplied with artificial root exudates (WA + ARE) for
3 and 6 days at 20◦C. Petri dishes containing medium only
served as controls. All treatments were inoculated in triplicates.
The Tenax steel traps were collected at two time points for
two fungal and oomycetal growth stages (days 3 and 6) and
under two nutrient conditions. Traps were removed, capped
and stored at 4◦C until analysis using GC-Q-TOF. Volatiles
were desorbed from the traps using an automated thermal
desorption unit (model UnityTD-100, Markes International Ltd.,
Llantrisant, UK) at 210◦C for 12 min (He flow 50 mL/min)
and trapped on cold trap at −10◦C. The trapped volatiles
were introduced into the GC-QTOF (model Agilent 7890B
GC and the Agilent 7200A QTOF, Santa Clara, CA, USA)
by heating the cold trap for 3 min to 280◦C with split ratio
set to 1:20. The column used was a 30 mm × 0.25 mm
ID RXI-5MS, film thickness 0.25 μm (Restek 13424-6850,
Bellefonte, PA, USA). Temperature program used was as follows:
39◦C for 2 min, from ◦C to 95◦C at 3.5◦C/min, then to
165◦C at 6◦C/min, to 250◦C at 15◦C/min and finally to
300◦C at 40◦C/min, hold 20 min. The Volatiles were detected
by the MS operating at 70 eV in EI mode. Mass spectra
were acquired in full scan mode (30–400 amu, 4 scans/s).
MassHunter Qualitative Analysis Software V B.06.00 Build
6.0.633.0 (Agilent Technologies, Santa Clara, CA, USA) was
used to control the instrument and for data acquisition and
analysis. The mass chromatogram that were generated exported

as mzData files and were processed (peak picking, baseline
correction and peak alignment) in untargeted manner using
the MetAlign software package (Lommen, 2009). Extraction
and reconstitution of compound mass spectra were performed
according to the method described previously by Tikunov
et al. (2012). Identification of metabolites was performed
using NIST-MS Search and accurate mass, retention indices,
and spectra match factor using NIST 2014 V2.20 (National
Institute of Standards and Technology, USA, http://www.nist.
gov) and Wiley ninth edition spectral libraries and by their
linear retention indexes (lri). The lri values were compared
with those found in the NIST and in the in-house NIOO lri
database.

Test of Terpene Compounds on Bacterial
Motility
Four fungal volatiles, α-Terpinene, β-Phellandrene, 3-Carene,
and Camphene were confirmed though injection of authentic
standards obtained from Sigma–Aldrich and the Natural
Products Laboratory, Leiden. Volatile chemicals were dissolved
in ethanol with concentrations of 10 nM, 100 nM, 10 μM,
100 μM, 10 mM, and 100 mM. The effect of individual terpene
volatiles on the motility of C. pratensis Ter291 and S. plymuthica
PRI-2C was investigated using the double plate-within-a-plate
system as described previously. The pure compounds were
applied as a 10-μl droplet on a sterile filter paper (1 cm × 1 cm)
on the bottom of a 3.5 cm Petri dish which was then transferred
into the partitioned Petri dish. Plates were sealed immediately
and incubated for 3 days at 20◦C. The activity of the pure
compounds was determined by comparing the motility diameter
of bacteria exposed to pure volatile compounds as single
compounds to that of bacteria exposed to control (only
ethanol). Motility diameter was calculated by measuring the
radial swimming and swarming zones of the bacteria in two
directions and calculating the mean for each of the three
replicates.

Statistical Analysis
In all experiments, both for the treatments and the controls three
independent replicates were considered. For the metabolomics
analyses Genemaths XT software (Applied Maths, Belgium)
was used for ANOVA (with Bonferroni correction), Principal
Component Analysis (PCA) and Hierarchical Cluster Analysis.
Pearson’s correlation coefficients were used to calculate the
distance or similarity between two entries and the resulting
clusters were summarized using a complete linkage algorithm.
The raw values of each sample were log-transformed and
auto-scaled by the use of the average as an offset and the
standard deviation as scale [raw value-average (offset)/SD
(scale)].

