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Dynamics of a Mathematical Model
for Tuberculosis with Variability in
Susceptibility and Disease
Progressions Due to Difference in
Awareness Level
Daniel Okuonghae* and Bernard O. Ikhimwin

Department of Mathematics, University of Benin, Benin City, Nigeria

This work extends a mathematical model for the transmission dynamics of tuberculosis

that examined the impact of certain factors on tuberculosis case detection (Okuonghae

and Omosigho, 2011). The extendedmodel now classifies the latently infected individuals

by their level of tuberculosis awareness (as was done for the susceptible sub-population)

and further expands the number of key factors that can positively affect the tuberculosis

case detection rate. The effect of these identified factors on the associated reproduction

number of the model is considered. It is shown that the system can undergo the

phenomenon of backward bifurcation when the associated reproduction number of the

model is less than unity; in a special case, the effect of exogenous re-infection on the

backward bifurcation phenomenon is significantly dictated by the level of awareness of

the latently infected individuals. Qualitative and quantitative analysis of the model showed

the effect of key identified factors on the dynamics of tuberculosis while suggesting

a serious concentration on tuberculosis awareness programmes, active case finding

strategies and use of active cough identification for identifying likely TB cases and

sustaining awareness campaigns over a long period of time.

Keywords: mathematical model, tuberculosis, awareness level, bifurcation, simulation

1. INTRODUCTION

Tuberculosis (TB), an infectious disease caused by theMycobacterium tuberculosis bacillus, remains
one of the world’s deadliest diseases (World Health Organization, 2014). According to the World
Health Organization (WHO), in 2013, about 9 million people were infected, worldwide, with TB
and 1.5 million deaths from the disease were reported, 360,000 of whom were HIV-positive (World
Health Organization, 2014). Tuberculosis is seen to be declining slowly each year and an estimated
37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment
(World Health Organization, 2014). On the average, TB incidence fell to about 1.5% per year,
between 2000 and 2013, worldwide (World Health Organization, 2014). Globally, TBmortality rate
fell by an estimated 45% between 1990 and 2013 while the prevalence rate dropped by 41% (World
Health Organization, 2014). Even with such positive results achieved within the last 14 years, it is
still thought that deaths from tuberculosis are preventable; in fact the death toll is still considered
unacceptably high. Hence, efforts are geared toward accelerating programmes that will result in a
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reduction in the TB burden globally [within the context of the
Millennium Development Goals (MDGs)], and reach the Stop
TB Partnership target of a 50% reduction by 2015 (World Health
Organization, 2014).

More than half of the approximately 9million individuals who
are infected with tuberculosis in 2013 (56%) were in South-East
Asia and Western Pacific Regions. A further one quarter of these
infected individuals are in the African Region, which account for
the highest rates of TB cases and deaths relative to population
(World Health Organization, 2014).

Generally, reducing the incidence and prevalence of TB in
a population hinges on successful treatment and high case
detection rates (Okuonghae and Omosigho, 2010, 2011; World
Health Organization, 2014; Okuonghae, 2015). It fact, it is
seriously encouraged that effort should be concentrated on
ensuring that all TB cases are detected, notified and commence
treatment immediately (World Health Organization, 2014). It is
reported that about 6.1 million TB cases were reported to the
WHO in 2013 out of which about 5.7 million were individuals
were newly diagnosed and another 0.4 million were already
on treatment (World Health Organization, 2014). Tuberculosis
notification has stabilized in recent years, with about 64% of the
estimated 9 million individuals who developed TB in 2013 were
notified as newly diagnosed cases (World Health Organization,
2014). This implies that about 3 million cases were either
not diagnosed, or diagnosed but not reported to national TB
programmes (World Health Organization, 2014) which could
hinder the goal of significantly reducing the prevalence of TB
in such localities. Treatment success rates (globally) have been
impressive (and continue to be high) over the years, with about
86% treatment success rate reported in 2013 among all new TB
cases (World Health Organization, 2014).

Tuberculosis affects family and social relationships and results
in adverse health and economic consequences (Armijos et al.,
2008; Chang and Cataldo, 2014). As stated earlier, improving the
case detection and notification rates will result in reducing the
TB burden in a population. However, several factors could be
hindering efforts at improving these rates. Individuals infected
with TB and their families can experience prejudice and negative
attitudes, such as shame, blame and a sense of judgment as
a result of the infection (Bennstam et al., 2004; Baral et al.,
2007; Chang and Cataldo, 2014). Stigmatization can also be a
stumbling block in improving the tuberculosis case detection rate
(Johansson et al., 2000; Okuonghae and Omosigho, 2010; Chang
and Cataldo, 2014) since patients and families’ fears of inferiority
stems from the anticipation of an adverse judgement related to a
TB diagnosis (Johansson et al., 2000; Chang and Cataldo, 2014).

A survey reported in Okuonghae and Omosigho (2010) listed
some factors that can adversely affect the implementation of
the directly observed treatment, short-course (DOTS) strategy
in Nigeria (one of the high burden countries) in reducing the
incidence of TB in the country. The survey revealed that most
persons do not know how TB is transmitted and the signs
and symptoms of tuberculosis; several individuals are not even
aware of the government’s health policies on tuberculosis and TB
treatment. Further, the survey revealed that this lack of awareness
can lead to delays in reporting likely TB cases for treatment

(Okuonghae and Omosigho, 2010), increasing the likelihood of
disease transmission.

Analysis of the results from the survey (Okuonghae and
Omosigho, 2010) identified four key factors that must be
combined for an effective control of tuberculosis: “effective
awareness programme, active cough identification, associated
cost factor for treatment of identified cases and effective
treatment” (Okuonghae and Omosigho, 2010).

A mathematical model for TB dynamics that incorporated
the identified factors (as parameters) gleaned from the work in
Okuonghae and Omosigho (2010) was formulated and analyzed
in Okuonghae and Omosigho (2011). Control strategies, based
on the identified parameters, that can lead to minimizing the
incidence (as well as the prevalence) of the disease in a population
were proposed. In summary, the qualitative and quantitative
analysis of the model in Okuonghae and Omosigho (2011)
showed that a serious concentration on tuberculosis awareness
programmes and active cough identification as a marker for
identifying potential TB cases can be significant in minimizing
the severity of the disease in a population, with effective
treatment.

The purpose of this article is to present and analyze a new
mathematical model for TB dynamics; this model is an extension
of that presented and analyzed in Okuonghae and Omosigho
(2011). The aim of this work is to further study the effects
of additional heterogeneities based on the level of awareness
of tuberculosis within the population and active-case finding,
on the dynamics of the disease. In the work in Okuonghae
and Omosigho (2011), only the susceptible subpopulation was
stratified by their level of tuberculosis awareness. In this work,
we will now stratify both the susceptible and latently infected
sub-populations by their level of awareness of TB (symptoms and
signs of TB as well as testing and treatment programmes available
by the government). Note that the measure of the case detection
and notification rates will be by the number of infectious
individuals detected, notified, and treated for tuberculosis.

2. MATERIALS AND METHODS

2.1. Basic Model
This section briefly describes the model in Okuonghae and
Omosigho (2011). In Okuonghae and Omosigho (2011), we
assumed that susceptible individuals are divided into two groups
depending on their level of awareness of the disease (and any
treatment policy): the high risk (low level of awareness) group,
S1, and the “educated,” low risk (high level of awareness) group,
S2. The S1 class is “educated” at the per capita rate α1 and
thereafter move into the S2 class. Tuberculosis infection can
invade the S1 and S2 classes, depending on the “efficacy” of the
education programme. The programme is assumed to reduce the
likelihood of infection by a factor of σ (0 ≤ σ ≤ 1). The
case σ = 0 signifies a completely effective education program,
while σ = 1 models the situation where the program is totally
ineffective.

It was further assumed that the “vaccine” (education program)
produces temporary immunity at the per capita rate θ . The
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case θ = ∞ corresponds to the case where there is absolutely
no immunity while θ = 0 corresponds to life-long immunity.
Hence, θ measures the rate at which those in the S2 class return
to the S1 class due to forgetfulness caused by lack of continuous
exposure to the enlightenment program while the disease persists
in the community. We assumed β to be the disease transmission
rate.

We also assumed that the variables E, I, J, and T represented
the “primary” latent, infectious, identified infectious (for
treatment under DOTS) and the effectively treated individuals,
respectively (by “primary” latency, we are referring to susceptible
individuals who are infected for the first time as well as treated
individuals who now get reinfected after recovering from a
previous infection). In addition to these groups, a separate class
(R(t)) was added to account for individuals who become latent
due to failed treatment or self cure (we refer to this situation as
“secondary” latency).

The parameter η was used as a modification parameter (0 ≤

η ≤ 1) to account for the relative infectiousness of infectious
individuals in the J class. We also assumed that ǫ is the reduced
likelihood of reinfection of effectively treated individuals, where
0 ≤ ǫ ≤ 1. Also, we took 0 < p < 1 as the fraction of individuals
with new infections who develop TB fast per unit of time, with
3 being the rate of recruitment of uninfected newborns and
immigrants into the low risk susceptible class. For simplifications,
we assumed that all entrants into the population move into the S1
group. We also assumed thatµ is the natural death rate while d is
the tuberculosis-induced death rate.

To account for exogenous reinfection of latently infected
individuals, we assumed that β∗ be the transmission rate amongst
this group in infected persons. We also assumed that k is the rate
of progression of infected individuals in the latent stage to active
tuberculosis.

Individuals with active TB can be identified using chronic
cough lasting more than 2 weeks as a marker, at the rate α2, and
are referred to a TB treatment program under DOTS for effective
treatment (in Okuonghae and Omosigho, 2011, α2 was known
as the cough identification rate). However, a fraction of these
identified cases will eventually get into the treatment program
when we consider the cost factor. Hence, a cost improvement
factor (ν : 0 < ν ≤ 1) will affect the actual number of identified
cases that commences treatment. The cost factor considers the
effect the actual cost of medical tests and treatment will have
on the care givers when presenting the infectious individual
for treatment. If ν = 0, then the cost of medical tests and
treatment is prohibitively high and να2 = 0 implies that the
TB case will not get into a TB treatment program due to the
financial cost on the care givers or family members. However, if
ν = 1, it means that the cost of medical tests and treatment is
totally free and να2I will be the total number of identified cases
that are tested and treated for tuberculosis under DOTS. Hence,
να2 was taken to be the proportion of identified TB cases that
commences treatment under DOTS. Since in most developing
countries, like Nigeria, it was observed that medical tests for TB
still cost money especially when the infectious person is about
commencing treatment (Okuonghae and Omosigho, 2010), it
then implies that ν 6= 1; it lies in the range 0 < ν < 1. In all,

ν → 1 implies that the cost of testing and treating TB becomes
affordable.

