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With knowledge on microbial composition and diversity, investigation of within-
community interactions is a further step to elucidate microbial ecological functions, such
as the biodegradation of hazardous contaminants. In this work, microbial functional
molecular ecological networks were studied in both contaminated and uncontaminated
soils to determine the possible influences of oil contamination on microbial interactions
and potential functions. Soil samples were obtained from an oil-exploring site located in
South China, and the microbial functional genes were analyzed with GeoChip, a high-
throughput functional microarray. By building random networks based on null model,
we demonstrated that overall network structures and properties were significantly
different between contaminated and uncontaminated soils (P < 0.001). Network
connectivity, module numbers, and modularity were all reduced with contamination.
Moreover, the topological roles of the genes (module hub and connectors) were
altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic
aromatic hydrocarbon degradation were also constructed. Negative co-occurrence
patterns prevailed among functional genes, thereby indicating probable competition
relationships. The potential “keystone” genes, defined as either “hubs” or genes with
highest connectivities in the network, were further identified. The network constructed
in this study predicted the potential effects of anthropogenic contamination on microbial
community co-occurrence interactions.

Keywords: microbial interaction, oil contamination, molecular ecological network, functional genes, hydrocarbon
degradation

INTRODUCTION

Increased exploration and exploitation of oil resources have resulted in severe contamination
worldwide (Kvenvolden and Cooper, 2003). Hundreds of micrograms of oil per gram of soil
were detected in several heavily contaminated sites (Liang et al., 2012). Oil contamination alters
the biotic taxonomic composition and physical and chemical properties of an environment,
thus posing considerable threat to the ecological systems (Kingston, 2002). Oil contamination
considerably affects the structures and functional diversity of microbial communities, including
bacteria, fungi, and archaea (Liang et al., 2011; Lu et al., 2012; Bell et al., 2014). The overall
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microbial population diversity in oil-contaminated sites usually
declines (Van Hamme et al., 2003), particularly, of those
microbes participating in carbon and nitrogen cycling. The loss
of microbial diversity and changes in community composition
alter their functional processes. Although soil respiration can
be stimulated as an enrichment of the biodegradable carbon
source after new oil spills, an inhibitory effect on the hydrolase
activities involved in nitrogen, phosphorus, or carbon cycles is
observed (Labud et al., 2007). Although many microbial species
can degrade oil contaminants (Atlas, 1981; Das and Chandran,
2011), effective oil removal is critically dependent on community-
level functions. For example, the biodegradation of refractory
components of oil contaminants, such as high molecular-weight
polycyclic aromatic hydrocarbons (PAHs), requires the co-
metabolism of several species (Nzila, 2013).

The microbial functional genes involved in the degradation of
specific compounds in hydrocarbon-contaminated environments
can be used as indicators of the biodegradation potential of the
corresponding compounds and their bioavailability and transport
in the environment (Stapleton and Sayler, 2000; Marlowe et al.,
2002; Mesarch et al., 2004; Tuomi et al., 2004). The abundance
of contaminant-degrading genes highly correlates with the
concentrations of contaminant, as well as the efficiency at which
the hydrocarbons are mineralized (Fleming et al., 1993; Park
and Crowley, 2006; Salminen et al., 2008). In some PAH-
contaminated soils and sediments, the abundance or expression
of naphthalene-degrading genes is correlated with naphthalene
concentrations (Dionisi et al., 2004; Cébron et al., 2008).
Functional genes are also useful in monitoring the dynamics
of contaminant-degrading bacteria in microcosms (Ringelberg
et al., 2001; Sei et al., 2003) and evaluating hydrocarbon
biodegradability (Cavalca et al., 2004; Baldwin et al., 2008).

The rapid methodological development of high-throughput
metagenomic sequencing (Simon and Daniel, 2011) and
microarray techniques (He et al., 2012) has dramatically
advanced our understanding of the diverse and complex
microbial functional communities in recent years. The
sequencing technology uses Roche 454 or Illumina platforms
to capture sequences for both targeted genes with available
primers and metagenomics. As such, the approach provides
novel insights into the phylogenetic and functional diversity as
well as structure and composition of microbial communities.
Shotgun metagenomic and metatranscriptomic sequencing
revealed that genes for aliphatic hydrocarbon degradation are
significantly enriched and expressed in hydrocarbon plume
samples compared with uncontaminated seawater (Mason
et al., 2012). Penton et al. (2013) evaluated new primers that
target the dioxin- and dibenzofuran- degrading genes dxnA1,
dbfA1, and carAa, found that the majority of the obtained
environmental sequences were classified into novel sequence
clusters in polychlorinated biphenyl-contaminated rhizosphere
soil. However, in gene-targeted metagenomics analysis, each
unique gene requires individual considerations in terms of
primer design and sequence processing and classification.
Microarray techniques, such as GeoChip, provide another
approach for profiling the functional composition of known
microbial populations by targeting hundreds to thousands of

