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In marine sediments the anaerobic oxidation of methane with sulfate as electron

acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas

methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea

(ANME) and their specific partner bacteria. The physiology of these organisms is poorly

understood, which is due to their slow growth with doubling times in the order of

months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here

we study sediment-free long-term AOM enrichments that were cultivated from seep

sediments sampled off the Italian Island Elba (20◦C; hereon called E20) and from

hot vents of the Guaymas Basin, Gulf of California, cultivated at 37◦C (G37) or at

50◦C (G50). These enrichments were dominated by consortia of ANME-2 archaea and

Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2

bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid

membrane compositions as possible factors for the different temperature affinities

of the different ANME clades and show autotrophy as characteristic feature for

both ANME clades and their partner bacteria. Although in the absence of additional

substrates methane formation was not observed, methanogenesis from methylated

substrates (methanol and methylamine) could be quickly stimulated in the E20 and

the G37 enrichment. Responsible for methanogenesis are archaea from the genus

Methanohalophilus and Methanococcoides, which are minor community members

during AOM (1–7h of archaeal 16S rRNA gene amplicons). In the same two cultures

also sulfur disproportionation could be quickly stimulated by addition of zero-valent

colloidal sulfur. The isolated partner bacteria are likewise minor community members

(1–9h of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria

(Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results

support a functioning of AOM as syntrophic interaction of obligate methanotrophic

archaea that transfer non-molecular reducing equivalents (i.e., via direct interspecies

electron transfer) to obligate sulfate-reducing partner bacteria. Additional katabolic

processes in these enrichments but also in sulfate methane interfaces are likely

performed by minor community members.
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INTRODUCTION

In the anoxic marine subsurface large amounts of the potential
greenhouse gas methane are formed by microbial and thermal
degradation of organic matter. Hence methane is highly
abundant in the marine subsurface (Reeburgh, 2007). The
efflux of methane from sediments into the water column
is however limited, which is mostly due to the effective
barrier of methanotrophic microorganisms. The quantitatively
most important sink is the coupling of methane oxidation
to the reduction of sulfate (AOM) according to the net
reaction:

CH4 + SO2−
4 HCO−

3 +HS− +H2O (1)

with an energy yield of only −34 kJ per mol substrate turnover
at standard conditions (Knittel and Boetius, 2009). AOM is
performed in dual species microbial consortia of anaerobic
methane-oxidizing archaea (ANME), which are closely related
to known methanogens, and partner bacteria affiliated to
canonical sulfate reducers of the Desulfosarcina/Desulfococcus
clade (Hinrichs et al., 1999; Boetius et al., 2000; Orphan
et al., 2001; Knittel et al., 2005) or of the HotSeep-1 group
(Krukenberg et al., under review). Currently three major clades
of ANME archaea are known. ANME-2 is the most prominent
methanotrophic clade at marine cold gas seeps (Orphan et al.,
2002;Mills et al., 2003;Wegener et al., 2008b; Knittel and Boetius,
2009). The temperature at those sites is usually between 4 and
14◦C (Knittel and Boetius, 2009). ANME-3 often occurs at mud
volcanoes (i.e., Håkon Mosby Mud Volcano; Niemann et al.,
2006 in situ temperature−1.5◦C) and the EasternMediterranean
seepages (14◦C; Omoregie et al., 2008). To our knowledge so far
ANME-3 does not proliferate in vitro. The third phylogenetic
group ANME-1 has been originally described at cold seeps
(Hinrichs et al., 1999), but it is particular abundant in diffusive
sulfate methane interfaces (Thomsen et al., 2001; Lanoil et al.,
2005; Harrison et al., 2009; Aquilina et al., 2010) and in microbial
mats and chimney structures at methane seeps in the Black
Sea (Michaelis et al., 2002), in situ temperature of 10◦C. In
hydrothermally heated sediments such as in the Guaymas Basin
(AOM activity up to 70◦C) ANME-1 perform thermophilic
methane oxidation (Teske et al., 2002; Holler et al., 2011b;
Dowell et al., 2016). All ANME clades form dense consortia with
deltaproteobacterial partners, which belong either to Seep-SRB1a
from the Desulfosarcinales/Desulfococcus subcluster; (Schreiber
et al., 2010), Seep-SRB2 from the Desulfbacterales subcluster
(Kleindienst et al., 2012) or Desulfobulbus (mostly ANME-3;
Niemann et al., 2006). The partner of thermophilic ANME-
1 is HotSeep-1 (Holler et al., 2011b; Wegener et al., 2015).
Different naturally enriched AOM communities proliferated in
vitro (Nauhaus et al., 2002; Krüger et al., 2005; Holler et al., 2009),
however cultivation at low temperatures (≤20◦C) repeatedly
selected for ANME-2, although several source sediments were
dominated by other clades (ANME-1 from the Black Sea or
ANME-3 at Håkon Mosby Mud Volcano; Holler et al., 2009;

own data). The principles underlying this selective growth of
ANME-2 in vitro have so far not been resolved. Only cultivation
at elevated temperatures sustained ANME-1 (Holler et al.,
2011b).

The potential of ANME to perform methanogenesis has been
repeatedly suggested. This hypothesis based on experiments with
natural enrichments (Bertram et al., 2013), on thermodynamic
constrains (Alperin and Hoehler, 2009) and on the phylogenetic
proximities and genomic similarities of ANME and known
methanogens (Lloyd et al., 2011). Furthermore, using radiotracer
co-occurrence of AOM and methane formation have been
repeatedly measured (Treude et al., 2007; Orcutt et al., 2008)
and ANME-1 archaea have been found to be abundant in
potentially methanogenic sedimentary horizons (Lloyd et al.,
2011). However, tracer transfer from product (DIC) into
the reactant pool (methane) might also be explained as
inherent process of AOM as suggested by Holler et al.
(2011a).

The certainly least understood feature of AOM is how
archaea and bacteria interact in the characteristic dual-species
consortia. The activation and complete oxidation of methane
via a reversal of the well-described methanogenesis pathway can
be confidently assigned to the ANME archaea (Hallam et al.,
2004; Meyerdierks et al., 2010; Thauer, 2011; Stokke et al.,
2012; Wang et al., 2014). The fate of the released electrons
including the localization of sulfate reduction is instead so
far controversial. Based on their phylogenetic classification as
Deltaproteobacteria (Knittel et al., 2003; Schreiber et al., 2010;
Kleindienst et al., 2012) and the presence of genes and enzymes
of sulfate reduction (Milucka et al., 2013; Wegener et al.,
2015), all different partner bacteria are likely involved in the
sulfur cycle. Different mechanisms for the interaction of ANME
and partner bacteria have been suggested. For the sediment-
free Isis Mud Volcano AOM enrichment (Mediterranean Sea),
incomplete sulfate reduction in ANME-2 and zero-valent sulfur
transfer to disproportionating partner bacteria was proposed
(Milucka et al., 2012). Instead, for AOM communities in Hydrate
Ridge sediments (Coast off Oregon, USA) cytochrome-mediated
direct interspecies electron transfer between ANME-2 and their
sulfate-reducing partner was proposed (McGlynn et al., 2015).
For the interaction of thermophilic ANME-1 and their sulfate-
reducing HotSeep-1 partner direct interspecies electron transfer
via nanowires and cytochromes was proposed (Wegener et al.,
2015).