We assumed that r2 is the treatment rate for the identified
infectious individuals under the DOTS scheme while the fraction
of the detected cases who were successfully treated under the
DOTS was n, with m = 1 − n being the fraction of those
whose treatment were unsuccessful and, thereafter, moved to
the “secondary” latency group.Tuberculosis cases that are not
detected either die at the rate d, or self-cure and revert to the
“secondary” latent state (in R) at the rate r1.

The mathematical model was then given by the following
system of non-linear ordinary differential equations (Okuonghae
and Omosigho, 2011):

dS1

dt
= 3− α1S1 − βS1

(I + ηJ)

N
+ θS2 − µS1, (1a)

dS2

dt
= α1S1 − σβS2

(I + ηJ)

N
− θS2 − µS2, (1b)

dE

dt
= (1− p)(βS1

(I + ηJ)

N
+ σβS2

(I + ηJ)

N
+ ǫβT

(I + ηJ)

N
)

− β∗E
(I + ηJ)

N
− (k+ µ)E, (1c)

dI

dt
= p(βS1

(I + ηJ)

N
+ σβS2

(I + ηJ)

N
+ ǫβT

(I + ηJ)

N
)+ kE

+ β∗E
(I + ηJ)

N
− (να2 + µ+ d + r1)I, (1d)

dJ

dt
= να2I − r2J − µJ, (1e)

dT

dt
= nr2J − µT − ǫβT

(I + ηJ)

N
, (1f)

dR

dt
= r1I +mr2J − µR. (1g)

The effective reproduction number of model (1) is given as

Rc =
β

d + µ+ r1 + να2

(k+ pµ)

k+ µ

(µ+ r2 + ηνα2)

µ+ r2
[

µ+ θ

µ+ α1 + θ
+

σα1

µ+ α1 + θ

]

(2)

See Okuonghae and Omosigho (2011) and Okuonghae (2015)
for the qualitative and quantitative analysis of model (1) and
the effect of the key parameters, gleaned from the survey in
Okuonghae and Omosigho (2010), on the dynamics of TB in a
population.

2.2. Modified Mathematical Model
Instead of stratifying only the susceptible subpopulation by their
level of awareness (i.e., S1 and S2 as described in Section 2.1),
we will also stratify the latently infected class by their level of
awareness. This is reasonable since latently infected individuals
do not transmits TB (they do not show the signs and symptoms
of TB) and, in most cases, will become aware of their disease
status only when tuberculin tests are carried out on them; for
example, the Mantoux tuberculin skin test (TST). Figure 1 shows
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FIGURE 1 | Schematic diagram of model given in (3), where λ =
β(I+ηJ)

N
.

the schematic diagram of themodifiedmathematical model given
in (3).

In addition to some of the epidemiological classes in Section
2.1, we will break up the latent class (E) into two classes,
depending on their level of awareness of the disease: the latently
infected, high risk (low level of awareness) group, E1, and the
“educated” latently infected, low risk (high level of awareness)
group, E2. It can be stated that due to awareness, individuals
in the E2 group are tested in order to know their disease status
and take necessary precautionary health measures. The E1 class
is made up of individuals from the S1 class and some individuals
from the treated class (T) who have a low level of awareness of
tuberculosis while the E2 class is made up of individuals from
the S2 class and some persons from the treated class (T) who
retained their high level of awareness following their recovery.
The latently infected individuals with low awareness (E1) can
become “educated” at the per capita rate ψ and thereafter
move into the E2. Individuals who recover (following effective

treatment) can get reinfected, with a fraction 0 ≤ ω ≤ 1 of such
persons entering the class of latent individuals with low level of
awareness (E1) while the remaining fraction 1 − ω enter the E2
class.

We also assume that the education programmes produces
“temporary immunity” at the per capita rate θ1 (for the
susceptible groups, S1 and S2) and at the rate θ2 (for the latent
groups, E1 and E2). The cases θ1(θ2) = ∞ corresponds to
the situation where there is absolutely no immunity (from the
education programmes) while θ1(θ2) = 0 corresponds to life-
long immunity. Hence, θ1(θ2) measures the rate at which those
in the S2(E2) class return to the S1(E1) class due to a lack of
continuous exposure to the awareness programmes while the
disease persists in the community. We further assume that β is
the disease transmission rate.

Also, we assume that 0 < p1(p2) < 1 represent the fraction of
persons with new infections who develop TB fast per unit of time
from the class of infected individuals with low level of awareness
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(high level of awareness). We expect that, by virtue of the benefits
of awareness, p1 ≥ p2 as new infections are quickly detected
and fewer cases of fast progressions to active TB are recorded
amongst individuals with a high level of awareness; also, note
that the period of fast latency can span between 1 and 5 years
(Styblo, 1980; Flynn and Chan, 2001; Colijn et al., 2007) so that
early detection can prevent more cases of active TB.

We further assume that b1(b2) are modification parameters
accounting for exogenous re-infection of the latently infected
individuals in the E1(E2) class, with 0 ≤ b2 ≤ b1 < 1 and that
k1(k2) is the rate of progression of the individuals in the latent
state (E1(E2)) to active tuberculosis. Assume that, in addition, to
the impact of active cough identification (α2) and the cost factor
(ν) on improving the case detection (and notification) rates,
evident by the number of infectious individuals in the J class
(and treatment), let π be the rate at which an active case-finding
strategy is used in searching for infectious TB cases for onward
treatment with the treatment rate now represented as r. The
remaining parameters in the modified model are as defined in
Section 2.1. Since there is significant improvement in treatment
success rate for TB (worldwide) (World Health Organization,
2014), especially in countries and communities, where there is
an efficient treatment strategy put in place (for example, DOTS),
we assume an insignificant number of failed treatments and self
cure and will omit the R class from the modified model.

On the basis of the above assumptions, the modified model
is now given by the following system of non-linear ordinary
differential equations:

dS1

dt
= 3− α1S1 − βS1

(I + ηJ)

N
+ θ1S2 − µS1, (3a)

dS2

dt
= α1S1 − σβS2

(I + ηJ)

N
− θ1S2 − µS2, (3b)

dE1

dt
= (1− p1)

(

βS1
(I + ηJ)

N
+ ωǫβT

(I + ηJ)

N

)

− b1βE1
(I + ηJ)

N
− (k1 + µ+ ψ)E1 + θ2E2, (3c)

dE2

dt
= (1− p2)

(

σβS2
(I + ηJ)

N
+ (1− ω)ǫβT

(I + ηJ)

N

)

− b2βE2
(I + ηJ)

N
− (k2 + µ+ θ2)E2 + ψE1, (3d)

dI

dt
= p1β(S1 + ωǫT)

(I + ηJ)

N
+ p2β(σS2

+ (1− ω)ǫT)
(I + ηJ)

N
+ β(b1E1 + b2E2)

(I + ηJ)

N

+ k1E1 + k2E2 − (να2 + µ+ d + π)I, (3e)

dJ

dt
= (π + να2)I − rJ − µJ, (3f)

dT

dt
= rJ − µT − ǫβT

(I + ηJ)

N
, (3g)

with N = S1 + S2 + E1 + E2 + I + J + T.

2.2.1. Basic Properties of Model (3)
For model (3) to be epidemiologically meaningful, it is important
to prove that all its state variables are non-negative for all time

t. In other words, the solutions of model (3) with positive initial
data will remain positive for all time t ≥ 0.

Theorem 2.1. Let the initial data for model (3) be S1(0) > 0,
S2(0) > 0, E1(0) > 0, E2(0) > 0, I(0) > 0, J(0) > 0 and
T(0) > 0. Then, the solutions

(S1(t), S2(t),E1(t),E2(t), I(t), J(t),T(t))

of model (3), with positive initial data, will remain positive for all
time t > 0.

Theorem 2.2. The closed set

D =

{

(S1, S2,E1,E2, I, J,T) ∈ R
7
+;N ≤

3

µ

}

is positively invariant and attracts all positive solutions of
model (3).

See Appendix A for the proofs of Theorems 2.1 and 2.2.
Since the region D is positively invariant, the unique solution

of model (3) exists and depends continuously on the initial
data of the model (hence, it is sufficient to study its asymptotic
dynamics in the region D, Hethcote, 2000).

2.2.2. Local Asymptotic Stability of Disease-free

Equilibrium
Model (3) has a disease-free equilibrium (DFE), obtained by
setting the right hand sides of the equations in model (3) to zero
and solve for the state variables with no infections, given by

ξ1 = (S∗1, S
∗
2,E

∗
1,E

∗
2, I

∗, J∗,T∗)

=

(

3

µ

µ+ θ1

µ+ α1 + θ1
,
3

µ

α1

µ+ α1 + θ1
, 0, 0, 0, 0, 0

)

We see that the susceptible classes, at the DFE, depend on a factor
of the asymptotic population size, 3

µ
.

The local stability of ξ1 can be established with the next
generation operator method on system (3) (Diekmann et al.,
1990; van den Driessche and Watmough, 2002). Using the
notations in van den Driessche and Watmough (2002), it follows
that matrices F and V , for the new infection terms and the
remaining transition terms, respectively, are given by

F =











0 0 (1− p1)β
S∗1
N∗ (1− p1)βη

S∗1
N∗

0 0 (1− p2)βσ
S∗2
N∗ (1− p2)βησ

S∗2
N∗

0 0 β
(p1S

∗
1 + p2σS

∗
2)

N∗ βη
(p1S

∗
1 + p2σS

0
2)

N∗ 0
0 0 0 0











and

V =









(k1 + µ+ ψ) −θ2 0 0
−ψ (k2 + µ+ θ2) 0 0
k1 −k2 (να2 + d + µ+ π) 0
0 0 −(π + να2) (r + µ)









.

Frontiers in Microbiology | www.frontiersin.org 5 January 2016 | Volume 6 | Article 1530

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Okuonghae and Ikhimwin Mathematical Model for Tuberculosis

Thus, the effective reproduction number of model (3), denoted
byRT , is given by

RT =
β(µ+ ηπ + r + ηνα2)[G1 + G2 + G3]

G4
, (4)

where

G1 = k1[(µ+ σα1 + θ1)(k2 + θ2)+ µ(µ+ σα1p2 + θ1)],

G2 = µ(µ+ θ2 + ψ)[σα1p2 + p1(µ+ θ1)],

G3 = k2(µ+ θ1)(µp1 + ψ)+ k2σα1(µ+ ψ),

G4 = (µ+ r)(d + µ+ π + να2)(µ+ α1 + θ1)[(µ+ k1)

(µ+ k2 + θ2)+ (µ+ k2)ψ],

and RT is obtained from ρ(FV−1) with ρ being the spectral
radius of the matrix FV−1.

The following result follows from Theorem 2 in (van den
Driessche and Watmough, 2002):

Lemma 2.1. The DFE, ξ1, of model (3) is locally asymptotically
stable ifRT < 1 and unstable ifRT > 1.