different gene families that play important roles in various
biogeochemical processes at a time (He et al., 2010; Tu et al.,
2014). In comparison with genome-resolved-metagenomic
shotgun sequencing, GeoChip is required for primer matches
that previously unsequenced organisms with divergent gene
sequences will not be detected, and connection of organism
with function is less clear. Nevertheless, GeoChip avoids the
oversampling of dominant populations and is less challenging
to employ in sequence assembly and data analysis than
other approaches (Zhou et al., 2015). GeoChip 3.0 contains
approximately 28000 50-mer oligonucleotide probes specific to
the target genes, covering 292 functional gene families involved
in carbon, nitrogen, phosphorus, and sulfur cycles, as well
as energy metabolism, antibiotic resistance, metal resistance,
and organic contaminant degradation (He et al., 2010). For
organic contaminant degradation, a gene from each step of
a contaminant degradation pathway is selected for probe
design to monitor various degradation pathways. A total of
173 genes/enzymes are selected to detect the potential for
degradation of 86 organic contaminants commonly found in the
environment. These genes/enzymes mainly include 38 enzymes
involved in the aromatic carboxylic acid (for example, benzoate,
phenylpropionate, and phthalate) degradation, 18 for BTEX
(benzene, toluene, ethylbenzene, and xylene), 10 for chlorinated
aromatics (for example, 2-, 3-, and 4-chlorobenzoate, 2,4,5-
trichlorophenoxyacetic acid), nine for heterocyclic aromatics
(for example, carbazole and dibenzothiophene), nine for
nitroaromatics (for example, nitrobenzene and nitrophenol),
18 for polycyclic aromatics (for example, biphenyl, fluorene,
and naphthalene), 22 for other aromatics (for example, aniline,
catechol, phenol), 15 for other hydrocarbons (for example,
alkanes, cyclohexane, and tetrahydrofuran; He et al., 2010). The
organic contaminant degradation gene probes on GeoChip are
usually derived from the genes with known biological functions
and microbial populations. Therefore, linking microbial diversity
to ecosystem processes and functions is easily achieved in oil-
contaminated sites through GeoChip. Several studies indicated
that oil contamination significantly changes the composition
and diversity of microbial functional genes by using GeoChip
(Yergeau et al., 2007; Hazen et al., 2010; Liang et al., 2011;
Lu et al., 2012). In our recent study on microbial functional
gene diversity across five oil-contaminated sites, long-term oil
contamination significantly decreases microbial alpha- (gene
number, richness and the Shannon index) and beta-diversity
(distance decay relationship; Liang et al., 2015). Moreover,
the diversity changes along with the increase in deterministic
assembly processes in soil microbes. However, little could be
inferred quantitatively on the interactions among different
microbial species/populations, which is of critical importance in
maintaining the stability and functions of the community.

Microbial communities are highly complex, diverse, evolving
systems. Therefore, the behavior and characteristics of these
communities are difficult to predict compared with macro-
ecological systems. Beyond basic survey onmicrobial community
composition and diversity, investigating large environmental
datasets to determine potential interactions between microbial
species and functions remains a challenge (Raes et al., 2007).
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Barberan et al. (2012) assumed that microbial relationships
can be depicted under the following principle. When two
species (or any operational taxonomic units) co-occur or show
similar abundance patterns over multiple samples, a positive
relationship is assumed (Faust and Raes, 2012). Conversely,
a negative relationship is considered when two species show
mutual exclusion or anticorrelation (Faust and Raes, 2012).
Given the criteria, a novel random matrix theory (RMT)-based
network approach has been recently developed to delineate and
characterize functional molecular ecological networks (fMENs)
that involve microbial functional genes (Zhou et al., 2010). This
approach provides a robust method to decipher the potential
interactions of complex microbial communities. A general
framework for fMENs is as follows (Zhou et al., 2010):
(i) functional gene abundance data are collected on array
hybridization; (ii) a pairwise Pearson correlation between any
two genes is estimated on the basis of gene abundance data,
and the absolute values of pairwise correlation coefficients are
used to measure similarities; (iii) the similarity matrix is then
transformed into an adjacency matrix by applying a threshold
to the correlation values based on an RMT approach, which
measures the strengths of connections between nodes; (iv) the
strengths of the connections of each gene with all of the
other connected genes are summed, yielding a connectivity
of a single network. The connectivity represents the strength
of the connection of a gene to all of the other genes in
the network. In this network, a node represents a functional
gene. Meanwhile, the edge linking two nodes represents the
relationship between these two genes or potential functions
(positive or negative). The edgeweights represent the relationship
strength, whereas the node size represents the abundance of genes
or the node properties. The ecological networks determined
via this method should reflect the co-occurrence among
different microbial populations carrying the functional genes
of interest rather than the individual “species” in a microbial
community. Currently, little is known about whether and how oil
contamination changes interactions among different microbial
functional groups. This alternation may be affected by the
introduction of contamination because increasing disturbance
promotes interspecies competition (Simon and Daniel, 2011).