Data obtained from the phenotypical assays were expressed
as standard error of the mean and analyzed using OriginPro
2015 (OriginLab Corporation, MA) and SPSS (Science Inc.,
IL). Student’s t-test (p < 0.05) and one-way analysis of
variance (ANOVA) between groups (treatments and control)
were performed for all data.
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RESULTS

Volatile Profiles of Fungal and Oomycetal
Strains
Based on metabolomics analysis a total of 306 putative volatiles
were detected when the fungal and oomycetal strains were
grown on the nutrient poor WA + ARE medium. 106 of these
volatiles differed significantly in abundance between at least
two of the fungal/oomycetal strains. A total of 578 putative
volatiles were detected from the head space of the fungal and
oomycetal strains when grown on the nutrient rich PDA with
173 volatiles significantly different in their abundance between
at least two fungal/oomycetal strains. Volatiles that differed
significantly were further used to compute PCA and Hierarchical
Cluster Analysis (HCA). In the PCA, the first three principal
components (PC) explained 63% of the total variation observed
between the fungal/oomycetal strains that were grown on
nutrient poor medium (Figure 1). The first principal component
PC1 explained 29% of the total variation and is primarily
attributed to volatiles that were altered depending on the growth
stage of the fungal/oomycetal strains (Figure 1). The emission
profile of these volatiles is indicated in cluster 5 of the HCA
and is characterized by volatiles with higher abundance at the
early stage of growth in all strains (Supplementary Figure
S2A). Volatiles in cluster 4 of the HCA also showed higher
emission in four out of the six strains (namely M. hiemalis,
R. solani, T. harzianum, F. culmorum) at the early stage
of growth while their emission pattern and abundance was
fairly similar for the remaining two strains (P. ultimum and
V. dahliae) at both growth stages. The second PC explained
21% of the total variation and is attributed to the volatiles
indicated in clusters 6 and 7 of the HCA (Figure 1 and
Supplementary Figure S2A, clusters 6 and 7). Volatiles in
cluster 6 are primarily consisting of terpenes and were largely
produced by F. culmorum at both growth stages with increased
emission at the later growth stage (Supplementary Figure S2A).
Volatiles in cluster 7 were abundantly detected in F. culmorum
and T. harzianum at both growth stages with a noticeable
increase in emission at the later growth stage. Some volatiles
within this cluster were also detected in V. dahliae and were
increasingly abundant at the later growth stage (Supplementary
Figure S2A, cluster 7). The third PC explained 13% of the
total variation. The volatiles that explained this variation are
indicated in cluster 2 of the HCA and are mainly emitted by
P. ultimum at the later stage of growth (Supplementary Figure
S2A, cluster 2).

Principal Component Analysis based on volatiles from the
fungi and oomycete grown on nutrient rich PDA showed that
the first three PCs explained 60% of the total observed variation
between the strains (Figure 2). The first PC that explained 37%
of the total variation is related to compounds that are found
in cluster 3 of the HCA (Figure 2 and Supplementary Figure
S2B, cluster 3). This cluster is characterized by higher emission
of the volatiles at the early growth stage by all strains except
P. ultimum and V. dahlia. The second PC explained 14% of
the variation and is primarily associated to volatiles grouped

in the cluster 6 of the HCA that predominantly explains the
growth stage dependent emission of volatiles by the strains
(Figure 2 and Supplementary Figure S2B, cluster 6). Similar to
the observation under the nutrient poor conditions, this group
of volatiles showed higher emission at the early growth stage in
all the strains. The third PC explained 8% of the total variation
and the volatiles associated to this variation are indicated in
cluster 2 of the HCA (Figure 2 and Supplementary Figure
S2B, cluster 2). This cluster consisted of terpenes and they are
emitted predominantly by F. culmorum at the later growth stage.
Although these terpenes and other volatiles in this cluster were
emitted by F. culmorum on both media, they were emitted to
higher extent at the early stages of growth on WA + ARE
(Supplementary Figure S2A, cluster 6 and Supplementary
Figure S2B, cluster 2).