Here we retrieved three sediment-free AOM enrichments
derived from methane-percolated coastal sands off the
Mediterranean Island Elba (Italy; enriched at 20◦C; E20) as
well as a mesophilic enrichment (37◦C; G37) and a thermophilic
enrichment culture (G50) from the Guaymas Basin. We
described community compositions and membrane lipid
patterns of these enrichments and performed physiological
experiments to test metabolic capabilities attributed to
AOM community members including chemoautotrophy,
methanogenesis and sulfur disproportionation. Findings were
evaluated in further AOM enrichments obtained from different
seep sites.
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MATERIAL AND METHODS

Production of AOM Enrichments and
Maintenance
Source material for the E20 enrichment were clastic sediments
sampled by scuba diving in 2010 from the coastal hydrocarbon
seeps off the Mediterranean island Elba (in situ water
temperature 12–27◦C and 12m water depth, further described in
Ruff et al., this issue). By shaking and collecting the supernatant
we concentrated slowly settling microbial biomass from rapidly
sinking mineral particles (sand). The concentrated biomass
(<1% of the sediment weight) retained 60% of the microbial
methane-dependent sulfate reduction rate of the sediment. The
G37 and G50 enrichments derived from the methane-rich
hydrothermally heated sediments of the Guaymas Basin, Gulf
of California, sampled during RV ATLANTIS cruise AT15-56
with the submersible ALVIN in 2009. After determination of
applicable cultivation temperatures in a temperature gradient
block (Holler et al., 2011b), sediments from distinct temperature
horizons have been enriched at the determined temperature
optima of AOM (37, 50, 60◦C). All enrichments were incubated
with marine sulfate reducer medium (Widdel and Bak, 1992)
and supplied with methane and sulfate as sole potential redox
couple for at least 3 years. Medium was exchanged when
sulfide concentrations exceeded 15mM and biomass was diluted
(1:2 or 1:4) when sulfide production exceeded approximately
0.2mmol l−1 day−1. Community structures in the 50 and 60◦C
enrichment were highly similar, thus experiments presented here
were performed at 50◦C. The additional sample “GF” (here only
studied for microbial diversity and sulfur disproportionation),
derived from the methane seeps in the vicinity of the Gullfaks oil
field in the North Sea and was sampled during RV ALKOR cruise
267 in October 2005 (Wegener et al., 2008b). Sediment-free
AOM enrichments from this site were produced by incubation
under AOM conditions at room temperature and subsequent
dilution as described above. Further methanotrophic enrichment
cultures from the Mediterranean (NAUTNIL expedition with
RV L Atalante in 2003), from Hydrate Ridge (RV SONNE
expedition SO148 in 2000), the Black Sea (RV POSEIDON
expedition POS 148 in 2004) and Gulf of Mexico (RV SONNE
expedition SO 174), which were only screened for their
microbial diversity, were retrieved and cultivated as described
(see Supplementary Table 1).

Cultivation of Methanogens from the AOM
Enrichments
To determine potential methanogenesis activity in the AOM
enrichments E20, G37, and G50, triplicate sulfate-free culture
aliquots of 10ml (1:10 dilution) were incubated in 20ml
Hungate tubes with alternative substrates [hydrogen (0.2MPa),
carbon monoxide (0.05MPa), formate, acetate, methylamine,
and methanol (all 20mM)] for 30 days at their distinct
temperature. The development of methane in the headspace was
measured using gas chromatography coupled to flame ionization
detection (Focus GC, Thermo equipped with a Poropak column;
Analytical columns). In this time interval, methane formation

was only observed with methylamine and methanol (for both,
E20 and G37), but substrates were already fully turned over after
10 days. For these substrates experiments were repeated with
more frequent sampling intervals (Figure 4A). Furthermore, for
the substrates methanol and methylamine triplicate dilution-to-
extinction series with factor 10 dilutions were prepared (down
to 108). Methane formation was repeatedly measured and the
highest active dilutions (1:105) were further diluted (1:1000).
From freeze-thawed pellets of aliquots of these cultures we
identified the enriched microbes by direct 16S rRNA gene
amplification using the primer pair Arch20F (Massana et al.,
1997)/Arc1492R (Teske et al., 2002) and sequencing (PCR and
sequencing as described below for AOM enrichments).

Cultivation of Sulfate Reducers from the
AOM Enrichments
To determine potential methane-independent sulfate reduction
in the AOM enrichments, triplicate culture aliquots of 10ml
were incubated with possible alternative substrates [hydrogen
(0.1MPa), carbon monoxide (0.05MPa), methyl sulfide
(0.05MPa) formate, acetate, methylamine, and methanol
(all 20mM)] for 30 days at their distinct temperature. The
development of sulfide was measured by a copper sulfate assay
and spectroscopic analysis (Cord-Ruwisch, 1985). Dilution-to-
extinction series (down to 108 dilution) were set up from active
AOM enrichments (G37, G50) with hydrogen as only used
alternative electron source, and incubated at their respective
temperature for 2 months. After a subsequent second dilution
step (1:100) of the highest sulfide-producing dilutions, enriched
microbes were identified by 16S rRNA gene amplification
(primer pair GM3/GM4; Muyzer et al., 1995) from freeze-
thawed pellets of culture aliquots and direct sequencing (PCR
and sequencing as described below for AOM enrichments).

Experiments on Alternative Sulfur Sources
in the AOM Enrichments
To identify the spectrum of sulfur sources used by the microbial
communities in the E20, G37, and G50 AOM enrichments,
sulfate-free culture aliquots were incubated with the alternative
sulfur sources sulfite (5mM), thiosulfate (20mM), and with
sulfate (20mM) as control. Furthermore, we incubated with
colloidal (zero-valent) sulfur (ca. 50mM) that was prepared
according to Steudel et al. (1988), and dissolved in anaerobic
deionized water (approximately 0.5 mol S0 per liter). Triplicate
incubations with and without methane (0.2MPa CH4:CO2;
90:10) were performed for each substrate. We measured
sulfide production calorimetrically using the copper sulfate
assay (Cord-Ruwisch, 1985). Dilution-to-extinction series (as
described above) were performed for alternative substrates which
showed substantial sulfide production (only in zero-valent sulfur
enrichment). The highest active dilutions were further diluted
(1:100) and enriched microbes were identified by 16S rRNA gene
amplification (primer pair GM3/GM4; Muyzer et al., 1995) from
freeze-thawed pellets of culture aliquots and direct sequencing
(PCR and sequencing conditions as described above for AOM
enrichments).
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To study the underlying principle of zero-valent sulfur
disproportionation, we tested the stoichiometry of sulfur
disproportionation by simultaneously measuring sulfate [by ion
chromatography; 761 Compact ion chromatograph (Metrohm)
with a Metrosep A SUPP 5 column] and sulfide production
(copper sulfate assay; Cord-Ruwisch, 1985) in the AOM
enrichments and in the zero-valent sulfur enrichments.