The threshold quantity, RT , represents the average number
of secondary tuberculosis infections generated by a typical
infectious individual in a completely susceptible population with
already existing controls such as treatment (Hethcote, 2000;
van den Driessche and Watmough, 2002). The epidemiological
implication of Lemma 2.1 is that tuberculosis can be effectively
controlled in the community (when RT < 1) if the initial sizes
of the subpopulation of model (3) are in the basin of attraction
of the DFE, ξ1, in the presence of control strategies including
chronic cough identification, active-case finding, effective cost
factor, effective awareness programmes and treatment. Hence, a
small influx of individuals with active TB into the community will
not generate large TB outbreaks, and the disease will die out with
time.

2.2.3. Comparing Reproduction Numbers Under

Different Control Scenarios
It is important to compare different scenarios involving the
presence of control measures based on the reproduction number
for the different situations.

Case 1:
Re-write the effective reproduction number as

RT = RF
µ(πη + µ+ r + ηνα2)

(πη + µ+ ηνα2)(µ+ r)
≡ RFA1 (5)

where

A1 =
µ(πη + µ+ r + ηνα2)

(πη + µ+ ηνα2)(µ+ r)

and RF = RT |r= 0 is the reproduction number of model (3),
under control, without treatment (where RT |r= 0 is the effective
reproduction number, with r = 0).

Since the difference of RF from RT is only in treatment,
the factor A1 compares a population with and without

treatment; however other control strategies such as chronic
cough identification (with an effective cost factor) and active-case
finding are present in the community. We observe that A1 will be
less than unity (A1 < 1) for all 0 ≤ η, ν < 1.

Generally, if RF < 1, then we cannot expect a TB epidemic
and in this case no treatment strategy is needed for control.
However, when RF > 1, we need to determine the necessary
condition for slowing the development of tuberculosis in the
community. Following Mukandavire et al. (2007); Sharomi et al.
(2008); Okuonghae and Omosigho (2011), we have the difference
betweenRF and RT as

1T : = RF −RT = (1− A1)RF . (6)

For effective treatment, use of chronic cough as a marker
for potential TB cases (with an effective cost factor) and an
effective active case-finding strategy to slow down the spread of
tuberculosis in a population, we expect that 1T > 0, and this
condition is satisfied if A1 < 1 in Equation (6). Now, setting
RT = 1 and solving for A1, we have the threshold effectiveness of
treatment and cough identification taking into account the cost
factor and an active case-finding programme:

A∗
1 =

1

RF
(7)

Hence, tuberculosis can be eradicated from the population if
the control measures include effective treatment, active chronic
cough identification (taking into cognisance an effective cost
factor) and an active case-finding strategy if A1 < A∗

1 . Observe
from Equation (7) that A∗

1 is a decreasing function ofRF ; higher
values of A∗

1 results in lower values ofRF , a desired outcome.
Taking the following limits of A1 provides further insight into

possible ways of reducing the TB burden in a community:

(i) lim
ν→ 1
α2 →∞

A1 = lim
π→∞
ν→ 1
α2 →∞

A1 = lim
π→∞
ν→ 1
α2 →∞
η→ 0

A1 =
µ

µ+ r
, (8)

(ii) lim
r→∞

A1 = lim
r→∞
ν→ 1

A1 =
µ

µ+ πη + ηα2
, (iii) lim

r→∞
η→ 0

A1 = 1.

(9)

Observe that the limits of A1 in Equations (8) and (9)(ii) are
less than one; hence control strategies for tuberculosis gleaned
from these results can be pursued, if it is feasible and practicable
economically. In practice, ν → 1 implies near total elimination of
costs (medical tests and treatment), α2 → ∞ implies high rate of
identifying “potential” TB cases using chronic cough as a marker,
r → ∞ implies high treatment rate, π → ∞ implies a high
active case-finding rate for infectious TB individuals and η → 0
implies that those identified for treatment have a significantly
reduced likelihood of transmitting the disease.

Using the factor A1, one observes that an effective
combination of chronic cough identification (with the associated
cost factor), an active case-finding strategy with effective
treatment and taking care to prevent detected infectious TB
cases, receiving treatment, from causing new TB infections, will
result in reducing the burden of TB in the population.
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It is very interesting to observe that more than one
combination of control strategies could yield the same positive,
desired result. For example, as seen in the limits of A1 in
Equation (8), concentrating on using chronic cough as a marker
for a potential TB case with little cost involved in testing and
treatment is as effective as including an effective active case-
finding strategy to the aforementioned strategy. Also, an effective
combination of treatment rate and cost factor can also lead to
a reduction in the number of newTB infections in the population.

Case 2:
Consider the situation where there are no control strategies put
in place for detecting active TB cases via the use of chronic
cough identification and an active case-finding strategy so that
π = α2 = ν = 0. Clearly then, we observe that (J,T) → 0
asymptotically, as t → ∞, in model (3). Therefore, the effective
reproduction number of the model (3), with π = α2 = ν = 0,
RB, is written as

RB = RT |π =α2 = ν= 0.

Now, we have thatRT = A2RB where

A2 =
d + µ

d + π + µ+ να2

πη + µ+ r + ηνα2

µ+ r
.

Here, A2 is known as the effectiveness of treatment,chronic
cough identification (with an effective cost factor), an active case-
finding strategy, and reduced infectivity of isolated infectious cases
undergoing treatment on the control of tuberculosis.

If RB < 1, then TB cannot develop into an epidemic
and no control strategy involving treatment, chronic cough
identification (with a cost factor) and an active case-finding
strategy is needed for TB control. If we take the difference
betweenRB andRT i.e.,

1B: = RB −RT = (1− A2)RB

then an effective combination of the above-mentioned controls
for slowing down the spread of TB in the population (as stated
above in the expression for A2) would mean that 1B > 0, which
is satisfied if A2 < 1.

It is very interesting to note the expressions for the limits of
A2, when the limits applied to A1 are used, namely:

(i) lim
ν→ 1
α2 →∞

A2 = lim
π→∞
ν→ 1
α2 →∞

A2 = lim
ν→ 1
r→∞

A2 =
η(d + µ)

µ+ r
, (10)

(ii) lim
r→∞

A2 = lim
r→∞
η→ 0

A2 =
d + µ

d + µ+ π + να2
and

(iii) lim
π→∞
η→ 0
ν→ 1
α2 →∞

A2 = 0. (11)

Other than the limits of A2 in Equation (11) (iii), the results
of the other limits of A2 in Equations (10) and (11) (ii) are
adjusted by disease-induced death and are less than unity, when

compared to the corresponding limits forA1, as discussed earlier.
Interestingly, the limit in Equation (11) (ii) is zero, compared to
the same limit that gave µ

µ+r , for A1; hence, the former have a

lesser value in the limit compared to the latter.

Case 3

In this case, we are considering the situation where there are no
awareness programmes for both susceptible and latently infected
individuals. However, we assume that treated individuals now
have a measure of awareness following their treatment and
recovery from TB. Hence, we have that α1 = ψ = θ1 = θ2 =

0. We observe, from model (3) that, for this case, S2 → 0
asymptotically, as t → ∞, so that the latently infected class E2
is now populated by treated individuals who now have some level
of awareness, probably due to the experience they went through
during the course of their treatment. We assume that those who
are now populating the E2 class have life-long awareness with life
long benefit (so that θ2 = 0). Hence, the effective reproduction
number of the model (3), with α1 = ψ = θ1 = θ2 = 0, RA, is
written as

RA = RT |α1 =ψ = θ1 = θ2 = 0.

Now, we have thatRT = A3RA where

A3 =
B1

B2
,

with B1 = (µ(µ + k1)(πη + µ + r + ηνα2)(k1(µ(µ + σα1p2 +
θ1)+ (µ + σα1+ θ1)(k2 + θ2)) + σk2α1(µ + ψ) + k2(µ +

θ1)(µp1 + ψ) + µ(σα1p2 + p1(µ + θ1))(µ + θ2 + ψ))) and
B2 = [(k1 + µp1)(µ + r)(πη + µ + ηνα2)(µ + α1 + θ1)[(µ +

k1)(µ + k2 + θ2) + (µ + k2)ψ]].
In this case, A3 is known as the effectiveness of

treatment,chronic cough identification in the presence of a
cost improvement factor, an active case-finding strategy, reduced
infectivity of isolated infectious cases (for treatment) and
awareness program for both susceptible and latent individuals on
the control of tuberculosis.

If RA < 1, then TB cannot develop into an epidemic and no
control strategy involving the aforementioned factors (as stated
in the preceding paragraph) is needed for TB control.

If we take the difference betweenRA andRT i.e.,

1A: = RA −RT = (1− A3)RB,

then an effective combination of the controls (as mentioned
above and expressed in A3) for slowing down the spread of TB
in the population would mean that 1A > 0, which is satisfied if
A3 < 1.

Taking some limits of A3 threw up some interesting
conclusions as to effectively controlling tuberculosis, in this case:

(i) lim
r→∞
α1 →∞
θ1 → 0
π→∞

A3 = lim
π→∞
r→∞
ψ→∞
θ2 → 0

A3 = lim
ν→ 1
r→∞
π→∞
θ2 → 0
θ1 → 0
ψ→∞
α1 →∞
α2 →∞

A3 = 0, (12)

Frontiers in Microbiology | www.frontiersin.org 7 January 2016 | Volume 6 | Article 1530

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Okuonghae and Ikhimwin Mathematical Model for Tuberculosis

(ii) lim
α1 →∞
ψ→∞
θ1 → 0
θ2 → 0

A3 =
µσ (µ+ k1)(k2 + p2µ)(πη + µ+ r + ηνα2

(µ+ k2)(k1 + p1µ)(µ+ r)(πη + µ+ ηνα2)
,

(13)
and

(iii) lim
ν→ 1
π→∞
θ2 → 0
θ1 → 0
ψ→∞
α1 →∞
α2 →∞

A3 =
µσ (µ+ k1)(k2 + p2µ)

(µ+ k2)(k1 + p1µ)(µ+ r)
. (14)

Clearly, the limits of A3 that includes r (treatment rate) are
zero, and this is a positive outcome. However, for the limits
of A3 in Equations (13) and (14), the limiting values of A3

will be zero if σ → 0 i.e., the situation where susceptible
individuals who have a high awareness level have very reduced
likelihood of getting infected with tuberculosis due to their level
of awareness and the benefits that accrue from such awareness.
Clearly, effective control strategies for tuberculosis that utilizes
strategies associated with the expression for A3 will assist in
reducing the TB burden in a community as can be seen from the
results in Equation (12).
Case 4:
We will now discuss the situation where there are no disease
controls in the system. In this worse case scenario, we will set
r = ν = α2 = π = α1 = ψ = θ1 = θ2 = 0. This implies that,
from model (3), (S2,E2, J,T) → 0 asymptotically, as t → ∞.
Hence the basic reproduction number is obtained as

R0 = RT |r= ν=α2 =π =α1 =ψ = θ1 = θ2 = 0.