The volatiles belonging to the unique clusters of F. culmorum
were investigated in more detail for both nutrient poor
and nutrient rich conditions. Cluster 6 consisted of 19
volatiles belonging to the classes of terpenes (monoterpenes
and sesquiterpenes), alkylbenzenes, cycloalkenes and furans
and Cluster 2 consisted of 17 volatiles belonging to the
classes of terpenes (monoterpenes and sesquiterpenes), alkaloids,
benzenoids and furans (Table 2). Some volatiles could not
be identified and are thus indicated as unknown compounds
with their respective retention times and accurate masses.
In both clusters terpenes represented the most abundant
class with unique volatiles for both nutrient conditions. The
identity of the terpenes α-Terpinene, β-Phellandrene, 3-Carene,
and Camphene were confirmed with commercially available
authentic standards.

Screening for Bacterial Phenotypes in
Response to Fungal and Oomycetal
Volatiles
A screening using variations of assays of a double-plate-within-
a-plate system was performed to test phenotypical responses
of 10 bacterial strains to volatiles emitted by six fungal and
oomycetal strains. The two different media, WA + ARE and
PDA, for which fungal and oomycetal volatile production was
analyzed, were also used for screening the bacterial response
to volatiles. Out of all phenotypes tested (growth, antimicrobial
activity, biofilm formation, and motility), motility was the only
phenotype affected by the fungal volatiles.

From all bacterial strains screened, C. pratensis Ter291
and S. plymuthica PRI-2C revealed the strongest and highly
reproducible responses in motility upon exposure to the fungal
and oomycetal volatiles (Figure 3 and Supplementary Table
S1). For the other bacterial strains high variability was observed
between replicates (Supplementary Table S1). Consequently,
we focused on the description of the response in motility of
C. pratensis Ter291 and S. plymuthica PRI-2C.

Overall, swimming motility was more strongly affected than
swarming motility and the effect on motility was much more
pronounced by fungal and oomycetal volatiles emitted from PDA
than from WA + ARE (Figure 3). Only C. pratensis Ter291
swarming motility was significantly reduced when exposed
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FIGURE 1 | Principal Component Analysis (PCA) of fungal and oomycetal strains based on 106 volatiles that were significantly different (P < 0.05 with
Bonferroni correction) in abundance between at least two strains when grown on water agar supplied with artificial root exudates at day 3 (early
growth stage) and day 6 (late growth stage). MH, Mucor hiemalis; RS, Rhizoctonia solani; PU, Pythium ultimum; VD, Verticillium dahliae; FC, Fusarium
culmorum; TH, Trichoderma harzianum.

FIGURE 2 | Principal Component Analysis of fungal and oomycetal strains based on 173 volatiles that were significantly different (P < 0.05 with
Bonferroni correction) in their abundance at least between two strains when grown on potato dextrose agar at day 3 (early growth stage) and day 6
(late growth stage). MH, Mucor hiemalis; RS, Rhizoctonia solani; PU, Pythium ultimum; VD, Verticillium dahliae; FC, Fusarium culmorum; TH, Trichoderma
harzianum.

to volatiles emitted by M. hiemalis and R. solani on PDA
(Figure 3A). No significant effect was observed in swarming
motility of C. pratensis Ter291 and S. plymuthica PRI-2C
by fungal and oomycetal volatiles emitted from WA + ARE
and for S. plymuthica PRI-2C by volatiles emitted from PDA
(Figure 3A).