In a previous study, we found that an significant increase
(68%) in the deterministic selection processes that shape the
community composition and structure in contaminated soils
with respect to that in uncontaminated soils in the Baise
site (an oil-exploring site located in South China), which
is highest than those in all the other sites (Liang et al.,
2015), indicating that oil contamination may alter microbial
assembly networks most in the Baise site. In this paper, we
have re-analyzed the GeoChip data from the Baise site soils
presented in Liang et al. (2015) using the fMEN approach
in order to examine the interaction between specific groups
of functional genes involved in carbon, nitrogen, phosphorus
cycling, metal resistance, organic contaminant degradation.
The following research questions were addressed: (i) whether
oil contamination affects the functional network structure
of soil microbial functional genes, (ii) what the potential
“keystone genes” in the network are and how they change in

response to contamination, and (iii) what the relationships are
among genes functioning in the degradation of different oil
components.

MATERIALS AND METHODS

Sampling Sites and GeoChip
Hybridization
Twenty soil samples were collected from Baise district (BS;
23◦43′N, 107◦04′E) in South China in May 2008 for network
analyses of microbial functional genes. BS has a subtropical
humid monsoon climate, with a mean annual rainfall of
1115mm. Of these samples, 10 contaminated were collected from
an oil-contaminated site in Baise Oilfield. Contaminated soils
were collected adjacent to the crude oil pumping wells within a
2 km2 area where contamination occurred during oil extraction
in 2004 according to record. The other 10 uncontaminated
samples were taken simultaneously from undisturbed pristine
soils about 5 km away from the contaminated site. At each
sampling point, five soil cores (2.5 cm in diameter) within
0.015 m2 of the upper 10 cm soil were obtained and mixed
thoroughly. The 20 soil samples were then individually used
for microbial and chemical analyze. The collected soils were
sealed in sterile sampling bags without air and transported to the
laboratory on ice.

The oil contamination in BS oil field ranged from 12.1 mg/g to
168 mg/g. The contents of the four components of oil, namely,
aliphatic hydrocarbons, aromatic hydrocarbons, polar fraction
with heteroatoms of nitrogen, sulfur, and oxygen (NSO fraction),
and asphaltenes, ranged from 28.7% to 53.6%, 8.9% to 25.7%,
10.0% to 23.9%, and 0.9% to 9.6%, respectively (Liang et al., 2012).
The soil physical and chemical parameters in the contaminated
soils were as follows: pH, 5.8± 0.52; water content, 17.3%± 6.9%;
total nitrogen (nitrogen in all organic and inorganic forms),
1176 ± 244 mg/kg; available nitrogen (NO3

−, NO2
−, and

NH4
+), 51.9 ± 30.3 mg/kg; total phosphorus (phosphorus

in all organic and inorganic forms), 884 ± 403 mg/kg;
available phosphorus (PO4

3−), 22.9 ± 12.6 mg/kg; total organic
carbon, 5.7% ± 7.4%; and soluble salts, 0.17% ± 0.07%.
In comparison, the physical and chemical parameters in the
uncontaminated soils were as follows: pH, 6.2 ± 0.59; water
content, 20.1%± 4.9%; total nitrogen, 952± 275mg/kg; available
nitrogen, 43.5± 25.1 mg/kg; total phosphorus, 854± 149 mg/kg;
available phosphorus, 10.2 ± 13.1 mg/kg; total organic carbon,
3.4%± 3.8%; and soluble salts, 0.06%± 0.05% (Liang et al., 2012).