Extraction and Analysis of Archaeal Intact
Polar Lipids from the AOM Enrichments
Cell pellets from 30ml AOM enrichment cultures were spiked
with an internal standard (phosphatidylcholine C21:0/21:0) and
3 g of combusted sand and extracted using a modified Bligh
and Dyer protocol (Sturt et al., 2004). The obtained TLEs were
stored at −20◦C until analyses. IPLs were analyzed by high-
performance liquid chromatography electrospray ionization
mass spectrometry (HPLC-ESI-MS). Separation of IPLs was
achieved on a Dionex Ultimate 3000 UHPLC equipped with
a Waters Acquity UPLC BEH amide column (150 × 2.1mm,
1.8µm particle size). Chromatographic conditions included
constant flow rate of 0.4ml/min with eluent A [75% acetonitrile;
25% dichloromethane; 0.01% formic acid; 0.01% ammonium
hydroxide solution (NH3 aq.)] and eluent B [50% methanol 50%
Milli-Q water; 0.4% formic acid; 0.4% NH3 aq. as previously
published (Wörmer et al., 2013)]. Under a constant flow,
the HPLC routine applied: 99% A and 1% B for 2.5min,
increasing to 5% B at 4min, followed by a linear gradient to
25% B at 22.5min and then to 40% B at 26.5min. Thereafter
a 1min washing step with 40% B followed and afterwards
reset to the initial conditions for 8min to achieve column re-
equilibration. Compound detection was conducted on a maXis
Ultra-High Resolution qToF-MS (Bruker, Bremen, Germany).
IPLs were measured in positive ionization mode scanning a
mass-to-charge (m/z) range of 150–2000, with automated data-
dependent MS/MS fragmentation of base peak ions. Compound
identification was achieved by monitoring exact masses of
possible parent ions (present mainly as H+ and NH+

4 adducts)
in combination with characteristic fragmentation patterns (Sturt
et al., 2004; Yoshinaga et al., 2011). The reported relative
distribution of microbial lipids is based on the peak areas
of the respective molecular ions without differentiating for
potential differences in response factors; results should therefore
be considered as semi-quantitative.

Determination of Microbial Carbon
Sources and Growth Efficiencies in the
AOM Enrichments
To determine the role of methane and bicarbonate as carbon
sources in the AOM enrichment and their assimilation rate in
relation to AOM, we incubated triplicate culture aliquots of
E20, G37, and G50 (4ml) in 5ml Hungate tubes with 14C-
bicarbonate [380 kBq, equilibrated with 0.2MPa CH4:CO2 or
N2:CO2 (90:10)] or with 14C-methane [14 kBq; equilibrated
with 0.2MPa CH4:CO2 (90:10)]. After 5 days of incubation cell
material was transferred to membrane filters (GSWP, 0.2µm
pore size). To remove non-fixed inorganic carbon we washed the

filters with saline water (0.5MNaCl). Potential residual inorganic
carbon was removed by exposing the dried filters to a HCl
atmosphere for 24 h. Total radioactivity was determined from
liquid incubation aliquots (0.1ml) and incorporated radioactivity
was determined from the particulate organic carbon fraction
(POC) collected on filters by liquid scintillation counting
(scintillation mixture; Filtercount or Permafluor; Perkin Elmer,
Waltham,MA, USA; scintillation counter; 2900TR LSA; Packard,
Waltham, MA, USA). Counts for 14C-compound in POC were
corrected for background values. To determine carbon fixation
efficiencies (CFE) values were normalized to the added amount
of radiotracer and the rate of sulfate reduction

CFE(%) = [14C− POCi(kBq)/
14C− totali(kBq) (2)

×concCS(mmol)× 100]/SRR(mmol)

where 14C-POC defines the concentration of radiotracer in the
particulate organic carbon (biomass) and 14C-total defines the
concentrations of added radiotracer (14CH4 or 14C-inorganic
carbon) in an experiment “i,” and concCS is the concentration
of the carbon source (either methane or inorganic carbon) and
the respective sulfate reduction rate (SRR) in replicate vials
determined as described below.

Radiotracer Measurement of Inorganic
Carbon Fluxes in the AOM Enrichments
To track the carbon fluxes between methane and inorganic
carbon in AOMenrichments E20, G37, andG50, replicate culture
aliquots (4ml) were incubated in 5ml Hungate tubes equilibrated
with 0.2MPa CH4:CO2 (90:10). After 5 days of pre-incubation
the vials were completely filled with methane-saturated medium
and carrier-free 14C-bicarbonate (approximately 66 kBq per
sample) or 35S-sulfate (100 kBq per sample) was injected into
5 replicates, respectively according to protocols described by
Holler et al. (2011a). Concurrently controls inactivated by
formaldehyde addition were performed to estimate impurities
or abiotic reactions. Samples were incubated for 2 days and
reactions were stopped by transferring samples into sodium
hydroxide solution (0.5 N) or zinc-acetate solution (20 % w/v),
respectively for 14C and 35S labeling. The 14C-bicarbonate and
the 35SO4 samples were processed as described before (Kallmeyer
et al., 2004; Holler et al., 2011a). The turnover rates of bicarbonate
were inferred by calculating the portion of radiotracer transferred
into the methane pool multiplied by the concentration of DIC
and divided by the total tracer content in the experiment. Sulfate
reduction rates were calculated as described below.

Sequencing of 16S rRNA Gene Libraries of
AOM Enrichments
DNA from AOM enrichments was extracted as described
before (Zhou et al., 1996). The protocol encompassed three
cycles of freezing and thawing, chemical lysis in a high-salt
extraction buffer (1.5M NaCl) by heating of the suspension in
the presence of sodium dodecyl sulfate and hexadecyltrimethyl-
ammonium bromide, and treatment with proteinase K, followed
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by chloroform:isoamylalcohol extraction (24:1) and isopropanol
based nucleic acid precipitation. To analyze the phylogeny
of the dominant members of the enrichment and to obtain
representative full length 16S rRNA gene sequences, the bacterial
and archaeal 16S rRNA genes were amplified from the extracted
DNA using the primer pair GM3/GM4 (Muyzer et al., 1995)
and 20F (Massana et al., 1997)/Arc1492R (Teske et al., 2002),
respectively. PCR reaction mixtures were prepared as previously
described (Holler et al., 2011b) and subjected to the following
cycle conditions: 95◦C for 5min; 26 cycles, each 95◦C for 1min,
46◦C (GM3/GM4) or 58◦C (Arch20F/Arc1492R) for 1.5min,
and 72◦C for 3min; and a final step at 72◦C for 10min.
The amplicons of three replicate PCR reactions were pooled.
Following gel electrophoresis bands were extracted from an
agarose gel and purified using the QIAquick PCR Purification
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
recommendations. Purified amplicons were ligated into the
pGEM-T Easy vector (Promega, Madison, WI, USA) and
transformed into Escherichia coli (One Shot Top10 cells;
Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
recommendations. Taq cycle sequencing was performed using
ABI BigDye Terminator chemistry and an ABI377 sequencer
(Applied Biosystems, Foster City, CA, USA).