The swimmingmotility ofC. pratensisTer291 was significantly
reduced by volatiles emitted by T. harzianum and P. ultimum

growing on WA + ARE (Figure 3B). No such effect was
observed for S. plymuthica PRI-2C. Volatiles emitted by all fungal
and oomycetal strains growing on PDA revealed a significant
reduction of the swimming motility of C. pratensis Ter291
with a very strong effect observed by R. solani (Figures 3B,C).
For S. plymuthica PRI-2C swimming motility was significantly
induced when exposed to volatiles produced by F. culmorum on
PDA whereas the swimming motility was significantly reduced
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TABLE 2 | Characteristics of volatile compounds of cluster 6 (water agar supplied with artificial root exudates) and 2 (potato dextrose agar) emitted by
F. culmorum.

# Compound MSI∗ Average
RT∗∗ (min)

Accurate
mass

RI∗∗∗ Class

Cluster 6 WA + ARE

(1) 2-Furancarboxaldehyde 2 4.73 771 Furans

(2) Unknown 12.41 77.038

(3) α-Phellandrene 2 13.61 1005 Monoterpenes

(4) Pentamethylcyclopentadiene 2 13.88 1006

(5) 3-Carene 1 14.33 1017 Monoterpenes

(6) o-Cymene 2 14.42 1026 Alkylbenzenes

(7) Unknown 2 21.48 93.067 1197

(8) Unknown 27.60 93.068

(9) Unknown 29.22 229.001

(10) α-Copaene 2 29.52 1433 Sequiterpenes

(11) 1,3-Cyclopentadiene-1-
butanenitrile,

α-ethyl-

2 29.73 1433 Cycloalkenes

(12) Unknown 29.84 161.128

(13) (-)-Isoledene 2 30.38 1472 Sequiterpenes

(14) Unknown 30.51 93.067

(15) Unknown 31.09 67.053

(16) Unknown 31.83 80.059

(17) cis-Farnesol 2 32.59 1503 Sequiterpenes

Cluster 2 PDA

(1) 2,4-Dimethylfuran 2 4.08 714 Furans

(2) Unknown 4.88 95.047

(3) Camphene 1 12.79 970 Monoterpenes

(4) α-Terpinene 1 13.85 1004 Monoterpenes

(5) β-Phellandrene 1 14.55 1032 Monoterpenes

(6) 1,3,8-p-Menthatriene 2 19.03 1136 Sesquiterpenes

(7) 2,6-Dichloroanisol 2 20.65 1157 Benzenoids

(8) Unknown 25.42 189.164

(9) Unknown 27.76 121.097

(10) Longifolene 2 27.91 1347 Sesquiterpenes

(11) Ledene 2 27.98 1348 Sesquiterpenes

(12) Y-Muurolene 2 28.28 1356 Sesquiterpenes

(13) Streptazone C 2 29.47 1411 Alkaloids

(14) Germacrene-D 2 29.77 1433 Sesquiterpenes

(15) δ-Guaiene 2 30.04 1412 Sesquiterpenes

(16) Unknown 30.31 105.068

(17) Unknown 30.67 67.054

(18) Unknown 2 31.77 109.100 1471

(19) α-Bisabolene 2 32.55 1500 Sesquiterpenes

∗1: Identified metabolites based on authentic standards; 2: Putatively annotated compounds (e.g., without chemicals reference standards, based upon physicochemical
properties and/or spectral similarity with public/commercial NIST 2014 V2.20 and Wiley ninth edition spectral libraries). The reporting grades (1 and 2) are assigned
according to the proposed minimum reporting standards for chemical analysis [metabolomics standards initiative (MSI)] (Sumner et al., 2007).
∗∗Retention time.
∗∗∗Retention index.

when exposed to volatiles produced by R. solani on PDA
(Figures 3B,C).

Volatiles emitted by R. solani growing on PDA reduced
swarming as well swimming motility (Figures 3B,C).
The HCA (Supplementary Figure S2B, cluster 1)
resulted in a unique cluster for R. solani, however, the
compounds could not be identified with certainty and

thus no correlation between the reduction in motility
and the potentially involved compounds could be
drawn.