Biolog EcoPlateTM (Biolog, Inc., Hayward, CA, USA), which
contains three replicated wells of 31 carbon substrates, was used
to investigate the carbon metabolic activity among the aerobic
and heterotrophic bacterial communities in all the soil samples.
Plates were incubated at room temperature (20◦C). The optical
density (λ = 590 nm) of each well was determined immediately
(0 h) and every 24 h thereafter up to 180 h with a BioTek plate
reader (ELX800; BioTek Inc., Winooski, VT, USA). Average well
color development method (Garland and Mills, 1991) was used
for Biolog data analysis.
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Microbial genomic DNA was extracted from 20 soil samples
individually. Particularly, 5 g of well-mixed soil from each
sample was subjected to DNA extraction and purification (Zhou
et al., 1996; Moore and Dowhan, 2002). An aliquot of 2 μg
of DNA from each sample was directly labeled and hybridized
with GeoChip 3.0 in triplicates as described previously (Liang
et al., 2010, 2015). Microarray data processing was performed
in the Microarray Data Manager system of the Institute for
Environmental Genomics (IEG)1.

Network Construction and
Characterization
To elucidate the effect of oil contamination on the overall
microbial ecological network, we constructed two fMENs for
the contaminated and uncontaminated soils, respectively. The
GeoChip hybridization intensity data were log-transformed prior
to the construction of a Pearson correlation matrix (Horvath
and Dong, 2008) and converted to a similarity matrix. This
similarity matrix measures the degree of concordance between
the abundance profiles of genes across various samples by
obtaining the absolute values of the correlation matrix (Horvath
et al., 2006). Using RMT, ecological communities can be predicted
by two universal extreme distributions of the nearest-neighbor
spacing distribution of eigenvalues. These two distributions
are the Gaussian orthogonal ensemble (GOE) statistics, which
reflects the random properties of a complex system, and the
Poisson distribution, which is related to the system-specific,
non-random properties of a complex system (Luo et al.,
2007). A threshold st can be defined as the transition of
the nearest-neighbor spacing distribution of eigenvalues from
GOE to Poisson distribution (Zhou et al., 2010). Subsequently,
an adjacency matrix, which encodes the connection strength
between each pair of nodes, was derived from the similarity
matrix by applying the threshold (Luo et al., 2006, 2007). In
this study, clear transitions of the nearest-neighbor spacing
distribution of eigenvalues from GOE to Poisson distribution
were observed for soil microbial communities with and without
contamination. These transitions are indicated by the existence
of a similarity threshold (Table 1). The topological indices
of the network, such as the average degree (connectivity),
average path length, and average clustering coefficient, were
calculated to describe the properties of the two networks. The
definitions and calculations of these indices were described
previously (Zhou et al., 2010). Hartwell et al. (1999) defined
a module in a biological system as “a discrete unit whose
function is separable from those of other modules.” They
suggested that the functional modules comprise a “critical level
of biological organization.” In fMENs, a module is defined
as a group of functional genes that are highly connected
among themselves but exhibit few connections with the
functional genes under other modules (Zhou et al., 2010).
Modularity (M) measures the extent to which nodes attain
more links within their own modules than expected if the
linkage was random. The modularity was calculated as follows:

1http://ieg.ou.edu/microarray

M =
NM∑
s=1

[
ls
L

−
(
ds
2L

)2
]

(1)

where NM is the number of modules, L is the number of links in
the network, ls is the number of links between nodes in module
s, and ds is the sum of the degrees of nodes in module s. The
module identification algorithm aims to determine the partition
with largest modularity (Clauset et al., 2004). After scanning all
branches of the hierarchical tree of a graph, the level with the
maximum modularity score was used to separate the graph into
multiple dense subgraphs (Clauset et al., 2004).

Each node can be assigned a role based on its topological
properties. The role of node i is characterized by two parameters.
The first parameter is within module connectivity (Zi), which
describes how well a node is connected to the other nodes within
its own module (Guimera and Amaral, 2005). Zi is described as
follows:

Zi = κi − κsi
σκsi

(2)

where κi is the number of links of node i to the other nodes within
its module si, κsi is the average of k over all the nodes in si, and
σκsi

is the standard deviation of κ in si.
The second parameter is the connectivity among modules

(Pi), which reflects how well a node connects to various modules
(Guimera and Amaral, 2005). Pi is given as follows:

Pi = 1 −
NM∑
s=1

(
κis

ki

)2
(3)

where κis is the number of links of node i to nodes in module s,
and ki is the total degree of node i.

Only one network was constructed by combining 10 samples
under each condition; hence, we cannot statistically compare the
network indices between contaminated samples and the control.
Thus, random networks were generated to assess the statistical
significance of network indices by using the Maslov and Sneppen
(2002) procedure based on a null model. This model keeps
the numbers of nodes and links unchanged but rewires all of
the links’ positions in the “null model” network (Maslov and
Sneppen, 2002). Consequently, the network sizes are the same,
and the random rewired networks are comparable to the original
ones. For each network identified in this study, 100 randomly
rewired networks were generated, and all of the network indices
were calculated individually. The average and standard deviation
for each index of all of the random networks were obtained
(Zhou et al., 2010). For comparison of the network indices
under different conditions, the Student t-test was employed using
the standard deviations derived from corresponding random
networks.