Pyrosequencing of 16S rRNA Genes
Retrieved from AOM Enrichments
To obtain an overview about the diversity of rare microbial
phyla we performed massive parallel tag sequencing of 10
long-term AOM enrichment cultures. In addition to the four
enrichments presented in detail (E20, GB37, GB50, and GF)
we also investigated six enrichment cultures that were obtained
with samples from Amon Mud Volcano, a Black Sea microbial
reef, Black Sea sediments, Caldera Mud Volcano, the Gulf of
Mexico, and Hydrate Ridge (see Supplementary Table 1). The
latter six enrichment cultures were used for comparison, but
are not focus of this study. From DNA that was extracted as
described above, we amplified 16S rRNA genes using the primer
pairs GM3/907RM (Muyzer et al., 1995, 1998) for bacteria and
Arch20F/Arch958RV (Massana et al., 1997; Pires et al., 2012)
for archaea. The amplicon libraries were prepared, and the V3–
V5 region of these amplicons was sequenced on a 454 Genome
Sequencer GS FLX+ (Roche, Basel, Switzerland) at the Max
Planck Genome Centre (Cologne, Germany). The raw read data
was processed based on a standard operating procedure (Schloss
et al., 2011) using Mothur (release 1.33, 02/2014; Schloss et al.,
2009). Reads were denoised based on PyroNoise (Quince et al.,
2009), trimmed, preclustered (Huse et al., 2010), and chimeras
were removed (Edgar et al., 2011). After quality filtering we had
a total of 122,363 archaeal and 102,762 bacterial reads forming
13,935 unique archaeal and 17,237 unique bacterial sequences
with an average length of 488 and 435 nucleotides, respectively.
The alignment and taxonomic classification of the sequences was
based on the SILVA small subunit reference database (release 119,
07/2014; Quast et al., 2013). Operational taxonomic units were
clustered at 98% 16S rRNA gene V3–V5 sequence identity using
average neighbor clustering. The datasets were subsampled to

account for unequal sampling effort prior to community analyses
and multivariate statistics.

Comparison of 16S rRNA Tags and 16S
rRNA Gene Libraries
To investigate whether the same organisms are present in gene
libraries as well as tag datasets we compared the results of the
two methods. We made a sequence database of the 16S rRNA
gene tags using BLAST (Boratyn et al., 2013) and then searched
this database with target 16S rRNA gene sequences from the
enrichments. The headers of the resulting output were matched
with an OTU0.02 list created by mothur (Schloss et al., 2011) to
find the sequences that were present in both datasets. We only
used sequences that matched the whole length of the sequence
and had an E-value of basically 0.

Phylogenetic Analysis of Retrieved 16S
rRNA Gene Sequences
Retrieved partial 16S rRNA gene sequences (from AOM
enrichments and alternative substrate enrichments) were aligned
with the SILVA Incremental Aligner (SINA; Pruesse et al., 2007)
and classified based on the SILVA small subunit database (release
115; Quast et al., 2013). Phylogenetic analysis was performed
with representative, nearly full length (>1200 bp) sequences from
AOM enrichments, and from methanogenic, sulfate-reducing
and sulfur-disproportionating enrichments (see above) using
the ARB software package (Ludwig et al., 2004). Maximum
likelihood based trees were calculated by RAxML (Stamatakis,
2006) with GTRCAT as nucleotide substitution model including
235 bacterial and 148 archaeal nearly full length sequences
(>1200 bp). A base frequency filter was employed to consider
only alignment regions which were at least 50% conserved. 100
bootstrap replicates were used to estimate branch support.

Nucleotide Sequence Accession Numbers
The 16S rRNA gene sequences were archived in the NCBI public
nucleotide sequence databases under the accession numbers
KT899714, KT899739-KT899743 (bacteria) and KT899737,
KT899738 and KM605124 (archaea). Pyrosequencing raw reads
were deposited in the sequence read archive under study
accession number SRP065102.

Catalyzed Reporter Deposition
Fluorescence In situ Hybridization
(CARD-FISH)
For CARD-FISH culture aliquots were fixed in 2% formaldehyde
for 2 h at room temperature, washed with 1 × phosphate
buffered saline (PBS; 8.2 g l−1 NaCl, 0.2 g l−1, KCl, 1.8 g
Na2HPO4 × 2H2O, 0.24 g KH2PO4, adjusted to pH 7.4) and
stored in 1 × PBS:ethanol (1:1) at −20◦C. Fixed cells were
treated with mild sonication (Sonoplus HD70, Bandelin, Berlin
Germany) for 30 s at 10 W and filtered onto GTTP filter (0.2µm
pore size). CARD-FISH was performed as described previously
(Pernthaler et al., 2002). For cell wall permeabilization, filters
were sequentially incubated in lysozyme solution (10mg ml−1
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lysozyme, lyophilized powder (SigmaAldrich) in 0.1M Tris–
HCl, 0.05M EDTA, pH 8) for 30min at 37◦C, proteinase K
solution (15–150µg l−1 proteinase K (Merck) in 0.1M Tris–
HCl, 0.05M EDTA, 0.5M NaCl, pH 8) for 2min at room
temperature and optionally in sodium dodecyl sulfate solution
(0.5%) for 10min at room temperature. Endogenous peroxidases
were inactivated by incubating the filters in 0.15% H2O2 in
methanol (30min, room temperature). Oligonucleotide probes
were synthesized by Biomers (Ulm, Germany) and applied with
formamide concentrations in the hybridization buffer according
to literature values. For dual CARD-FISH, peroxidases of the
first hybridization were inactivated by 0.3% H2O2 in methanol
(30min, room temperature). Catalyzed reporter deposition was
combined with the fluorochromes Alexa Fluor 488 and Alexa
Fluor 594 (Thermo Fisher Scientific). Filters were stained
with DAPI (4,6-diamidino-2-phenylindole). Micrographs were
obtained by confocal laser scanning microscopy (LSM 780; Zeiss,
Oberkochen, Germany).

RESULTS AND DISCUSSION

Cultivation, Microbial Diversity and
Archaeal Intact Polar Lipids in the Studied
Enrichment Cultures
The original sediment samples from Guaymas Basin and
the Elba seeps showed already high methane-dependent
sulfide production when incubated at AOM conditions (about
0.15µmol g−1

dw
; gram dry weight; E20; Ruff et al., this issue

to 0.5 and 1.25µmol g−1
dw

in Guaymas Basin; G37 and G50;
Holler et al., 2011b). In E20, cells were separated from the
sandy matrix (see Materials and Methods). All samples were
further enriched for AOM by cultivation in anoxic marine
sulfate-reducer medium equilibrated with 0.225MPa methane
and 0.025MPa carbon dioxide headspace. Cultivation was
performed at the respective temperature optima of 20◦C (E20)
and 37◦C and 50◦C (G37/G50). From the development of sulfide
production rates and dilution frequencies we estimated doubling
times of 69 days (G37) and 55 days (G50; Supplementary
Figures 1A,B). Due to repeated subsampling for experiments
similar required long-term incubations are yet not available
for E20, but we expect doubling times in the range of other
cold-adapted enrichments (2–7 month; Girguis et al., 2005;
Nauhaus et al., 2005). The studied meso- and thermophilic
cultures from Guaymas Basin grew faster than the before
studied cold-adapted deep sea AOM enrichments (i.e., 7 month
in Hydrate Ridge enrichments; Nauhaus et al., 2007). Hence,
after repeated dilution and cultivation a sediment-free state
(<100mg background sediment per liter culture) was reached
after 1.5–2 years in the Guaymas Basin cultures. Cultures were
maintained at sulfide production rates of 100–250µmol l−1

inoculum

d−1. The microbial composition of the three enrichments
were analyzed by sequencing archaeal and bacterial 16S rRNA
genes (Figures 1A,B, Table 1, Supplementary Figure 2). In
E20 the most sequence-abundant archaeal group was ANME-2
(subgroups ANME-2a, ANME-2b, ANME-2c). Using catalyzed

reporter deposition-fluorescence in situ hybridization (CARD-
FISH) we showed that ANME-2 archaea formed tightly packed
consortia with Seep-SRB2 partner bacteria (Figure 1C). G37
consisted of likewise densely packed dual-species consortia of
ANME-1 and Seep-SRB2 partner bacteria. (Figure 1D) The
dominance of ANME-1 and Seep-SRB2 is typical for moderately
heated surface sediments of the Guaymas Basin seeps (Dowell
et al., 2016). As shown for 60◦C thermophilic AOM enrichments
before also the G50 enrichment was dominated by ANME-
1 and their partner bacteria HotSeep-1 (Wegener et al., 2015;
Figures 1A,B). Compared to the low and medium temperature
enrichment cell types were strongly mixed but less densely
packed (Figure 1E), which may indicate a less established
partnership than in the low-temperature enrichments.