Interestingly, volatiles emitted by one fungus lead to different
responses in the two strains. For example F. culmorum grown on
PDA revealed a reduction of swimming motility of C. pratensis
Ter291 and an induction in S. plymuthica PRI-2C (Figures 3B,C).
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FIGURE 3 | Effect of fungal and oomycetal volatiles on Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C swarming motility (0.6% wt/vol
agar) and swimming motility (0.3% wt/vol agar) on water agar supplied with artificial root exudates (A) and potato dextrose agar (B). Setup of
experiment and effect of FC and RS volatiles on swimming motility of C. pratensis Ter291 and S. plymuthica PRI-2C (C). MH, M. hiemalis; RS, R. solani; PU,
P. ultimum; VD, V. dahliae; FC, F. culmorum; TH, T. harzianum, Control: media. Five microliters of washed overnight cultures of C. pratensis Ter291 and S. plymuthica
PRI-2C was spotted in the center of a soft agar partitioned Petri dish containing the fungal and oomycetal strains and incubated for 3 days at 20◦C. As an indicator
of motility the average swimming and swarming diameter (cm) was measured. The error bars represent standard errors of the mean of three independent biological
replicates. The asterisks indicate statistically significant (P < 0.05) differences relative to the control.

As shown in the HCA, F. culmorum is characterized by a
unique cluster of volatiles, consisting primarily of terpenes
(Figure 1).

Effect of Individual Terpenes on
S. plymuthica PRI-2C and C. pratensis
Ter291 Motility
To test whether terpenes may play a role in the observed
motility response of S. plymuthica PRI-2C and C. pratensis
Ter291, four terpenes (α-Terpinene, β-Phellandrene, 3-Carene,
and Camphene) were selected from the unique F. culmorum
cluster to be tested individually. These compounds showed
a reliable annotation based on their retention indices and
mass spectral similarity, with a match score >800, and
were commercially (synthetically) available as authentic
standards. The identity of the four pure compounds was
confirmed by GC-MS by comparing their mass spectra and
RI with those found in the F. culmorum volatile profile.
Their respective mass spectra are given in Supplementary

Figure S3. A range of different concentrations, previously
reported in experiments with microorganisms (Blom
et al., 2011; Kim et al., 2013), was used to test their
effect on motility of S. plymuthica PRI-2C and C. pratensis
Ter291.

The screening showed that S. plymuthica PRI-2C was affected
in both swarming and swimming motility, while C. pratensis
Ter291 was only affected in swarming motility (Figure 4). For
some of the pure compounds, a concentration dependent effect
was observed. For example, α-Terpinene affected S. plymuthica
PRI-2C swimming motility in concentrations of 10 nm, 100 nM,
and 100μM, but no effect was observed with high concentrations
(10 mM and 100 mM; Figure 4D). ß-Phellandrene induced
swimming motility in S. plymuthica PRI-2C in concentrations
from 10 μM to 100 mM (Figure 4D). Interestingly, depending
on the concentration, 3-Carene affected the swarming motility in
C. pratensis Ter291 in different ways. At concentrations of 10 and
100 nM, C. pratensis Ter291 swarming motility was significantly
increased while being significantly decreased at concentration
of 10 μM (Figure 4A). Independently of the concentrations
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applied, ß-Phellandrene significantly reduced swarming motility
of C. pratensis Ter291 (Figure 4A). Likewise, 3-Carene and
Camphene lead to a significant decrease in S. plymuthica PRI-2C
swarming and swimming motility, respectively (Figures 4B,D).