All of the above calculations were carried out in the IEG
website2. The present study is focused on the interactions of
oil contaminant degradation-related functional genes. Thus, the
fMENs were also constructed and visualized using the Cytoscape

2http://ieg2.ou.edu/MENA
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2.6.0 [26] software for two functional categories, particularly,
alkaline and PAH degradations.

Relationships of Microbial Interaction
Networks with Soil Variables
Gene significance was calculated on the basis of a sample
geochemical trait (Zhou et al., 2010) across 10 replicate samples
under oil contamination and non-contamination. Given that
the measurement units for different soil variables vary, all
of the trait data were standardized before statistical analysis.
Correlations between the gene significance and the connectivity
of individual genes were calculated. The statistical significances
of these correlations were estimated on the basis of P-values.

RESULTS

Effects of Oil Contamination on Microbial
fMENs
fMENs were constructed for both contaminated and
uncontaminated soils to determine the effect of oil contamination
on microbial functional gene co-occurrence (Table 1). The
network sizes, links, connectivities, and module numbers were
calculated for microbial functional genes in the contaminated
and uncontaminated soils. Random networks were generated
to test the statistical significance of the network indices. Results
indicated that the network indices, such as average path length,
average clustering coefficient, and modularity, were significantly
different between the contaminated and uncontaminated soils
(P < 0.001). The overall network structures of the soil microbial
communities were distinctly different under oil contamination.

Visualization of the Topological Roles of
Individual Nodes
In a network developed from gene abundance data to represent
the ecological co-occurrence (links) of different gene markers
(nodes) in a microbial community, different nodes play distinct
roles (Guimera et al., 2007; Fuhrman and Steele, 2008). Within-
module connectivities (Zi) and among-module connectivities
(Pi) of both contaminated and uncontaminated soils were
calculated and visualized in Figure 1 to understand the effect
of oil contamination on the topological roles of individual
nodes. In this study, we followed the simplified classification
as follows: (i) peripheral nodes (Zi ≤ 2.5, Pi ≤ 0.62), which
possess only a few links that are almost always to nodes
within their modules; (ii) connectors (Zi ≤ 2.5, Pi > 0.62),
which are highly linked to several modules; (iii) module hubs
(Zi > 2.5, Pi ≤ 0.62), which are highly connected to numerous
genes in their own modules; and (iv) network hubs (Zi > 2.5,
Pi > 0.62), which act as both module hubs and connectors.
The threshold value of Zi was determined by the density
landscape of the nodes; a clear boundary at Zi = 2.5 was
observed, and Zi > 2.5 was relatively “washed” down by the
background of the non-hub region as described previously
(Guimera and Amaral, 2005). Similarly, the Pi parameter space
could be partitioned into different regions with a boundary
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FIGURE 1 | Z–P plot showing the distribution of genes based on their topological roles from the BS oil-exploring site. U, uncontaminated soils (blue), C,
contaminated soils (red).

at Pi = 0.62 by identifying the basins of attraction for the
different node density plots (Guimera and Amaral, 2005).
Tables 2 and 3 provide detailed information on the module hub
genes and connectors. The majority of the genes, particularly,
about 98.4 and 90.2% of uncontaminated and contaminated
soils, respectively, were peripherals, having most of their links
inside their modules. Fewer module hub genes were present
in contaminated soils (two genes) compared with the control
(12 genes). By contrast, more genes playing as connectors
were found in contaminated soils (23 genes), and none in the
control. None of the module hub genes, and connectors was
overlapped in the contaminated and uncontaminated samples.
Furthermore, no network hub genes were noted in the two
conditions.

Network Interactions of Functional
Genes Involved in Alkane and PAH
Degradation
Aliphatic and aromatic hydrocarbons are major components of
crude oil contaminants in oil-contaminated sites (Liang et al.,
2012). To understand the co-occurrence levels of microbial
functional genes involved in aliphatic and aromatic hydrocarbons
degradation, we further constructed the networks of alk and

PAH degradation genes in contaminated soils (Figures 2 and 3).
Supplementary Tables S1 and S2 show detailed information on
node degrees (links), gene identifications, names, and derived
microorganisms.