Our results of the E20 enrichment and also prior in vitro
cultivation at low-temperatures (≤20◦C; i.e., Hydrate Ridge,
Mediterranean seeps such as Amon Mud Volcano, Black Sea;
Holler et al., 2009) showed that low-temperature enrichments
of mixed communities always led to ANME-2-dominated
enrichments (Supplementary Figure 2), whereas ANME-1 is
usually not sustained in vitro. In contrast, cultivation at elevated
temperatures (≥37◦C) led to ANME-1-dominated enrichments,
even from sites that harbored mixed communities (Table 1, c.f.;
Holler et al., 2011b; Kellermann et al., 2012). The different
temperature optima and growth ranges of ANME-1 and ANME-
2 might be due to their cell membrane structure. The ANME-2
in the E20 enrichments assemble their membranes from double
layers of diether lipids (intact archaeols) such as hydroxylated
(PG)phosphatidylglycerol archaeol (Figure 1F, Table 2). ANME-
1 are instead able to condense diethers to tetraether lipids
(Kellermann et al., under review). Hence in the G37 enrichment
culture an about 1:1 mixture of diether and tetraether lipids (i.e.,
glyceroldialkylglyceroltetraether GDGTs) was detected, whereas
the high-temperature enrichments (G50 and also G60; the
latter only shown in Table 2) contained between 80 and 94%
tetraether lipids. The formation of GDGT might allow higher
temperature optima (Kellermann et al., 2012) or better resistance
in starvation periods (Schouten et al., 2003; Rossel et al.,
2008). This observation might also explain the predominance
of ANME-1 in most deep sulfate-methane interfaces or in
inner parts of microbial chimneys where they have to survive
under often minimal substrate concentration. The adaption to
harsh conditions or limited substrate availability may, on the
other hand, also explain their inability to compete with ANME-
2 during cultivation at low temperatures and high substrate
availability.

Origin of Biomass Carbon in
AOM-Performing Microbial Enrichments
To interpret natural biomass stable isotope signals and to
perform stable isotope studies the dominant biomass carbon
sources of the active organisms need to be identified. For AOM
methane and inorganic carbon have been suggested as carbon
sources (Hinrichs et al., 1999; Blumenberg et al., 2005; Wegener
et al., 2008a; Kellermann et al., 2012). Here we studied inorganic
carbon and methane assimilation into AOM communities using
a radiotracer assay with respective labeled carbon sources and
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FIGURE 1 | Comparison of community composition, typical microbial aggregates and archaeal lipids of the three AOM enrichment cultures. (A,B)

Comparison of normalized archaeal and bacterial clone numbers retrieved from the enrichment (for clone number see Table 1; short, badly aligning sequences were

not considered here). (C–E) Fluorescence in situ hybridization of dual-species aggregates in the enrichment (E20: red = ANME-2-538, Treude et al., 2005; green =

DSS658, Manz et al., 1998; G37: red = ANME-1-350, Boetius et al., 2000, green = DSS658; G50: red = ANME-1-350, green = HotSeep-1-590, Holler et al., 2011b;

bars scale 10µm). (F) Major archaeal membrane intact polar lipid types defined by hydrophobic core groups OH-AR, hydroxyarchaeol; AR, archaeol; MAR,

macrocyclic archaeol; GDGT, glyceroldibiphytanylglyceroltetraether. At higher temperatures ANME-1 archaea tend to produce predominantly GDGTs, likely a

temperature adaption (for details and 60◦C example see Table 2).

tracked the assimilation into the bulk sample. In all three cultures
mainly inorganic carbon was assimilated, whereas only 3–15%
of the biomass carbon derived from methane (Figure 2). In the
absence of methane as energy source, assimilation of inorganic
carbon dropped to about 1/10 of the values measured under
AOM conditions. This shows that the microbial activity and
carbon fixation in the studied cultures strongly depended on
the presence of methane and the process of AOM, respectively.
During the oxidation of 1 mol methane only 10–40mM of
carbon (mostly of inorganic origin) were incorporated. The
rates of inorganic carbon assimilation measured here are in
the upper range of growth/ carbon fixation reported in earlier
studies (Nauhaus et al., 2007; Wegener et al., 2008a). However,
in those studies extremely slow-growing AOM enrichments were
investigated with doubling times of approximately 7 months, e.g.,
for enrichments from Hydrate Ridge.

The predominant use of inorganic carbon as carbon source
for assimilation is in line with earlier observations stating
“chemoorganoautotrophy” formesophilic ANME-1 (Kellermann
et al., 2012). This growth mode seems to be consistent in cold-
adapted and thermophilic methane-oxidizing enrichments. The
minor amounts of methane carbon incorporation observed here
and in earlier studies (Wegener et al., 2008a) should also be
interpreted as assimilation of methane-derived inorganic carbon.

The assimilation of methane-derived CO2 and further isotope
fractionationmight also explain the extremely low carbon isotope
values. Carbon fixation in ANME proceeds most likely via the
acetyl-CoA pathway (Koga and Morii, 2005; Meyerdierks et al.,
2010), which causes the highest 13C-discrimination (Preuß et al.,
1989). It is furthermore consistent with the observation of lowest
13C-lipid values in highly active AOM sites, where pore water
inorganic carbon derives mostly from methane, thus is also
strongly depleted in 13C. In less active AOM sites rathermoderate
13C-signatures of archaeal lipids are observed (Elvert et al., 2005).

Methanogenesis in the AOM Cultures
Using radiotracer isotope assays (i.e., 14CO2) transfer of
inorganic carbon into themethane pool has been shown formany
different AOM systems. This phenomenon has been repeatedly
interpreted as capacity of ANME to thrive as methanogens
(Orcutt et al., 2008; Lloyd et al., 2011). However, alternatively
this tracer transfer was related to enzymatic back reactions. All
three studied cultures showed substantial tracer transfer from
DIC into the methane pool amounting to 2–5% of the methane-
dependent sulfate reduction rate (Figure 3). This tracer transfer
is independent of a net formation of methane, as in none of the
three cultures methane formation was observed without addition
of further methanogenic substrates. Hence, in agreement with

Frontiers in Microbiology | www.frontiersin.org 7 February 2016 | Volume 7 | Article 46

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Wegener et al. Physiology of Anaerobic Methanotrophy

TABLE 1 | Analyzed clones from 16S rRNA gene libraries established from sediment-free methane-oxidizing anaerobic enrichment cultures from Elba and

the Guaymas Basin.