DISCUSSION

Volatile compounds form an important part in the interactions
between different soil inhabiting microorganisms (Insam and
Seewald, 2010; Wenke et al., 2010; Effmert et al., 2012; Garbeva
et al., 2014a). They can have different ecological functions,
including inhibition or promotion of other (micro)-organisms
(Kai et al., 2007, 2009; Vespermann et al., 2007; Bailly and
Weisskopf, 2012; Bitas et al., 2013). However, one important role
that has been long overlooked is the ability of volatiles to act as
signaling molecules in the communication between different soil
microorganisms despite their physico-chemical properties that
facilitate diffusion through soil. To date, very little is known about
the role of fungal volatiles in fungal–bacterial interactions. Thus,
the aim of this studywas to investigate the effect of fungal volatiles
on bacteria.

Our results added to fill this gap in knowledge by showing that
fungal and oomycetal volatiles can play an important role in long
distance fungal–bacterial interactions, and can lead to specific
phenotypical responses in the interacting partners. Out of all the
phenotypical responses considered namely growth, antimicrobial
activity, biofilm formation and motility, motility of bacteria, both
swimming (individual cells moving inmore liquid environments)
and swarming (direct, signal-dependent movement powered
by rotating flagella), were significantly affected. Fungal and
oomycetal volatiles either triggered or suppressed bacterial
motility depending on the interacting partner. This finding could,
therefore, reflect a potential strategy employed by the fungus to
attract mutualistic bacteria toward itself and to repel competitors
from common niches by manipulating their motility through
volatiles. The composition and abundance of volatiles is affected
by the growth stage of the fungal/oomycetal strains and the
nutrient conditions. Several independent studies have reported
that the volatile profiles of bacteria are also dependent on growth
condition and nutrient availability (Korpi et al., 2009; Insam and
Seewald, 2010; Blom et al., 2011; Bitas et al., 2013; Garbeva et al.,
2014b).

Besides the growth stage- and nutrient condition-dependent
changes in the global volatile profile, certain groups of volatiles
are emitted in higher amounts by specific individual strains.
Terpenes emitted by F. culmorum are the most salient example
from our study: a nutrient-poor growing condition triggers
higher levels of terpene emission at an early growth stage
and an even higher emission at a later growth stage; on
the contrary, under nutrient-rich conditions, the emission
of this volatile cluster was induced only at a later growth
stage. This suggests that fungi and oomycetes can invest
their carbon resources toward formation of specific blends of
volatiles depending on their growth stages and the nutrient
availability in their environment. Our findings are in line
with those by Korpi et al. (2009), who demonstrated that a

lack of certain nutrients leads to terpene emission, suggesting
that some volatiles are produced only under nutrient-limited
conditions, which is often the case in natural environments.
Terpenes represent the biggest and most diverse family of
primary and secondary metabolites found in a variety of
organisms, among which several fungi (Keller et al., 2005;
Gioacchini et al., 2008; Strobel et al., 2011; Muller et al.,
2013; Busko et al., 2014). Most studies, however, focused
mainly on the detection and chemical characterization of these
molecules, while only few addressed the biological function of
terpenes. The latter studies indicate that fungal terpenes may
be used in defense against competitors (e.g., caryophyllene)
or as a signaling molecule (e.g., farnesol; Martins et al.,
2007). Our work, based on the screening of fungal and
oomycetal strains and using pure terpene compounds, proved
that individual terpenes affect the motility of the exposed
bacteria.

Several studies showed that fungi have a high sensitivity to
volatiles emitted by bacteria leading to reduction and inhibition
in spore germination and growth (fungistasis; Garbeva et al.,
2011, 2014b; Effmert et al., 2012; Schmidt et al., 2015). The
difference in susceptibility between fungi and oomycetes may
be due to the structure of their cell wall (Schmidt et al.,
2015). It was recently proposed that bacteriostasis (inability of
bacteria to multiply in soil; Ho and Ko, 1982; Effmert et al.,
2012) might also involve volatile compounds. However, within
this study we did not observed effect on bacterial growth by
fungal volatiles. In contrast to fungi, bacteria seem to be more
resistant to volatiles. It has been speculated that variations in
sensitivity of bacteria to volatiles may possibly be mediated by an
ATP-dependent efflux mechanism, which has been investigated
for several terpene compounds against Pseudomonas aeruginosa
(Cox and Markham, 2007) as well as the ability of volatiles to
disintegrate the outermembrane (Longbottom et al., 2004). These
findings may indicate that bacteria are more resistant to volatiles
emitted by fungi and oomycetes.