So thatRT = A4R0 where

A4 =
D1

D2
,

with D1 = ((d + µ)(µ + k1)(πη + µ + r + ηνα2)(k1(µ(µ +

σα1p2 + θ1) + (µ + σα1 + θ1)(k2 + θ2)) + σk2α1(µ + ψ) +
k2(µ+θ1)(µp1+ψ)+µ(σα1p2+p1(µ+θ1))(µ+θ2+ψ))) and
D2 = [(k1 + µp1)(µ+ r)(d+ π + µ+ να2)(µ+ α1 + θ1)[(µ+

k1)(µ+ k2 + θ2)+ (µ+ k2)ψ]].
If R0 < 1, then TB cannot develop into an epidemic and no

control strategy is needed for TB control. If we take the difference
betweenR0 andRT i.e.,

10: = R0 −RT = (1− A4)R0

then an effective combination of the controls discussed in this
case will slow down the spread of TB in the population, which
would mean that10 > 0, which is satisfied if A4 < 1.

Applying the limits in Case 3 onA4, we observe that the results
are the same except for

(i) lim
α1 →∞
ψ→∞
θ1 → 0
θ2 → 0

A4 =
(d + µ)σ (µ+ k1)(k2 + p2µ)(πη + µ+ r + ηνα2)

(µ+ k2)(k1 + p1µ)(µ+ r)(d + π + µ+ να2)

(15)
and

(ii) lim
ν→ 1
π→∞
θ2 → 0
θ1 → 0
ψ→∞
α1 →∞
α2 →∞

A4 =
η(d + µ)σ (µ+ k1)(k2 + p2µ)

(µ+ k2)(k1 + p1µ)(µ+ r)
(16)

The difference is that the limits of A4 are disease-induced death
adjusted (compared to the limits of A3) and, in Equations (15)
and (16), the limiting results for A4 will be zero if σ → 0
or η → 0 [η → 0 applies just for Equation (16)] i.e.,
susceptible individuals who have a high awareness level have
very reduced likelihood of getting infected with tuberculosis
due to their level of awareness (and the benefits that accrue
therefrom) and infectious individuals detected for treatment also
have a reduced likelihood of infecting susceptible and latently
infected individuals with tuberculosis during the course of their
treatment.

Of course, the above results (discussed in Cases 1 to 4,
in this section) are dependent on the fact that the baseline
populations are not subjected to the same interventions. For
example, in Case 1, A1 measures treatment effectiveness for
a population where education, chronic cough identification
and an active case-finding strategy are already implemented
(without treatment) while in Case 4, A4 measures the effort to
reduce the reproduction number for a population that had no
intervention whatsoever; hence in the latter case (Case 4), the
effort to curtail the disease must be higher than in the former
(Case 1).

In summary, parameter values that would make A1 < 1,
A2 < 1, A3 < 1 or A4 < 1 could yield control strategies with
the capacity of reducing the number of secondary TB infections
and slow down the spread of tuberculosis in the population.
Hence, to determine the necessary condition for slowing down
the development of TB at the population level, we will require
that1F > 0,1B > 0,1A > 0 or10 > 0, as the case may be and,
appropriately, determine control scenarios that will give better
results in reducing the incidence (and prevalence) of tuberculosis
in the population.

It is imperative to state that there are several limits that
could be considered while studying A1, A2, A3 and A4. However,
our interests are in investigating control strategies involving
the combination of the following parameters: ν, π , ψ , θ1,
θ2, α2, r, α1 and η. The combined effect of these parameters
on control measures and their effect on on the dynamics of
tuberculosis is worth examining and tested in improving the case
detection rate as well as reduce the tuberculosis burden in a
population.

2.2.4. Analysis of Effective Reproduction Number

Under Controls, RT

Using the threshold parameter, RT , we want to study the effect
of treatment, active cough identification and the associated cost
factor, tuberculosis awareness, an active case-finding technique as
well as a combination of some of these factors on the dynamics of
TB in the population.

It is evident from (4) that
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lim
α1 →∞
ψ→∞
θ1 → 0
θ2 → 0

RT =
βσ (k2 + p2µ)(πη + µ+ r + ηνα2)

(k2 + µ)(µ+ r)(d + π + µ+ να2)
> 0,

(17)

lim
α1 →∞
ψ→∞
θ1 → 0
θ2 → 0
r→∞

RT =
βσ (k2 + p2µ)

(k2 + µ)(d + π + µ+ να2)
> 0, (18)

lim
ν→ 1
α2 →∞
α1 →∞
ψ→∞
θ1 → 0
θ2 → 0
r→∞

RT = lim
α2 →∞
ν→ 1
π→∞
r→∞

RT = 0. (19)

It seems, from the limits of RT in Equations (17)–(19), that a
high treatment rate is very effective in the control of tuberculosis
only when the effect of the other critical parameters are properly
harnessed e.g., high awareness rates, less loss of awareness
(forgetfulness), increased active case-finding and chronic cough
identification (with minimal costs involved in testing and
treatments).

The contour plot of RT , as a function of the active case-
finding rate (π) and the treatment rate (r) is shown in Figure 2

while Figures 3, 4 depicts the contour plots of RT as a function
of the chronic cough identification rate (α2) and the associated
cost factor (ν) and as a function of the awareness rate for the
susceptible group (α1) and the chronic cough identification rate
(α2), respectively. Using the base parameter values in Table 1, we
observe from Figures 2–4 that the indicated parameters have a
positive effect on the effective reproduction number,RT . Hence,
improving on the awareness rate for the susceptible individuals,
the associated cost factor, active case-finding strategy, the use

FIGURE 2 | Contour plot ofRT as a function of π and r.

of chronic cough as a TB marker (for likely cases) and effective
treatment, will reduce the value of RT , albeit at different
rates.

From the expressions in the limits of RT in Equation (19), it
is seen that near total eradication of tuberculosis is achievable.
One strategy is to effectively combine making tuberculosis

FIGURE 3 | Contour plot ofRT as a function of ν and α2.

FIGURE 4 | Contour plot ofRT as a function of α1 and α2.
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TABLE 1 | Parameter information.

Parameters Description Values Units

µ natural death rate 0.02041 (0.0143, 0.04) year−1

3 recruitment rate µ× 105 year−1

β trans. rate 8.557 (4.4769, 15.1347) year−1

b1,b2 trans. rate(exogenous

re-infection)

0.2 (0, 1) year−1

p1,p2 frac. of fast prog. 0.1 (0.05, 0.3) year−1

k1, k2 prog. rate 0.05 (0.005, 0.05) year−1

r recovery rate 1.5 (1.5, 2.5) ind−1yr−1

d TB-induced death 0.365 (0.22, 0.39) year−1

ν cost factor 0.5 (0, 1) year−1

η mod. parameter 0.4 (0,1) year−1

α1, ψ awareness rate 5 (0,40) year−1

α2 cough iden. rate 5 (0,40) year−1

ǫ reduce infec. 0.2 (0,1) year−1

θ1, θ2 “immunity” measure 1 (0,40) year−1

σ effect. of program 0.5 (0,1) year−1

ω frac. of treated with

high awareness

0.4 (0,1) year−1

π active case-finding rate 5 (0,30) year−1

See Okuonghae and Omosigho (2011) (and the references therein) for sources of the

parameter values.

medical tests and treatment free, having high awareness rates
(for both susceptible and latently infected persons), continuous
enlightenment programmes to reduce the likelihood of loss of
awareness (or forgetfulness), high reportage of chronic cough
(to improve the detection of likely TB cases) and effective and
high treatment rate (i.e., ν → 1, α1 → ∞(ψ → ∞), θ1 →

0(θ2 → 0), α2 → ∞, r → ∞). It is remarkable that a similar
conclusion is reached when a control strategy concentrates on
high chronic cough identification rate, making tuberculosis tests
and treatment free, high active case-finding rate and a high
and effective treatment rate (i.e., ν → 1, α2 → ∞, r →

∞, π → ∞).
Of course, the above mentioned control strategies could

be cost prohibitive and may seem unrealistic, especially in
developing countries. However, the alternative strategies that can
be gleaned from the expressions in Equations (17) and (18) can
be applied to the target community, in reducing the severity of
tuberculosis in the community; note that, for example, the limit
ofRT in Equation (17) does not necessarily involve having a high
treatment rate especially when such treatment level is lacking in
the community.

Computing the partial derivatives of RT with respect to the
key parameters (r2, α2, α1, θ1, θ2, ψ , π and ν) further reveals
the effect of these parameters on tuberculosis control in the
population. The derivatives are given in Appendix B.

Clearly, it follows from Equation (A3) (Appendix B) that
∂RT
∂r < 0, unconditionally. Therefore, effective treatment rates

of tuberculosis will have a positive impact in reducing the disease
burden in the population. This result is stated in the following
lemma

Lemma 2.2. Effective treatment will have a positive impact on the
TB burden in a community by reducing the incidence of the disease
in the population regardless of the values of the other parameters in
the expression for the effective reproduction number.

Also, from Appendix B i.e., Equations (A4), (A5), we see that
∂RT
∂α1

> 0 ( ∂RT
∂θ1

< 0) if

σ >σ ∗=
k1k2 + k1θ2 + k2ψ + µ[k1 + k2p1 + p1(µ+ θ2 + ψ)]

k1k2 + k1θ2 + k2ψ + µ[k1p2 + k2 + p2(µ+ θ2 + ψ)]
.

(20)
However, ∂RT

∂α1
< 0 ( ∂RT

∂θ1
> 0) if σ < σ ∗ and ∂RT

∂α1
= 0 ( ∂RT

∂θ1
=

0) when σ = σ ∗. This implies that a high awareness level by some
of the susceptible individuals will have a positive impact on the
TB burden in the population if σ < σ ∗ i.e., the likelihood of such
susceptible individuals getting infected with TB should be less
than the computed σ ∗. The strategy of using awareness (and its
efficiency on TB control) to combat the disease will fail to reduce
the burden of tuberculosis in a community if σ = σ ∗, and, in fact,
will have a detrimental impact on the community, by increasing
the value of RT , if σ > σ ∗. This result is reversed if there
is a loss of awareness over time by susceptible individuals who
previously had a high level of awareness (forgetfulness). Hence,
such loss of awareness will bring about a reduction in the value of
the effective reproduction number if the likelihood of infection
of these susceptible (with previously high level of awareness) is
greater than the computed σ ∗, it will have no impact if σ = σ ∗

and will have a detrimental effect on the community if σ < σ ∗.
The result is summarized thus:

Lemma 2.3. A high awareness level for susceptible individuals will
have a positive impact on the reduction of the TB burden in a
community if σ < σ ∗, no impact if σ = σ ∗ and a detrimental
impact if σ > σ ∗. The result is reversed for the rate of loss of
awareness by these susceptibles: a positive impact if σ > σ ∗, no
impact when σ = σ ∗ and a detrimental impact if σ < σ ∗.