Several functional genes, namely, alkB, alkH, and alkK,
were detected in oil-contaminated soils. These genes were
responsible for degrading aliphatic hydrocarbons. Overall, 95.4%
of the total interactions of alkane-degrading genes were negative
(Figure 2, Supplementary Table S1), which may reflect the
competitive behavior of microbial functional communities in
alkane degradation. The functional gene with the highest
connectivities was alkB (83025976, uncultured bacterium) with
31 connections. All were negative, and the strength degree was
0.284 (clustering coefficient).

High concentrations of PAHs, such as naphthalene,
phenanthrene, pyrene, chrysene, benzo(e)pyrene, and their
alkylated derivatives, were detected in oil-contaminated
sites (Cline et al., 2007). Thus, we further explored the
co-occurrence of microbial functional gene involved in
PAH degradation (Figure 3, Supplementary Table S2). All
interactions of the PAH genes were negative. The functional
gene with the highest connectivity was nidA (33333869,
Mycobacterium sp.), with 47 connections and strength degree of
0.205.
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TABLE 2 | Information on the module hub genes.

Gene ID Zi Pi Gene name Gene category Sub-category Organism

bs-u 78221327 6.336 0.000 cytochrome Energy process Energy process Geobacter metallireducens GS-15

104304169 5.091 0.000 pmoA Carbon cycling Methane Uncultured bacterium

10863129 4.884 0.000 nifH Nitrogen Nitrogen fixation Lactate SRB-Enrichment culture clone HBLac1

46106 4.287 0.000 nifH Nitrogen Nitrogen fixation Rhodobacter capsulatus

146295293 3.451 0.000 CadA Metal Resistance Cadmium Caldicellulosiruptor saccharolyticus DSM 8903

18461102 3.270 0.000 phenol_oxidase Carbon cycling Carbon degradation Lentinula edodes

156719686 3.000 0.000 mer Metal Resistance Mercury Hydrogenobaculum sp. Y04AAS1

109645564 2.973 0.000 nrfA Nitrogen Dissimilatory N reduction Desulfitobacterium hafniense DCB-2

104304111 2.958 0.000 pmoA Carbon cycling Methane Uncultured bacterium

57903688 2.885 0.000 gyrB Other category Phylogenetic marker Xylella fastidiosa

28566177 2.749 0.133 gyrB Other category Phylogenetic marker Entomoplasma somnilux

103487991 2.682 0.000 mer Metal Resistance Mercury Sphingopyxis alaskensis RB2256

bs-c 88789151 2.828 0.328 MFS_antibiotic Antibiotic resistance transporter Nitrococcus mobilis Nb-231

30248392 2.711 0.135 czcA Metal Resistance Cadmium, Cobalt, Zinc Nitrosomonas europaea ATCC 19718

ID, identification.

TABLE 3 | Information on the connector genes.

Gene ID Zi Pi Gene name Gene category Sub-category Organism

bs-u none

bs-c 6324893 1.250 0.747 alkK Organic Remediation Others Saccharomyces cerevisiae

62468076 1.250 0.743 bco Organic Remediation Aromatics Uncultured bacterium

33413585 0.854 0.743 endochitinase Carbon cycling Carbon degradation Trichoderma atroviride

88701127 −0.732 0.722 mauAB Organic Remediation Herbicide-related compound Congregibacter litoralis KT71

89512930 −0.732 0.722 nifH Nitrogen Nitrogen fixation Uncultured nitrogen-fixing bacterium

118705772 2.043 0.716 mauAB Organic Remediation Herbicide-related compound Sphingomonas wittichii RW1

67933455 2.043 0.703 CODH Carbon cycling Carbon fixation Solibacter usitatus Ellin6076

91802739 0.457 0.698 czcA Metal Resistance Cadmium, Cobalt, Zinc Nitrobacter hamburgensis X14

12659186 1.250 0.695 nifH Nitrogen Nitrogen fixation Treponema denticola

192808970 0.432 0.685 Tet Antibiotic resistance Others Geobacillus sp. Y412MC10

119963032 −0.276 0.684 nmoA Organic Remediation Aromatics Arthrobacter aurescens TC1

82724314 0.138 0.666 endochitinase Carbon cycling Carbon degradation Clostridium beijerinckii NCIMB 8052

133919284 −0.555 0.663 B_lactamase_A Antibiotic resistance Beta-lactamases Leminorella richardii

89075780 −0.719 0.660 B_lactamase_A Antibiotic resistance Beta-lactamases Photobacterium sp. SKA34

56476743 −0.276 0.658 ebdABC Organic Remediation Aromatics Azoarcus sp. EbN1

2196830 0.588 0.653 gyrB other category Phylogenetic marker Shewanella algae

157363044 0.668 0.644 pcc Carbon cycling Carbon fixation Thermotoga lettingae TMO