The identity of volatile molecules is an important basis for
understanding their ecological roles. However, it is a challenging
task to unambiguously identify the high number of compounds
detected, just as it is to set the right ranges of concentrations
that are representative of the natural condition during screenings
with pure compounds. The technology used in this study does
not allow measuring the actual concentration of the volatile
compounds produced by the strains. Thus, when testing the
effect of pure compounds we adopted a range of concentrations
known to be relevant in such assays (Blom et al., 2011; Kim
et al., 2013). Interestingly, some of the pure compounds showed
a dose-dependent effect on the motility. This suggests that by
regulating the emission of volatiles, fungi might be able to
influence bacterial responses in different ways. For instance, the
emission of volatiles in lower concentrations might attract the
bacterium to move toward the fungus, while volatiles emitted
in higher concentrations might be toxic and thus repel the
bacteria away from the fungus. For example, bacteria from the
genus Collimonas, used in this study, were previously shown to
colonize and grow on living fungal hyphae (a phenomenon called
mycophagy; de Boer, 2004), implying that volatiles might play
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FIGURE 4 | Setup of experiment and effect of pure volatiles on Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C swarming motility (0.6%
wt/vol agar) (A,B) and swimming motility (0.3% wt/vol agar) (C,D) on water agar supplied with artificial root exudates. Control: media. Five microliters of
washed overnight cultures of C. pratensis Ter291 and S. plymuthica PRI-2C was spotted in the center of a soft agar partitioned Petri dish containing the pure
volatiles and incubated for 3 days at 20◦C. As an indicator of motility the average swimming and swarming diameter (cm) was measured. The error bars represent
standard errors of the mean of three independent biological replicates. The asterisks indicate statistically significant (P < 0.05) differences relative to the control.
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a role as long-distance signals for attracting such mycophagous
bacteria.

CONCLUSION

Bacteria can sense fungal and oomycetal volatiles and respond
with changes in motility. This response was dependent on the
volatile blend emitted by the organisms, which was influenced
by the nutrient conditions and, for some strains, by their growth
stage. Several identified volatile terpenes were shown to affect
motility. To better understand how bacteria perceive fungal
volatiles on a cellular level, a valuable insight could stem from
future studies involving transcriptomics and proteomics tools.
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TABLE S1 | Effect of fungal and oomycetal volatiles on bacterial
phenotypes (growth, antimicrobial activity, biofilm formation and motility)
on WA+ARE and PDA.

FIGURE S1 | Variations of assays in double plate-within-a-plate system
used to test the effect of fungal volatile compounds on bacterial growth
and antimicrobial activity (A), motility (B) and biofilm formation (C) as
described in section “Materials and Methods.”

FIGURE S2 | Hierarchical cluster analysis (HCA) of fungal and oomycetal
strains based on volatiles that were significantly different (P < 0.05 with
Bonferroni correction) in abundance between at least two strains when
grown on water agar supplied with artificial root exudates (A) and on
potato dextrose agar (B) at day 3 (early growth stage) and day 6 (late
growth stage). MH, Mucor hiemalis; RS, Rhizoctonia solani; PU, Pythium
ultimum; VD, Verticillium dahliae; FC, Fusarium culmorum; TH, Trichoderma
harzianum; C, Control (media). The color code below the figure indicates the
abundance of the volatiles, which is log2-transformed and scaled by Mean/SD.
The boxes indicated in different colors discern the eight distinct clusters that
determine the spatial separation of the samples in the PCA.

FIGURE S3 | Comparison of mass spectra of the pure volatile compounds
with those found in F. culmorum.
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