Phylogenetic group Enrichment

E20 G37 G50 G60 G50 & 60

ARCHAEA

Euryarchaeota

Methanomicrobia

ANME-1

ANME-1a 71 (83%) 85 (99%) 70 (88%) 155 (93%)

ANME-1b 1 (1%)

Methanosarcinales

ANME-2

ANME-2a-2b 9 (11%)

ANME-2b 23 (30%)

ANME-2c 46 (58%) 6 (7%)

Others 3 1 1

Thermoplasmata 6 1 6 7

Thermococci 1 1

Thaumarchaeota 1 1

Crenarchaeota 1 1

Total sequences analyzed 79 86 86 80 166

BACTERIA

Proteobacteria

Deltaproteobacteria

HotSeep-1 41 (48%) 48 (74%) 89 (59%)

Seep-SRB1 7 (9%) 1 (1%) 1 (1%)

Seep-SRB2 35 (46%) 60 (88%)

Others 2 5 4 4

Betaproteobacteria 1 1

Bacteroidetes 6

Spirochaetes 3

Chloroflexi 1

Planctomycetes 5

Firmicutes 3

Candidate division OP-3 37 3 40

Candidate division OP-8 1 6 6

Candidate division JS1 2

Others 13 1 3 7 10

Total sequences analyzed 76 68 86 65 151

Bold numbers represent sequences targeted by probes used for CARD-FISH (Figures 1C–E).

earlier hypothesis (Holler et al., 2011a) the observed tracer flux
should be seen as intrinsic back reaction during the oxidation
of methane in ANME, which proceeds on the same pathways
as methanogenesis (Hallam et al., 2004), but is not an energy
conserving net reaction.

We furthermore aimed to inducemethanogenesis in the AOM
enrichments with typical substrates for methanogens. Therefore,
we incubated 1:10 diluted AOM enrichments in sulfate-free
medium with different methanogenic substrates and screened
those enrichments for methane formation. Hydrogen, acetate
and carbon monoxide addition did not cause methane formation
in any of the 3 studied enrichments (Table 3), also after extended

incubation times of several months (data not shown). However,
in the E20 and the G37 cultures methylated substrates (methanol,
methylamine) were largely converted to methane within 18 days
of incubation (Figures 4A–D). In contrast, the G50 AOM
enrichment culture did not show methanogenic activity even
after prolonged incubation of 60 days with these two substrates.

Using the dilution-to-extinction approach with methylamine
or methanol we yielded cultures of methanogenic archaea from
the E20 and G37 enrichments. Sequencing of the 16S rRNA gene
amplified from the enrichments identified all methylamine
cultures as relatives of Methanococcoides spp., whereas
organisms in methanol cultures were identified as relatives

Frontiers in Microbiology | www.frontiersin.org 8 February 2016 | Volume 7 | Article 46

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Wegener et al. Physiology of Anaerobic Methanotrophy

TABLE 2 | Relative composition of archaeal lipids in the three studied

enrichments, and for comparison, composition of lipids in G60.

ANME-2 ANME-1

20◦C 37◦C 50◦C 60◦C

DIETHER LIPIDS

Archaeol-based lipids

1Gly-AR 9

2Gly-AR 18 7 9 3

GN-1G-AR 3

PG-AR 12 25 6 2

Pent-PG-AR 2

PE-AR 2

Macrocyclic archaeol based lipids

PE-MAR 3 4 2

Hydroxy-archaeol based lipids

1Gly-OH-AR 31

PG-OH-AR 19 1

PE-OH-AR 1 44

PI-OH-AR 1

98 80 19 7

TETRAETHER LIPIDS

PG-GDGT-PG

PG-GDGT 5

1Gly-GDGT 1 1 5

2Gly-GDGT 1 14 79 88

SUMMARY

AR 46 32 15 5

MAR 3 4 2

OH-AR 52 45

Tetraether 2 20 80 94

Values given in percent (%). Headgroups: Gly, glycosyl; GN-1G, (N-acetyl)-

glucosamine-monoglycosyl; PG, phosphatidylglycerol; PE, phosphatidylethanolamine;

PI, phosphatidylinositol; PE, phosphatidylethanolamine. Core lipid: AR,

archaeol; MAR, macrocyclic archaeol; OH-AR, hydroxyarchaeol; GDGT,

glyceroldibiphytanylglyceroltetraether.

of Methanohalophilus spp. (Figure 4E). As methylotrophs, both
methanogenic cultures grow on methanol and methylamine.
Generally, methylotrophic methanogens grow rapidly, and
are hence relatively easy to cultivate (Sowers and Ferry, 1983;
Kendall and Boone, 2006). We also retrieved those groups
in archaeal 16S rRNA gene tag datasets of the enrichments
(Table 4). Both groups contributed between 1 and 3‰ of all
archaeal sequences retrieved from the E20 and G37 enrichments.
Furthermore, we screened the additional low temperature
(4–20◦C) methanotrophic enrichment cultures (Supplementary
Table 2) for methanogens. All those enrichments contain few but
also up to 10‰ sequences that align with Methanococcoides or
Methanohalophilus. In contrast, in the G50 only a single read
aligned to Methanococcoides. ANME archaea, however, were not
enriched in any of the methanogenic enrichments which clearly
indicates that ANME cannot thrive as methanogens.

Minor populations of methanogens also regularly appear
in sulfate methane interfaces (Wegener et al., 2008b; Ruff
et al., 2015), where they likely also thrive on methylated

FIGURE 2 | Assimilation of carbon sources in relation to reducing

equivalent transfer assuming an average oxidation state of organic

carbon of 0. Red = methane carbon assimilation; light gray = DIC assimilation

in the absence of methane; dark gray = DIC assimilation in the presence of

methane; error bars = standard deviation, n = 3 per treatment; blue bars =

methane-dependent DIC assimilation as difference between incubations with

and without methane, therefore no error bars. In all cultures assimilation of

inorganic carbon strongly exceeds methane carbon assimilation, suggesting

that the latter is likely methane-derived DIC assimilation.

FIGURE 3 | Production of 14C-methane from 14C-bicarbonate relative

to AOM rates (here determined by production of 35S-sulfide from
35S-sulfate) in the three studied AOM enrichments incubated under

AOM conditions at their respective temperature optima (error bars =

standard deviation n = 5 per treatment).

substrates. These substrates (i.e., methanol, methylamines,
and methyl sulfides) are not competitively used by other
anaerobic microorganisms with potential higher energy yields
including sulfate reducers (King, 1984; Kiene et al., 1986;
Lovley and Klug, 1986). Yet, the source of methylated
substrates in those environments and in the studied laboratory
enrichments is unclear. Three possible sources are outlined
here: (I) Active ANME may leak methylated compounds, as
was shown for aerobic methanotrophs (Xin et al., 2004).
This might be in particular true for ANME-1 which lack
the methylenetetrahydromethanopterin reductase (Mer) enzyme
from a strict reversal of methanogenesis. Meyerdierks and
coworkers proposed a bypass via the formation of methanol
or methylamine as intermediates which would be oxidized via
alcohol dehydrogenases (Meyerdierks et al., 2010). Leakage of
these intermediates would be a source of methylated compounds.
(II) The strong reversibility of the enzymes involved in AOM,
particular of the methyl-CoM reductase (Thauer and Shima,
2008; Holler et al., 2011a) may lead to the formation of trace
amounts of methylated substrates. These trace production of

Frontiers in Microbiology | www.frontiersin.org 9 February 2016 | Volume 7 | Article 46

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Wegener et al. Physiology of Anaerobic Methanotrophy

TABLE 3 | Stimulation of methanogenesis and sulfate reduction in

enrichments from Elba (E20) and Guaymas Basin (G37 and G50) using

different substrates (methanogenesis w/o sulfate).