This result highlights the need for sustaining the tuberculosis
awareness programmes so that forgetfulness could be minimized
and the power of the knowledge of TB could help in reducing the
likelihood of new tuberculosis infections in the population.

A very close look at the expression for σ ∗, giving in Equation
(20), shows the significance of the fraction of fast progressions
in the system i.e., p1 and p2. Clearly, if p1 = p2 = 1, then
σ ∗ = 1 (which is also the case when p1 = p2 = p and
k1 = k2 = k); recall that one major assumption in the model (3)
is that, due to the effectiveness of awareness, σ ≤ 1. Therefore,
we conjecture that these fractions of fast progressions, p1 and
p2 and the rate of endogenous reactivation, k1 and k2 are very
crucial in determining whether σ ∗ is less than, equal to or greater
than one. Hence, the impact of awareness or loss of it over
time, on the dynamics of tuberculosis, is tied to the critical value
of the reduced likelihood of susceptible individuals, with high
awareness level, getting infected with TB (σ ) and to the fractions
of fast TB progressions from new infections and the rates of
endogenous reactivations (based on the levels of awareness in the
population).
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Taking a look at Appendix B, i.e., from Equations (A6), (A7),

we observe that ∂RT
∂θ2

< 0 ( ∂RT
∂ψ

> 0) if

k1 < k2. (21)

This implies that the high awareness level of some latently
infected individuals will bring about a reduction in the value
of the effective reproduction number (a positive impact) if
the progression rate (endogenous reactivation), k1, of latent
individuals with low awareness level, to the active stage of TB
is greater than that for latently infected individuals with high
awareness level i.e., k1 > k2; there will be no impact on TB
dynamics if k1 = k2 and a detrimental impact when k1 <

k2. This result is reversed when we investigate the relationship
between the effective reproduction number and the rate of loss of
awareness by the latently infected individuals who previously had
a high awareness level (θ2). This leads to the following lemma:

Lemma 2.4. A high awareness rate for some of the latently infected
individuals will have a positive impact on the reduction of the TB
burden in a community if k1 > k2, no impact if k1 = k2 and a
detrimental impact if k1 < k2. The result is reversed for the rate
of loss of awareness by such latently infected: a positive impact if
k1 < k2, no impact when k1 = k2 and a detrimental impact if
k1 > k2.

This result significantly demonstrates the connection between
awareness levels (and loss of awareness over time) of latently
infected individuals and their progression rates (endogenous
reactivation) to active tuberculosis, on the dynamics of the
disease in a community. We therefore conjecture that, from
Lemmas 2.3 and 2.4, the effect of the awareness levels (and loss
of previously high awareness level) of susceptible and latently
infected individuals is tied to some critical parameters: for the
former (susceptible), the effect of high awareness level (and lack
of it) on the effective reproduction number depends heavily on σ
(which further depends on p1 and p2, and probably k1 and k2)
while for the latter (latently infected individuals), the effect of
high awareness level (and lack of it) on the effective reproduction
number depends only on the progression rates to active TB, k1
and k2.

Basically, these Lemmas (2.3 and 2.4) demonstrates that,
even when awareness levels wanes probably due to stoppages
in enlightenment programmes in several media, then the
progression rates (p1, p2, k1 and k2) plays a significant role in the
dynamics of tuberculosis in the population and their effect should
be harnessed by health officials for proper control of the disease.

From the analysis and results stated in Lemmas 2.3 and 2.4, it
seems that the progression and reactivation rates (p1, p2, k1, and
k2) can vary from individual to individual or from community
to community. Generally, tuberculosis is most likely to occur in
the first year following infection, with stepwise reduction year
on year over the following 5–10 years, by which time incidence
approaches that of uninfected contacts (Esmail et al., 2014). Also,
reactivation several decades after initial infection occurs, but
beyond 10 years, it is difficult to assess how common reactivation
is (Esmail et al., 2014). Also, we earlier stated that the period of
fast latency can span between 1 and 5 years (Styblo, 1980; Flynn

and Chan, 2001; Colijn et al., 2007). Hence, the time line for
the risk of disease over time is, generally, not fixed, as this can
be determined by several biological and environmental factors,
so that we can assume that the parameters that describe disease
progressions can vary within some reasonable bounds.

Looking at Appendix B, i.e., Equations (A8), (A9), and (A10),

we observe that ∂RT
∂π

< 0, ∂RT
∂α2

< 0, and ∂RT
∂ν

< 0 if

d < d∗ =
(1− η)µ+ r

η
, η 6= 0 (22)

or

η < η∗ =
µ+ r

µ+ d
(23)

The results in Equations (22) and (23) reveals that the active
case-finding strategy, the use of chronic cough as a marker
for identifying potential TB cases, together with an efficient
cost factor, will bring about a reduction in the value of the
effective reproduction number if the disease-induced death
rate is less than the computed d∗ (22) or for the relative
infectiousness of individuals with active TB who are detected for
immediate treatment to be less than the computed η∗ (23). The
aforementioned parameters will have no impact on TB control
if d = d∗ or η = η∗ but will have a detrimental effect on
tuberculosis control and the TB burden in the population if d >
d∗ or η > η∗. We can state the following lemma:

Lemma 2.5. A high active case-finding and chronic cough
identification rates with a low cost factor will have a positive impact
on the reduction of the TB burden in a community if d < d∗(η <
η∗), no impact if d = d∗(η = η∗) and a detrimental impact if
d > d∗(η > η∗).

Recall that we assume that the modification parameter η ≤ 1.
Therefore, we expect that η∗ ≤ 1, which implies that r ≤

d. Hence, if the disease-induced death rate is greater than the
treatment rate, then the active case-finding strategy, coupled
with the effective use of chronic cough identification and an
effective cost factor will have a positive impact on the dynamics
of tuberculosis and bring down the TB burden in the population.

From the analysis carried out on RT , one observes that
taking treatment alone without considering the effect of other
parameters on the dynamics of tuberculosis, may not be enough
in reducing the TB burden in the population. Clearly, a critical
combination of two or more parameters from the set of key
parameters, notably ν, α1, α2 and others like θ1, π, ψ and θ2, can
significantly affect the value of the effective reproduction number.
These parameters also affect the number of detected cases (which
improves the case detection and notification rates) and, with
effective treatment, will reduce the tuberculosis burden in the
population.

2.2.5. Backward Bifurcation Analysis: Special Case
The phenomenon of backward bifurcation, which has been
observed in several disease transmission models (see, e.g.,
Hadeler and van den Driessche, 1997; Castillo-Chavez and Song,
2004), is typically characterized by the coexistence of a stable
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DFE and a stable endemic equilibrium when the associated
reproduction number of the model is less than unity. The public
health implication of the backward bifurcation phenomenon of
model (3) is that the classical epidemiological requirement of
having the reproduction number (RT) be less than one, although
necessary, is no longer sufficient for effective control of the
disease in the population.

We can determine the possibility of the existence of a
backward bifurcation in model (3); this is possible when we
check for the existence of multiple endemic equilibria when the
reproduction number of model (3) is less than one.

Consider the case when there is no treatment in the model (3)
(this is fitting in communities where treatment facilities are not
available or not enough to cater for the affected individuals) and
insignificant disease-induced death rate i.e., ǫ = r = d = 0. It
should be noted that setting d = 0 in (3) gives N(t) → 3

µ
as

t → ∞. Let β̂ = µβ
3

so that the force of infection now becomes

λ = β̂(I + ηJ). (24)

Also, let R̂T be the effective reproduction number of model (3)
with ǫ = r = d = 0.

To find the conditions for the existence of the endemic
equilibrium for the model (3) with ǫ = r = d = 0, denoted
by ξ2 = (S∗∗1 , S

∗∗
2 ,E

∗∗
1 ,E

∗∗
2 , I

∗∗, J∗∗), the Equation in (3), with
ǫ = r = d = 0, are solved in terms of the force of infection, at
steady state [using Equation (24)] (where the force of infection
at steady state will be denoted by λe), and this must satisfy the
following polynomial:

f (λe) = A1λ
e4 + A2λ

e3 + A3λ
e2 + A4λ

e + A5 = 0 (25)

where the coefficients,A1, ...,A5 and the endemic equilibrium, ξ2,
are given in Appendix C.

The components of the endemic equilibrium, given in
Equation (A11) (Appendix C), are then obtained by solving for
λe from the quartic (25), and substituting the positive values of
λe into the expressions of the endemic steady states given in
Equation (A11). Furthermore, it follows that the coefficientA1, of
the quartic (25), is always positive, and A5 is positive (negative) if
R̂T is less (greater) than one. The following can be deduced:

Theorem 2.3. The treatment-free model of (3), with d = 0, has

i no endemic equilibrium if b1 = 0 and R̂T < 1 (absence of
exogenous re-infection from the E1 class).

ii has four or two endemic equilibria if A2 < 0, A3 > 0, A4 < 0
and R̂T < 1.

iii has two endemic equilibria if A3 is of the same sign as A2 or A4

and R̂T < 1.
iv has two endemic equilibria if A2 > 0, A3 < 0, A4 > 0 and

R̂T < 1.
v no endemic equilibrium otherwise when R̂T < 1.
vi a unique endemic equilibrium when R̂T > 1.

Items (ii)—(iv) of Theorem 2.3 suggests the possibility of
backward bifurcation in the treatment-free model, with d =

0. Determining specific parameters that could be the cause of

the phenomenon, for the system (3), is quite challenging due
to the number of parameters in the model and the degree of
the polynomial (25). However, since it has been established
that exogenous re-infection can trigger the backward bifurcation
phenomenon in the dynamics of tuberculosis (Hadeler and
van den Driessche, 1997; Castillo-Chavez and Song, 2004;
Okuonghae and Omosigho, 2011), it will be interesting to
observe the effects of both exogenous re-infection parameters
in the system i.e., b1 and b2, since these parameters are
based on the levels of awareness of the latently infected
individuals.