118685870 −0.515 0.642 proO Organic Remediation Aromatics Marinomonas sp. MWYL1

110647328 0.905 0.640 czcA Metal Resistance Cadmium, Cobalt, Zinc Alcanivorax borkumensis SK2

67920251 −0.065 0.628 pcaG Organic Remediation Aromatics Crocosphaera watsonii WH 8501

87135386 0.552 0.626 mauAB Organic Remediation Herbicides related compound Novosphingobium aromaticivorans DSM 12444

94554094 −0.065 0.626 CopA Metal Resistance Copper Deinococcus geothermalis DSM 11300

15806552 0.915 0.617 pcc Carbon cycling Carbon fixation Deinococcus radiodurans R1

ID, identification.

Association of Network Structure with
Environmental Characteristics
Pearson correlation analysis was performed between gene degrees
and environmental factors to determine the relationships among
microbial network interactions, oil contamination and soil

geochemical variables, (Table 4). Gene degree was calculated by
summing the strengths of the connections (i.e., links) of each
gene (i.e., node) with all of the other connected genes in the
network. Gene degree represents how strong a gene is connected
to other genes; this degree is one of the most commonly
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FIGURE 2 | Network interactions of the alk genes in the oil-contaminated soils. The genes include alkB (alkane monooxygenase), alkH (aldehyde
dehydrogenase), alkJ (alcohol dehydrogenase), and alkK (acyl-CoA synthetase). Numbers correspond to protein identification (National Center for Biotechnology
Information, NCBI) and source genera. Black font indicates for bacteria (UB represents uncultured bacteria), green font for archaea, and blue font for fungi. Detailed
information is listed in Supplementary Table S1. The two circles of the nodes represent different modules.

used network indices. Negative correlations (P < 0.01) were
observed between gene degrees and oil concentration, and total
nitrogen and total phosphorus in contaminated soils. This result
indicates that these factors may reduce the co-occurrence of
microbial functional genes in the community network because of
the potential competitive relationships among several microbial
groups for available carbon and nutrient sources. Some of the
correlations were significant but with low correlation coefficient
levels, thus indicating the weak effect of these factors to the gene
degrees.

DISCUSSION

To understand the influence of oil contamination on microbial
interactions further, we investigated the changes of microbial
molecular ecological networks in response to oil contamination.
Network properties considerably changed in the contaminated
samples when compared with the control. For example,
connectivity, which provides information on how strong a node
is connected to other nodes and is a commonly used network
index (West, 1996), was reduced by 16.8% in response to oil
contamination. Modularity measures the extent to which nodes
possess more links within their own modules than expected if

linkage is random. In this study, both module numbers and
modularity decreased under oil contamination, with reductions
of 76.6 and 41.8%, respectively. Small network sizes were
also observed in contaminated soils than in the control at
256 and 754 functional genes (nodes) in the two networks,
respectively. Although hydrocarbon contamination is known to
exert profound effects on soil microbial community composition,
diversity, and functional processes, the effects on the microbial
ecological networks were first explored in this study. Findings
revealed that the overall functional network structures were
altered, thereby indicating a potential change in the organization
of microbial communities (Faust and Raes, 2012). Mougi and
Kondoh (2012) proposed that increasing complexity leads to
increased stability in a community with mixed interaction types.
Thus, the stability of microbial functional community may be
reduced with the stress of oil contamination. Carbon input (as
elevated CO2) has been reported to increase the complexity of
soil microbial networks and produce a more stable community
structure than usual (Zhou et al., 2010). Although hydrocarbons
may have increased carbon source input and stimulated certain
microbes that can utilize the carbons, degradable carbon was
consumed and caused C:N imbalance. This imbalance may have
resulted in the microbial functional instability. These findings
can be partially confirmed by the decrease in microbial carbon
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FIGURE 3 | Network interactions of the PAH genes in the oil-contaminated soils. The genes are bphA (biphenyl 2,3-dioxygenase), bphB
(cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase), bphC (biphenyl-2,3-diol 1,2-dioxygenase), bphD (2,6-dioxo-6-phenylhexa-3-enoate hydrolase), nahA
(naphthalene 1,2-dioxygenase), nahB (cis-1,2-dihydro-1,2-dihydroxynaphthalene/dibenzothiophene dihydrodiol dehydrogenase), nahF (salicylaldehyde
dehydrogenase), phdA (pyruvate dehydrogenase), phdCI (carboxylate isomerase), phdG (hydratase–aldolase), phdJ [4-(2-carboxyphenyl)-2-oxobut-3-enoate
aldolase], phdK (2-carboxybenzaldehyde dehydrogenase), aorL (quinoline 2-oxidoreductase), nidA (putative ring-hydroxylating dioxygenase), oxoH (putative
hydrolase). Numbers correspond to protein identification (NCBI) and source genera, all from bacteria (UB represents uncultured bacteria). Detailed information is
listed in Supplementary Table S2. The two circles of the nodes represent different modules.