Substrate E20 G37 G50

Methanogenesis

AOM control + + +

No-substrate control 0 0 0

Hydrogen 0 0 0

Formate 0 0 0

Acetate 0 0 0

Methanol +++ +++ 0

Methylamine +++ +++ 0

Sulfate reduction

AOM control + + +

No-substrate control 0 0 0

Hydrogen 0 ++ +++++

Carbon monoxide 0 0 0

Methyl sulfide 0 0 0

Methanol 0 0 0

Acetate 0 0 0

Formate 0 0 0

Propionate 0 0 0

“+”, expected rate measured; “++”, instant rates low, but rates exceed AOM after longer

time; “+++”, instant rate low, but rapidly higher than AOM; “+++++”, rate instantly

3 times higher than during AOM; “0”, no rate detectable.

methylated substrates should not be confused with the proposal
of methyl sulfide as intermediates between ANME and partner
bacteria (Moran et al., 2008). Trace production of methylated
compounds during AOM or (III) alternatively during decay
of microbial biomass might be sufficient to sustain the low
numbers of methanogens observed in our enrichments and
in sulfate methane interfaces. An experimental detection of
these compounds is however challenging as they are efficiently
consumed by the methanogenic side communities. In G50
methanogenesis could not be stimulated. The considerably
higher maintenance energy at elevated temperatures (Tijhuis
et al., 1993) might be the reason for the lack of methanogens
and stimulation of methanogenesis here. Our results allow
an alternative explanation for the observed stimulation of
methane and lipid production in Black Sea mats by methylated
compounds as demonstrated by Bertram et al. (2013). This
production is unlikely caused by ANME archaea, but should
be rather interpreted as growth of specific methanogenic side
communities.

Hydrogenotrophic Sulfate Reduction and
Sulfur Disproportionation in the AOM
Enrichments
We tested the capabilities of the three enrichments to metabolize
sulfate with alternative energy sources. As shown before
HotSeep-1, the sulfate-reducing bacterium in thermophilic

AOM, instantly reacts on hydrogen with elevated sulfide
production and growth uncoupled from ANME-1 (Wegener
et al., 2015). However, besides G50, also the G37 culture showed
sulfide production on hydrogen as substrate. Rates quickly
exceeded those of parallel incubations on methane. Following
this observation we cultivated the sulfate reducers from the
sediment-free AOM enrichment using the dilution-to-extinction
approach. The retrieved cultures were characterized by direct 16S
rRNA gene sequencing. The 16S rRNA gene sequence obtained
from one of the cultures affiliated to the larger cluster of Seep-
SRB2 bacteria, but was clearly not identical (only 93% sequence
similarity which is below the proposed threshold of 94.5% for a
genus; Yarza et al., 2014) with the Seep-SRB2 partner bacterium
found in this mesophilic and in the cold-adapted AOM culture
(Figure 5F). In another hydrogenotrophic culture a bacterium
related toDesulfatitalea tepidiphila was obtained. The mesophilic
D. tepidiphila was described to grow as autotroph by hydrogen-
dependent sulfate reduction or alternatively by using thiosulfate
as electron acceptor and various organic carbon sources as
electron donor (Higashioka et al., 2013). Hydrogenotrophic
sulfate reduction could not be stimulated in the E20 culture,
which likewise is dominated by Seep-SRB2 partner bacteria.
Hence it is unlikely that the meso- or psychrophilic AOM
partner bacteria can thrive on hydrogen, therewith confirming
earlier results which excluded hydrogen as intermediate in low-
temperature AOM or as (alternative) substrate of their partner
bacteria (Nauhaus et al., 2002).

To investigate the response of the AOM cultures to additions
of zero-valent sulfur and therewith to test the observation
made by Milucka et al. (2012) in an ANME-2 dominated
AOM enrichment derived from Mediterranean mud volcano,
we supplied aliquots of the three cultures with freshly prepared
colloidal sulfur solution and tracked the development of
the chemical endmembers of disproportionation, sulfide and
sulfate. As described before (Wegener et al., 2015) sulfur
disproportionation was absent in the thermophilic AOM
culture (Figure 5C). In contrast, E20 and G37 responded
to elemental sulfur addition with rapid sulfide and sulfate
production tightly following the 3:1 stoichiometry characteristic
for the disproportionation of elemental sulfur (Figures 5D,E).
Disproportionation stopped when sulfide concentrations reached
approximately 3mM (E20) or 7mM (G37). A 7:1 stoichiometry
between sulfide and sulfate production, as described for another
Mediterranean enrichment (IsisMudVolcano; cultivated at 20◦C
and dominated by ANME-2; Milucka et al., 2012) has not been
observed in any of our enrichments.

Using a dilution-to-extinction approach with colloidal sulfur
as only available electron donor we repeatedly isolated specific
strains of sulfur-disproportionating bacteria from the two natural
AOM enrichments. Interestingly in the dilution series from
G37 we repeatedly isolated a single bacterium (hereon called
GB-DISP1) that is basically identical to the one isolated on
hydrogen (Figure 5F). GB-DISP1 is a rare member in the
G37 AOM enrichment, accounting for about 9h of the
bacterial 16S rRNA gene sequences. The under AOM conditions
dominant bacterium Seep-SRB2 however, did not respond to
additions of elemental sulfur, hence pointing toward a neutral
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FIGURE 4 | Methanogenesis and methanogenic archaea in AOM cultures. (A–D) Methane production in 1:10 dilutions of the E20 and G37 AOM enrichments

after addition of methanol or methylamine (10mM) to the enrichments; open and filled circles, two replicate incubations. (E) Phylogenetic affiliation of methanogens

(blue) isolated in dilution-to-extinction approaches with methanol and methylamine.

role of elemental (zero-valent) sulfur in mesophilic AOM
proceeding in the G37 enrichment. Growth experiments with the
enriched GB-DISP1 showed that it can grow as sulfate-reducing
hydrogenotroph (with activity doubling time of 3 days), it can
couple sulfur reduction to hydrogen oxidation (activity doubling
time 1 day) or it grows as sulfur-disproportionating bacterium
(with activity doubling times of about 1 day). Using hydrogen as
electron donor GB-DISP1 thrives at sulfide concentrations of up
to 20mM. Instead via sulfur disproportionationGB-DISP1 grows
well to sulfide concentrations of up to 5mM. Above this value
sulfide production slows down and sulfide production levels off
at around 7mM. At these sulfide concentrations the energy yield
of sulfur disproportionation at 37◦C is reduced to approximately

−10 kJ mol−1 elemental sulfur turnover (Finster, 2008), which
is about the minimum free energy yield (1Gmin) to sustain
microbial metabolism (Hoehler, 2004).

The E20 dilution-to-extinction series with elemental sulfur
yielded several replicates of a single bacterium, hereon
called Elba-DISP1, with high identity to the uncultivated
deltaproteobacterial bacterium MSBL7 (Pachiadaki et al., 2014)
and the isolated disproportionating species Desulfurivibrio
alkaliphilus (Sorokin et al., 2008). D. alkaliphilus was described
as halophilic chemoautotrophic sulfate reducer, capable to thrive
on sulfur disproportionation even without supplying a sulfide
sink (Poser et al., 2013). Unlike described for D. alkaliphilus,
we did not succeed to grow Elba-DISP1 as hydrogenotrophic
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TABLE 4 | Methanogenic and sulfur-disproportionating minor community members.