First of all, it is important to show that in the absence
of exogenous re-infection from the latently infected class of
individuals with low awareness level, b1 = 0, the system
(3) will not have a backward bifurcation when R̂T < 1.
Clearly, setting b1 = 0 in Equation (25), yields the quadratic
equation

f (λe) = Â3λ
e2 + Â4λ

e + A5 = 0 (26)

where Â3 and Â4 are now evaluated fromA3 andA4, respectively,
with b1 = 0. It is easy to see that Â3 > 0 and A5 > 0 (the latter
when R̂T < 1).Wewant to show that, since σ ≤ 1, the coefficient
Â4 > 0, so that the quadratic (26) will not have any positive roots,
which implies that there is no endemic equilibrium when b1 = 0
in Equation (25). With b1 = 0 in Equation (25), we see that

Â4 = 3[(µ+ π + να2)(µ+ µσ + σα1 + θ1)((µ+ k1)

(µ+ k2 + θ2)+ (µ+ k2)ψ)]−3[β(µ+ η(π + να2))

σ ((k1 + µp1)(µ+ k2 + θ2)+ (k2 + µp1)ψ)]

Since σ ≤ 1, it then implies that,

Â4 ≥ 3[(µ+ π + να2)(µ+ µσ + σα1 + θ1)((µ+ k1)

(µ+ k2 + θ2)+ (µ+ k2)ψ1)]−3[β(µ+ η(π + να2))

((k1 + µp1)(µ+ k2 + θ2)+ (k2 + µp1)ψ1)].

(27)

From R̂T < 1, it follows that

β̂ ≤
G4

(µ+ ηπ + ηνα2)(G1 + G2 + G3)
,

where β̂ is now evaluated with r = d = 0. Substituting the
expression for β̂ into Equation (27), we see that

Â4 ≥ 3[(µ+ π + να2)(µ+ µσ + σα1 + θ1)((µ+ k1)

(µ+ k2 + θ2)+ (µ+ k2)ψ1)]

−3[(
G4

(µ+ ηπ + r2 + ηνα2)(G1 + G2 + G3)
)(µ+ η

(π + να2))((k1 + µp1)(µ+ k2 + θ2)+ (k2 + µp1)ψ1)].

(28)

Simplifying this further, we have that
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Â4 ≥ 3[(µ+ π + να2)[((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ)

(k1(µ
3 + k2(µ+ α1 + θ1)

2 + µ(2µ+ α1 + θ1)(p2α1 + θ1)

+ (µ+ α1 + θ1)
2θ2)+ µα1p2(2µ+ α1 + θ1)(µ+ θ2 + ψ)

+ µp1(µ
2 + θ1(2µ+ α1 + θ1))(µ+ k2 + θ2 + ψ)

+ k2(µα1(2µ+ α1 + θ1)+ (µ+ α1 + θ1)
2ψ))] > 0,

for σ ≤ 1. Therefore, the polynomial (26) will not have a positive
root, hence no endemic equilibrium, when b1 = 0 and R̂T < 1,
ruling out the possibility of a backward bifurcation, for this case.

However, when b2 = 0 and b1 6= 0 (in this case, there is no
exogenous re-infection of latently infected individuals with high
awareness level but there is exogenous re-infection in the E1 class
i.e., latently infected individuals with low level of awareness), the
quartic (25) now reduces to a cubic equation

f (λe) = Ã2λ
e3 + Ã3λ

e2 + Ã4λ
e + A5 = 0 (29)

where Ã2, Ã3 and Ã4 are obtained from evaluating the
corresponding coefficients of (25) with b2 = 0.

Following the analysis above, it is easy to show that the
polynomial (29) can have more than one positive root (hence
more than one endemic equilibria) when R̂T < 1, suggesting
the presence of a backward bifurcation for the case b2 = 0 and
b1 6= 0. We can now summarise the above discussions thus:

Lemma 2.6. The treatment-free model of (3) with d = 0 can
undergo the backward bifurcation phenomenon when

i both exogenous re-infection parameters, b1 and b2, are present
in the system i.e., b1 6= 0 and b2 6= 0.

ii only the exogenous re-infection parameter b1 is present in the
system i.e., b1 6= 0 and b2 = 0

The treatment-free model of (3) with d = 0 cannot undergo the
backward bifurcation phenomenon when

i both exogenous re-infection parameters, b1 and b2, are absent
in the system i.e., b1 = 0 and b2 = 0.

ii the exogenous re-infection parameter b1 is absent in the system
(even when b2 6= 0) i.e., b1 = 0 and b2 6= 0.

This study has, to the best of our knowledge, showed for
the first time the critical relationship between TB awareness,
heterogeneity in exogenous re-infection (by virtue of the level
of awareness of the latently infected individuals) and the
tuberculosis burden in a community. We can see, from Lemma
2.6, that exogenous re-infection of latently infected individuals
with low awareness level will more negatively impact on TB
control than incidences of exogenous re-infection in the latently
infected group with high awareness level, due to the influence of
the former in allowing for the existence of a backward bifurcation
in the system, when the associated reproduction number is
less than one. This can be seen from the backward bifurcation
diagrams in Figures 5, 6; clearly, in Figure 5, the backward
bifurcation range is larger than what we have in Figure 6.
Interestingly, when we set b1 = 0 (the exogenous re-infection
parameter for the latently infected individuals with low awareness
level), there is no backward bifurcation in the system when the

FIGURE 5 | Backward bifurcation when b1 6= 0 and b2 6= 0 .

FIGURE 6 | Backward bifurcation when b1 6= 0 and b2 = 0.

associated reproduction number is less than unity, regardless of
the value of b2 (the exogenous re-infection parameter for the
latently infected individuals with high awareness level).

Characterizing the backward bifurcation phenomenon for the
complete model (3) is not trivial. However, using the Center
Manifold Theorem (Carr, 1981; Castillo-Chavez and Song, 2004;
Okuonghae and Omosigho, 2011), we can show the condition
required for the system (3) to undergo the backward bifurcation
phenomenon whenRT < 1. We claim the following:

Theorem 2.4. The model (3) exhibits backward bifurcation at
RT = 1 whenever the bifurcation coefficients, denoted by a and
b (and given by (A15) and (A16) in Appendix D, respectively), are
positive. However, if the coefficient a is negative, then the system
(3) will not undergo a backward bifurcation atRT = 0.

See Appendix D for proof of Theorem 2.4.
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Of course determining, by inspection, which parameter(s)
could cause the phenomenon of backward bifurcation in the
model Equation (3) [by checking for specific parameter(s) that
will make the bifurcation coefficients a, given in Equation (A15),
to be negative and b, given in Equation (A16), to be positive] is
non-trivial.

However, we conjecture that, in addition the exogenous re-
infection parameters, b1 and b2, there could be other parameters
that could determine whether the system (3) can undergo a
backward bifurcation at RT = 1. These parameters, we believe,
are liked to the awareness parameters (i.e., α1, ψ, θ1, and θ2) and
the fractions of fast progressions, p1 and p2. Their overall effect
on the backward bifurcation phenomenon for the model (3) is
left for future work.

3. RESULTS

Model (3) is now numerically simulated with the parameter
estimates in Table 1 to gain insight into some of its quantitative
features. The system of equations in model (3) was solved
numerically using MATLAB; we used the ode45 solver, which
is based on the Runge-Kutta method. The parameter values
used were based on what exists in literature such as the
authors previous works (Okuonghae and Omosigho, 2011) and
other references cited in Okuonghae and Omosigho (2011).
Few parameter values were assumed, as seen (Okuonghae
and Omosigho, 2011) and other relevant literature cited in
Okuonghae and Omosigho (2011). The numerical simulations
are performed to illustrate various dynamical regimen
characteristics by varying some of the key parameters in
the model. The effects of varying some of the key parameters
on the infected classes are presented and we will examine
practicable preventive measures characterized by these
variations. Parameter values that are different from those
stated in Table 1 are shown in the caption of the respective
figure.

Figures 7, 8 shows the effect of varying the awareness rate
of the susceptible population on the infected classes, vis à viz
increasing the active case-finding rate. Clearly, we observe that,
even with loss of awareness on the part of susceptible individuals
(who previously had a high awareness rate), increasing the active
case-finding rate affected (positively) the dynamics of the system
with a reduction in the proportion of individuals in the infected
classes, and not just the infectious class (I), only.

Figure 9 shows that increasing the chronic cough
identification rate (and by implication improving the case
detection rate) significantly reduced the proportion of infected
individuals, even with a “high” loss of awareness in the
susceptible group while Figure 10 shows a worse case scenario
whereby an increase in loss of awareness in the susceptible group
leads to an increase in the proportion of infected individuals.

Figures 11, 12 shows the proportion of individuals in the
infected classes when we vary the reduced likelihood of infection
by detected infectious TB cases receiving treatment, η, between
0 and 1. Of course, as expected, reducing the value of η, from
1 to 0, brings down the proportion of infected individuals,
albeit at different rates, depending on the values of the

FIGURE 7 | Simulations of model (3) showing the number of infected

individuals. Here, the awareness rate for the susceptible individuals (α1) is

varied from 0 to 30 with θ1 = 20, θ2 = 1and π = 5.

FIGURE 8 | Simulations of model (3) showing the number of infected

individuals. Here, the awareness rate for the susceptible individuals (α1) is

varied from 0 to 30 with θ1 = 20, θ2 = 1 and π = 30.

awareness parameters for the susceptible and latently infected
populations.

Remarkably, Figure 13 shows that there is little influence of
the cost factor (ν) on the proportion of infected individuals, in
the presence of awareness, chronic cough identification, less loss
of awareness and an impressive awareness rate for the latently
infected individuals and active case-finding rate.

Taking a look at Figures 14, 15 reveals the effect of awareness
in preventing tuberculosis infection amongst the group of
susceptibles with high awareness level as we vary the infection
modification parameter σ , from 0 to 1. Of course, a powerful
awareness campaign with high awareness rate and with σ = 0,
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FIGURE 9 | Simulations of model (3) showing the number of infected

individuals. Here, the cough identification rate (α2) is varied from 0 to 30 with

θ1 = 20 and θ2 = 1.

FIGURE 10 | Simulations of model (3) showing the number of infected

individuals. Here, the rate at which susceptibles lose awareness (θ1) is varied

from 0 to 30 with α1 = 30 and α2 = 5.

brings about a drop in the proportion of infected individuals
especially with an impressive awareness level (e.g., ψ = 30) and
less loss of awareness (θ1 = θ2 = 1).

Clearly, focusing on awareness programmes (for both
susceptible and latently infected individuals) is very beneficial
for TB control. This should be taken in collaboration with
other interventions, like the use of chronic cough as a marker
for identifying potential TB cases, improved active case-finding
strategy and reduced cost of disease management as well as
prolonged awareness programmes to prevent loss of awareness
over time.

FIGURE 11 | Simulations of model (3) showing the number of infected

individuals. Here, the disease transmission modification parameter (η) is

varied from 0 to 1 with α1 = α2 = 5, θ1 = θ2 = 30 and ψ = 5.

FIGURE 12 | Simulations of model (3) showing the number of infected

individuals. Here, the disease transmission modification parameter (η) is

varied from 0 to 1 with α1 = α2 = 5, θ1 = θ2 = 1 and ψ = 30.

It is important to state here that the parameter values used
in the simulations can be sensitive to the model (3) and there
could be uncertainties in their values. However, the use of these
parameter values is to demonstrate their effect on the system and
gain some insight into the quantitative (especially asymptotic)
behaviors of the model.

Remark: Note the difference in the time window for the
different figures, some having 10, 20, or 100 years of simulation.
The graphs having a 10 or 20 year time window was used to
observe the pattern of the dynamics of the diseases for the
first few years of simulations or disease outbreak. We observe
that the results could easily be drowned out if the graphs
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FIGURE 13 | Simulations of model (3) showing the number of infected

individuals. Here, the cost factor (ν) is varied from 0 to 1 with α1 = α2 = 5,

θ1 = θ2 = 1, ψ = 30 and π = 20.

FIGURE 14 | Simulations of model (3) showing the number of infected

individuals. Here, the reduced likelihood of infection due to awareness (σ ) is

varied from 0 to 1 with α1 = α2 = 5, θ1 = θ2 = 1 and ψ = 30.

should have a longer time window. However, the figures with
100 year time window was used to investigate the existence of
equilibria based on the parameter values used. It is important
to state that tuberculosis dynamics are slow, and consequently,
TB epidemics unfold over several decades (Aparicio and Castillo-
Chavez, 2009). Hence determining asymptotic behaviors of the
disease model could require running simulations spanning a long
period of time.

4. DISCUSSIONS AND CONCLUSIONS

A modified and realistic deterministic mathematical model
for the transmission dynamics of tuberculosis in a population

FIGURE 15 | Simulations of model (3) showing the number of infected

individuals. Here, the reduced likelihood of infection due to awareness (σ ) is

varied from 0 to 1 with α1 = α2 = 20, θ1 = θ2 = 20 and ψ = 30.

has been designed and mathematically analyzed. The model
(3) extends that formulated and studied in Okuonghae and
Omosigho (2011) by classifying both susceptible and latently
infected individuals by their level of awareness of tuberculosis
(what the disease is, signs and symptoms of tuberculosis and
government policy on testing and medical treatment) and
included an active case-finding parameter in addition to the use
of chronic cough as a marker for identifying potential TB cases,
for the control of tuberculosis in a population.

The model (3) has a locally asymptotically stable DFE
whenever the associated effective reproduction number is
less than one. However, for the treatment free model with
insignificant disease-induced death rate, it was shown that the
system will undergo the phenomenon of backward bifurcation
where the stable disease-free equilibriumwill coexist with a stable
endemic equilibrium when the effective reproduction number is
less than one. For this special case, this phenomenon was caused
by the exogenous re-infection of latently infected individuals.
We then showed that the effect of exogenous re-infection on
the backward bifurcation phenomenon depended strongly on the
level of awareness of the latently infected individuals; backward
bifurcation due to exogenous re-infection was largely sustained
by the latently infected individuals with a low awareness level.

The study further showed that concentrating on TB treatment
alone may not significantly reduce the value of the reproduction
number if attention is not paid to other key control parameters
such as awareness levels and active case-finding rate; in fact, it
is possible for the value of the reproduction number to still be
greater than one when we concentrate mainly on treatment rate.
However, if we take two or more key parameters at the same time
and glean out effective control strategies from their combination,
then it is possible that, in the long run, the disease burden in the
community can be reduced.

Qualitative study of the effective reproduction number
showed how different control scenarios involving awareness
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levels, loss of awareness over time, active case-finding strategy,
chronic cough identification and minimal (or no) cost incurred
for TB management could lead to a reduction in the value of the
effective reproduction number RT . The analyses suggested that
concentrating on increasing tuberculosis awareness campaign
for both susceptible and latently infected individuals and also
increasing chronic cough identification and active case-finding
rates will result in reducing the incidence of TB in the population
in the presence of an effective cost factor whereby the cost of
conducting TB tests and commencing treatment is very small, if
not free.

Numerical simulations suggested practical preventive
measures, represented by changing the value of some
parameters, notably, ν, α1, α2, θ1, θ2, ψ , and π . These
simulations showed that improving on the cost factor, increased
awareness programmes (especially as it affects susceptible and
latently infected individuals), cough identification rate as well
as minimizing new TB infections caused by fairly isolated TB
infectious individuals that are undergoing treatment, will help in
reducing the prevalence of TB in the community, together with
minimal loss of awareness from both susceptible and latently
infected individuals.

In summary, this work have shown, that the prospect of
effectively controlling the spread of tuberculosis in a population
is very bright. Preventive measures through the use of control
strategies should concentrate on awareness programmes. The
enlightenment programmes should include helping the general
public make use of simple signs in quickly identifying a likely TB

case such as chronic cough lasting at least 2 weeks. This will not
only quicken the treatment of the infectious individuals, it can
also reduce the likelihood of disease transmission. Also awareness
programmes should be sustained over a long period of time
(especially in places with high endemic levels of tuberculosis) as
this work has demonstrated the effect of loss of awareness on the
dynamics of tuberculosis in the population.
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Okuonghae and Ikhimwin Mathematical Model for Tuberculosis

APPENDIX A

Proofs of Theorems 2.1 and 2.2
Proof of Theorem 2.1:

Proof. Let t1 = sup{t > 0 : S1(t) > 0, S2(t) > 0,E1(t) > 0,E2(t) > 0, I(t) > 0, J(t) > 0,T(t) > 0} > 0. It follows from (3a) that

dS1

dt
= 3− α1S1 − λS1 − µS1 + θ1S2 ≥ 3− α1S1 − λS1 − µS1,

which can be written as

d

dt

{

S1(t)exp

[

(α1 + µ)t +

∫ t

0
λ(τ )dτ

]}

≥ 3

{

exp

[

(α1 + µ)t +

∫ t

0
λ(τ )dτ

]}

.

Thus,

S1(t1)exp

[

(α1 + µ)t1 +

∫ t1

0
λ(τ )dτ

]

− S1(0) ≥

∫ t1

0
3

{

exp

[

(α1 + µ)y+

∫ y

0
λ(τ )dτ

]}

dy.

so that,

S1(t1) ≥ S1(0)exp

[

− (α1 + µ)t1 −

∫ t1

0
λ(τ )dτ

]

+

−

{

exp

[

− (α1 + µ)t1 −

∫ t1

0
λ(τ )dτ

]}

∫ t1

0
3

{

exp

[

(α1 + µ)y+

∫ y

0
λ(τ )dτ

]}

dy > 0.

Similarly, it can be shown that S2(t) > 0,E1(t) > 0,E2(t) > 0, I(t) > 0, J(t) > 0 and T(t) > 0 for all time t > 0. Hence all solutions
of the model (3) remain positive for all non-negative initial conditions, as required.

Proof of Theorem 2.2:

Proof. Adding the equations of the model (3) gives

dN

dt
= 3− µN − dI. (A1)

Since the right hand side of the above equality is bounded by3−µN, a standard comparison theorem (Lakshmikantham et al., 1989)
can be used to show that

N(t) ≤ N(0)e−µt +
3

µ
(1− e−µt). (A2)

In particular, if N(0) ≤ 3
µ
, then N(t) ≤ 3

µ
. Thus, D is a positively invariant set. Furthermore, if N(0) ≥ 3

µ
, then either the solution

entersD in finite time or N(t) approaches to 3
µ
as t → ∞. Hence no solution path leave through any boundary ofD and the regionD

attracts all solutions in R
7
+.
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APPENDIX B

Partial derivatives of RT

∂RT

∂r
= −

βη(π + να2)P1

((µ+ r)2(d + π + µ+ να2)(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A3)

∂RT

∂α1
=

β(πη + µ+ r + ηνα2)(µ+ θ1)P2

((µ+ r)(d + π + µ+ να2)(µ+ α1 + θ1)2 ((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A4)

∂RT

∂θ1
= −

βα1(πη + µ+ r + ηνα2)P2

((µ+ r)(d + π + µ+ να2)(µ+ α1 + θ1)2 ((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A5)

∂RT

∂θ2
=
βµ(πη + µ+ r + ηνα2)(k1 − k2)[(1− p1)(µ+ θ1)ψ + σ (1− p2)α1(µ+ k1 + ψ)]

((µ+ r)(d + π + µ+ να2)(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ)2)
, (A6)

∂RT

∂ψ
=
βµ(πη + µ+ r + ηνα2)(k1 − k2)[(1− p1)(µ+ θ1)(µ+ k2 + θ2)+ σ (1− p2)α1θ1]

((µ+ r)(d + π + µ+ να2)(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ)2)
, (A7)

∂RT

∂π
=

β(ηd − (1− η)µ− r)P1

((µ+ r)(d + π + µ+ να2)2(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A8)

∂RT

∂α2
=

βν(ηd − (1− η)µ− r)P1

((µ+ r)(d + π + µ+ να2)2(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A9)

∂RT

∂ν
=

βα2(ηd − (1− η)µ− r)P1

((µ+ r)(d + π + µ+ να2)2(µ+ α1 + θ1)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ))
, (A10)

where
P1 = k1(µ(µ+σα1p2+θ1+ (µ+σα1+θ1)(k2+θ2))+σα1k2(µ+ψ)+k2(µ+θ1)(µp1+ψ)+µ(σα1p2+p1(µ+θ1))(µ+θ2+ψ)),
and
P2 = −[(1− σ )(k1k2 + k1θ2 + k2ψ)+ k1µ(1− σp2)]− (k2µ(p1 − σ )+ µ(p1 − σp2)(µ+ θ2 + ψ).