OTU0.02* E20 GB 37 GB 50 GF Organism** Sequence accession number

A-Otu00017 2.8 1.3 0.1 4.3 Methanococcoides KT899737

A-Otu00024 2.9 1.8 − 7.0 Methanohalophilus KT899738

B-Otu00016 − − − 1.0 Desulfocapsa KT899741

B-Otu00114 8.6 − − − Elba-DISP1 KT899742

B-Otu00373 − 2.2 − − GB-DISP1 KT899739; KT899740

*Based on 454 pyrosequencing of the 16S rRNA V3-V5 region; **presented organisms had a taxonomy quality score of 100; numbers report detected sequences as parts of 1000 (h).

sulfate or elemental sulfur reducer, thus Elba-DISP1 may
exclusively thrive as sulfur-disproportionating bacterium.
Furthermore, we searched for sulfur disproportionation in
the cold seep AOM enrichment culture “GF” retrieved from
the Gullfaks oil field (Norwegian North Sea). Indeed also
this culture responded to elemental sulfur addition with its
disproportionation. The microorganism enriched from the GF
culture was Desulfocapsa sulfoexigens (>99% 16S rRNA gene
identity), one of the first described sulfur-disproportionating
microorganism (Finster et al., 1998). In contrast to many
other sulfur-disproportionating enrichments we were able to
proliferate the enriched sulfur-disproportionating cultures
without the addition of iron as sulfide sink as so far only shown
for halophiles by Poser et al. (2013). However, due to the limited
sulfide tolerance and expected low growth yields of all studied
cultures their cell densities remained rather low. We searched for
sequences related to disproportionating bacteria in the 16S rRNA
gene tag libraries of the other AOM enrichments that proliferated
for up to 15 years in the laboratory. The genus Desulfocapsa was
found in 5 of 10 enrichments, whereas Elba-DISP1 appeared
only in the Black Sea enrichment with more than 0.5h of
the sequences (Supplementary Table 2). Bacteria related to
GB-DISP1 were not found in other enrichments than in the
GB37 enrichment. Hence we conclude that disproportionating
bacteria are a general impurity of AOM enrichment cultures.
The abundant partner bacteria, namely Seep-SRB1a, Seep-SRB2
and HotSeep-1, neither respond to elemental sulfur additions
nor to any other potential added molecular intermediate (except
hydrogen in G50 as discussed above, see Table 3). The absence
of stimulation by potential intermediates supports an obligate
syntrophic role of Seep-SRB1a, and Seep-SRB2, and an electron
transfer in AOM by direct interspecies electron transfer as
suggested for thermophilic and psychrophilic AOM (McGlynn
et al., 2015; Wegener et al., 2015). Due to the lacking cultivability
of these dominant partner bacteria, zero-valent sulfur as primary
intermediate exchanged in AOM is less likely.

Sulfur-disproportionating bacteria such as Desulfocapsa sp.
have also been repeatedly identified in reduced ecosystems and
in particular at cold seeps (Lloyd et al., 2006; Sylvan et al., 2012;
Ruff et al., 2015). A direct connection of these groups to AOM
is meanwhile unlikely in those environments, as they appear in
rather low numbers compared to the known partner bacteria
(Table 4; Supplementary Table 2). The sulfur source for the
disproportionating bacteria in the strictly anaerobic laboratory
AOM enrichments is so far unknown. It might be elemental

sulfur produced by ANME archaea, which show characteristic
sulfur inclusions (Milucka et al., 2012). Furthermore, also the
cultivation medium will provide at least trace amounts of
elemental sulfur that is produced when sodium sulfide is used
as reducing agent. Furthermore, also any leak of oxygen during
cultivation will lead to formation of zero-valent sulfur. Activity
directly after medium exchange (medium is prepared with about
0.5mM sulfide) is likely sufficient for the responsible sulfur-
disproportionating bacteria to survive later inactivity at increased
sulfide concentrations (regular medium change at approximately
12–15mM sulfide). These short periods of activity are likely
sufficient to thrive in the infrequently diluted AOM enrichments.
At higher temperatures increased demands of maintenance
energy may not have allowed survival of disproportionating
bacteria in the G50 culture. In the environment they might
thrive on elemental sulfur produced by sulfide-oxidizing bacteria
or chemical oxidation of sulfide or being involved in the
cryptic sulfur cycle rather below the sulfate methane interfaces
(Holmkvist et al., 2011).

CONCLUSIONS

Here we described physiological characteristics of AOM
communities at different temperatures from the Elba cold seeps
and the Guaymas Basin hydrothermal vent area. We identified
inorganic carbon as the dominant carbon source of AOM
communities in all three tested AOM cultures, and hence
provide additional evidence that all studied ANME and their
partner bacteria are autotrophs. Further stable isotope probing
experiments should consider this finding with respect to the
selection of labeled carbon sources. We found no indications for
a capability of ANME to reverse their metabolism towards net
methanogenesis. In contrast, we showed the presence of specific
knownmethanogens (Methanococcoides spp.,Methanohalophilus
spp.) in all studied low and medium temperature AOM
enrichments. Those methanogens can be enriched and isolated
using methylated compounds. In the enrichments but also in
methane-rich sediments their substrate might be formed as
byproduct of AOM or as decay product of AOM biomass.
Furthermore, we were able to enrich sulfur-disproportionating
bacteria from different non-thermophilic AOM enrichments,
which however, are not identical with the known and
abundant AOM partner bacteria (Seep-SRB1, Seep-SRB2, or
HotSeep-1), but represent known or novel disproportionating
bacteria. In the thermophilic (G50) enrichment, neither sulfur
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FIGURE 5 | Sulfur disproportionation and sulfate reduction in AOM enrichment cultures. (A–C) Comparison of developments of sulfide concentrations in the

three AOM enrichments under AOM conditions [methane (0.2 MPa) plus sulfate (20mM; open circles)] and during addition of colloidal sulfur (20mM; filled circles; two

replicates) within 18 days. (D,E) Comparison of sulfide and sulfate production in zero-valent sulfur amendments of E20 and G37; disproportionation has not been

observed in G50. The observed approximate 3:1 stoichiometry between sulfide and sulfate production is characteristic for disproportionation of elemental (zero-valent)

sulfur. (F) Phylogenetic affiliation of sulfur-disproportionating (red) and sulfate-reducing (green) bacteria within the Deltaproteobacteria based on nearly full-length 16S

rRNA sequences retrieved from high dilutions of AOM-active cultures supplied with elemental sulfur.

disproportionation nor disproportionating taxa were observed.
Also the prominent AOM partner bacteria in the studied low
and intermediate temperature enrichment did not respond
to elemental sulfur addition, which makes transfer of zero-
valent sulfur in these enrichments highly unlikely. In summary,
we narrowed down metabolic capabilities of the AOM core
community, the ANME and their syntrophic partner bacteria.

ANME thrive as obligate methane-oxidizing, but autotrophic
organisms, which, however, depend on specific partner bacteria
that are obligate autotrophic sulfate-reducers. Other metabolic
processes observed in AOM cultures and natural enrichments,
such as methanogenesis and sulfur disproportionation, are
meanwhile likely performed by specialized minor community
members.
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