APPENDIX C

Existence of EEP for Special Case
The coefficients of the polynomial (25) are given as

A1 = z2ϑσ3(µ+ π + να2),

A2 = 3z(µ+ π + να2)[µ(σ + ϑ(z + σ + zσ ))+ ϑσk1 + σk2 + zϑσα1

+ zϑθ1 + σ (θ2 + ϑψ)]− [β(µ+ η(π + να2))z
2ϑ3σ ]

A3 = 3(µ+ π + να2)[k1(µ(σ + zϑ(1+ σ ))+ σk2 + zϑ(σα1 + θ1)+ σθ2)

+ zθ1((1+ ϑ + zϑ)µ+ θ2 + ϑψ)+ k2(µ(z + σ + zσ )+ zσα1 + zθ1 + σψ)

+ zα1(µ(σ + ϑ(z + σ ))+ σθ2 + ϑσψ)+ µ[µ(σ + z(1+ σ + ϑ(1+ z + σ )))

+ (z + σ + zσ )θ2(σ + zϑ(1+ σ ))ψ]]− [β(µ+ η(π + να2))

z3(zϑµ+ µσ + ϑσk1 + σk2 + ϑµσp1 + zϑσα1 + zϑθ1 + σθ2 + ϑσψ)]

A4 = 3(µ+ π + να2)[k1[k2(µ+ µσ + σα1 + θ1)+ θ1(µ+ zϑµ+ θ2)+ α1(µ(zϑ + σ )+ σθ2)

+ µ(µ(1+ zϑ + σ )+ (1+ σ )θ2)]+ k2[θ1(µ+ zµ+ ψ1)+ α1(µ(z + σ )+ σψ)

+ µ(µ(1+ z + σ )+ (1+ σ )ψ)]+ µ[θ1((1+ z + zϑ)µ+ (1+ z)θ2 + (1+ zϑ)ψ)

+ α1(µ(z + zϑ + σ )+ (z + σ )θ2 + (zϑ + σ )ψ)+ µ(µ(1+ z + zϑ + σ )

+ (1+ z + σ )θ2 + (1+ zϑ + σ )ψ)]

− β(µ+ η(π + να2))3[k1(µ(zϑ + σ )+ σk2 + zϑ(σα1 + θ1)+ σθ2)

+ k2(µσp1 + z(µ+ σα1 + θ1)+ σψ)+ µp1(µ(zϑ + σ )+ zϑθ1 + σ (θ2 + ψ))

z((µ+ θ1)(µ+ θ2 + ϑψ)+ σα1(µnp2 + θ2 + ϑ(µ+ ψ)))]

A5 = 3µ(µ+ α1 + θ1)(µ+ π + να2)((µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ)[1− R̂T]
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where z = b1 and ϑ = b1b2 with R̂T = RT |r=d=0 being the reproduction number of the model (3) where r = d = 0. The endemic
steady state solutions are

S∗∗1 =
3(µ+ λeσ + θ1)

α1(µ+ λeσ )+ (λe + µ)(µ+ λeσ + θ1)
,

S∗∗2 =
3α1

α1(µ+ λeσ )+ (λe + µ)(µ+ λeσ + θ1)
,

E∗∗1 =
1

b1λe + (k1 + µ+ ψ)
[(1− p1)S

∗∗
1 λ

e + θ2E
∗∗
2 ],

E2∗∗ =
1

b2λe + (k2 + µ+ θ2)
[(1− p2)σS

∗∗
2 λ

e + ψE∗∗1 ],

I∗∗ =
1

να2 + µ+ π
[p1S

∗∗
1 λ

e + p2σS
∗∗
2 λ

e + (b1E
∗∗
1 + b2E

∗∗
2 )+ k1E

∗∗
1 + k2E

∗∗
2 ],

J∗∗ =
π + να2

µ
I∗∗

(A11)

APPENDIX D

Proof of Theorem 2.4
Suppose

ξ3 = (S∗∗1 , S
∗∗
2 ,E

∗∗
1 ,E

∗∗
2 , I

∗∗, J∗∗,T∗∗)

represents any arbitrary endemic equilibrium of model (3) (i.e., an equilibrium in which at least one of the infected components is
non-zero). We will explore the existence of backward bifurcation using the center manifold theory (Carr, 1981; Castillo-Chavez and
Song, 2004). To apply this theory, it is convenient to perform the following change of variables. Let S1 = x1, S2 = x2, E1 = x3,
E2 = x4, I = x5, J = x6, and T = x7. Further, by using the vector notation X = (x1, x2, ..., x7)

T , and noting that the force of infection
is given by

λ = β
x5 + ηx6

x1 + x2 + x3 + x4 + x5 + x6 + x7
,

the model (3) can be written in the form dX
dt

= F(X), with F = (f1, f2, ..., f7)
T , as follows

ẋ1 ≡ f1 = 3− α1x1 − λx1 + θ1x2 − µx1,

ẋ2 ≡ f2 = α1x1 − σλx2 − θ1x2 − µx1,

ẋ3 ≡ f3 = (1− p1)λ(x1 + ωǫx7)− b1λx3 − (k1 + ψ1 + µ)x3 + θ2x4,

ẋ4 ≡ f4 = (1− p2)λ(σx2 + (1− ω)ǫx7)− b2λx4 − (k2 + θ2 + µ)x4 + ψ1x3,

ẋ5 ≡ f5 = p1λ(x1 + ωǫx7)+ p2λ(σx2 + (1− ω)ǫx7)+ b1λx3 + b2λx4

+ k1x3 + k2x4 − (να + π + d + µ)x5,

ẋ6 ≡ f6 = πx5 + να2x5 − (r2 + µ)x6,

ẋ7 ≡ f7 = r2x6 − ǫλx7 − µx7.

(A12)

Consider the case when β = β∗ is chosen as a bifurcation parameter. Solving for β = β∗ fromRT = 1 gives

β = β∗ =
G4

(µ+ ηπ + r2 + ηνα2)(G1 + G2 + G3)
.

The Jacobian of the transformed system (3), evaluated at the disease-free equilibrium (ξ1) with β = β∗, is given by
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J∗ = J(ξ1)|β=β∗ =





























−K1 θ1 0 0 −
β∗x∗1
x∗1+x∗2

−
ηβ∗x∗1
x∗1+x∗2

0

α1 −K2 0 0 −
σβ∗x∗2
x∗1+x∗2

−
σηβ∗x∗2
x∗1+x∗2

0,

0 0 −K3 θ2
(1−p1)β

∗x∗1
x∗1+x∗2

(1−p1)ηβ
∗x∗1

x∗1+x∗2
0,

0 0 ψ −K4
(1−p2)σβ

∗x∗2
x∗1+x∗2

(1−p2)σηβ
∗x∗2

x∗1+x∗2
0,

0 0 k1 k2 β
p1x

∗
1+p2σx

∗
2

x∗1+x∗2
− K5 βη

p1x
∗
1+p2σx

∗
2

x∗1+x∗2
0,

0 0 0 0 π + να2 −K6 0,
0 0 0 0 0 r2 −µ,





























where K1 = µ+ α1, K2 = θ1 + µ, K3 = k1 + ψ + µ, K4 = k2 + θ2 + µ, K5 = να2 + µ+ d + π , K6 = r2 + µ, x∗1 = 3
µ

µ+θ1
µ+α1+θ1

and

x∗2 = 3
µ

α1
µ+α1+θ1

.

Matrix J∗ has a right eigenvector given by w = (ω1, ω2, ..., ω11)
T , where

ω1 = −
G4(µ

2 + θ1(2µ+ σα1 + θ1))ω5

µ(G1 + G2 + G3)(µ+ r)(µ+ α1 + θ1)2
≡ −H1w5 < 0

ω2 = −
G4α1(µ+ σµ+ σα1 + θ1)ω5

µ(G1 + G2 + G3)(µ+ r)(µ+ α1 + θ1)2
≡ −H2w5 < 0

ω3 =
G4[(1− p1)(µ+ θ1)(µ+ k2 + θ2)+ σα1θ2(1− p2)]ω5

(G1 + G2 + G3)(µ+ r)(µ+ α1 + θ1)[(µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ]
≡ H3ω > 0,

ω4 =
G4[(1− p1)(µ+ θ1)ψ + σ (1− p2)α1(µ+ k1 + ψ)]ω5

(G1 + G2 + G3)(µ+ r)(µ+ α1 + θ1)[(µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ]
≡ H4ω > 0,

ω5 = ω5 > 0,

ω6 =
π + να2

r + ν
ω5 ≡ H5ω5 > 0,

ω7 =
r(π + να2)

r + ν
ω5 ≡ H6ω5 > 0.

(A13)

Furthermore, J∗ has a left eigenvector v = (ν1, ν2, ...., ν11) satisfying v.w = 1, with

ν1 =
α1

(α1 + µ)(θ1 + µ)
≡ Z1 > 0,

ν2 =
α1 + µ

θ1α1
≡ Z2 > 0,

ν3 =
k1(µ+ k2 + θ2)+ k2ψ

(µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ
ν5 ≡ Z3ν5,

ν4 =
k1θ2 + k2(µ+ k1 + ψ)

(µ+ k1)(µ+ k2 + θ2)+ (µ+ k2)ψ
ν5 ≡ Z4ν5,

ν5 = ν5 > 0,

ν6 =
1

r + µ

[

−
ηβ∗x∗1
x∗1 + x∗2

ν1 −
σηβ∗x∗2
x∗1 + x∗2

ν2 +
(1− p1)ηβ

∗x∗1
x∗1 + x∗2

ν3

+
(1− p2)σηβ

∗x∗2
x∗1 + x∗2

ν4 + βη
p1x

∗
1 + p2σx

∗
2

x∗1 + x∗2
ν5

]

,

ν7 = 0.

(A14)

It follows from Theorem 4.1 in Castillo-Chavez and Song (2004), if we compute the associated non-zero partial derivatives of F(x)
(evaluated at the DFE, ξ1), that the associated bifurcation coefficients, a and b, defined by

a =

n
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),
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and

b =

n
∑

k,i=1

vkwi
∂2fk

∂xi∂β∗
(0, 0),

are computed to be

a = −
2β∗ω2

5(1+ ηH5)

x∗1 + x∗2

{

(H1 +H2)

[

x∗1
x∗1 + x∗2

Z1 +
σx∗2

x∗1 + x∗2
Z2

]

+ (H3 +H4 +H5 +H6 + 1)

[

(1− p1)x
∗
1

x∗1 + x∗2
Z3 +

σ (1− p2)x
∗
2

x∗1 + x∗2
Z4 +

p1x
∗
1

x∗1 + x∗2
+

σp2x
∗
2

x∗1 + x∗2

]

ν5

+

[

(1− p1)H1Z3 + b1H3Z3 + σ (1− p2)H2Z4 + b2H4Z4 +
p1

2
H1 +

σp2

2
H2

]

ν5

−

(

(H1 +H2)

[

(1− p1)x
∗
1

x∗1 + x∗2
Z3 +

σ (1− p2)x
∗
2

x∗1 + x∗2
Z4 +

p1x
∗
1

x∗1 + x∗2
+

σp2x
∗
2

x∗1 + x∗2

]

ν5

+ (H3 +H4 +H5 +H6 + 1)

[

x∗1
x∗1 + x∗2

Z1 +
σx∗2

x∗1 + x∗2
Z2

]

+H1Z1 + σH2Z2 +

[

ǫω(1− p1)H6Z3 + ǫ(1− ω)(1− p2)H6Z4

+
b1

2
H3 +

b2

2
H4 + ǫωp1H6 + ǫ(1− ω)p2H6

]

ν5

)}

(A15)

and

b =

(

Z3
(1− p1)x

∗
1

x∗1 + x∗2
+ Z4

(1− p2)σx
∗
2

x∗1 + x∗2
+

p1x
∗
1

x∗1 + x∗2
+

p2x
∗
2

x∗1 + x∗2

)

v5 − Z1
x∗1

x∗1 + x∗2
+ Z2

σx∗2
x∗1 + x∗2

, (A16)

for v5 > 0.
It follows from Theorem 4.1 in Castillo-Chavez and Song (2004) that the model (3), or the transformed model (A12), will undergo a

backward bifurcation if the backward bifurcation coefficients a and b, given by (A15) and (A16), are positive. However, if a is negative,
with b still remaining positive, then the system [either (3) or (A12)] will not undergo a backward bifurcation. �
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