substrate utilization accompanied by diversity loss in the culture-
based Biolog analysis in the present study (Supplementary
Figure S1). The insignificance of the distance-decay relationship
(community similarity vs. geographic distance) in contaminated
sites suggests that oil contamination significantly influences
microbial communities to decrease in endemism, especially for
the groups functioning in hydrocarbon degradation (Liang et al.,
2015). Given that oil contamination cause a loss in the overall
microbial diversity and alternation of community structures,
many researchers concluded that anthropogenically induced oil
contamination changed the microbial ecosystem (Hazen et al.,
2010; Lu et al., 2012; Bell et al., 2013b). This change results in the
potential switching of roles of microbial species and ecological
functions of communities.

Identifying key populations/genes in a community is a
challenge, because of the high diversity and uncultured status
of microbes (Faust and Raes, 2012). In this study, fMEN
analysis provided information on candidate genes/populations
that are most important to microbial ecosystem structures and
functions in oil-contaminated sites. We defined the two types
of keystone genes. The first type refers to the genes that play
key roles in the overall network based on network topology

and their module memberships, such as module hubs (those
highly connected to numerous genes in their own modules),
connectors (those highly linked to several modules), and network
hubs (acting as both module hubs and connectors). In this
study, oil contamination changed the key genes in the ecological
network. Two module hub genes (derived from Nitrococcus and
Nitrosomonas, respectively) were present in the contaminated
soils and 12 genes (mainly derived from Rhodobacter, Geobacter,
Xylella, Sphingopyxis, etc.) in the uncontaminated soils with no
overlap between the two conditions. Most of the module hub
genes are functioning in carbon and nitrogen cycling, such as
pmoA, nifH, and nrfA. The hub genes were derived from different
organisms in the two conditions; hence, the changes of key
module hubs by contamination may be due to the responses
of microorganisms to the environmental stimulus. By contrast,
23 genes played as connectors (connecting modules) in the
contaminated soils and none in the control. These genes mainly
function in organic contaminant degradation, such as alk, bco,
and edbABC (mainly derived from Sphingomonas, Geobacillus,
Novosphingobium, Trichoderma, and Deinococcus), as well as
nifH in nitrogen fixation. This result was expected because
an increased number of genes and organisms functioning in

Frontiers in Microbiology | www.frontiersin.org 9 February 2016 | Volume 7 | Article 60

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Liang et al. Contamination Alters Microbial Community Networks

TABLE 4 | Pearson correlations between gene degrees and environmental factors.

Oil Texture TOC TN EN TP EP pH Water Salt

BS-U / −0.10∗∗ −0.02 −0.08∗ −0.05 0.04 −0.04 −0.15∗∗ 0.21∗∗ −0.18∗∗

BS-C −0.19∗∗ 0.04 −0.07 −0.25∗∗ 0.08 −0.20∗∗ −0.07 −0.08 0.01 0.11

∗Correlation is significant at 0.05 level (two-tailed). ∗∗Correlation is significant at 0.01 level (two-tailed). TOC, total organic carbon; TN, total nitrogen; EN, available nitrogen;
TP, total phosphorus; EP, available phosphorus.

hydrocarbon degradation were observed in oil-contaminated
sites (Horvath, 1972; Baldwin et al., 2008; Bell et al., 2013b).
We also observed that several genes played as module hub
or connector function in other biogeochemical cycles, such
as metal and antibiotic resistance. The actual roles of these
hub or connector genes must be elucidated by real biological
replicates of networks or co-culture experiments in the further
work.

The second keystone genes are defined as those highly
connected nodes (genes) involved in the degradation of the
main components of oil contaminant. In the fMENs, patterns
with a few highly connected nodes render the network more
robust to change (Albert et al., 2000; Montoya et al., 2006).
If highly connected nodes are lost, the network changes
dramatically. Thus, these highly connected nodes may be
analogous to microbial “keystone genes.” The top six keystone
alk genes are alkB (83025976, 31 connections), alkK (89890831,
29 connections), alkK (111018496, 26 connections), alkK
(39647387, 24 connections), alkB (134142943, 24 connections),
and alkH (154155441, 24 connections). Many keystone genes
in the alk gene network were derived from some species
belonging to Flavobacteria, Rhodococcus, Rhodopseudomonas,
and Parvibaculum. These bacteria are widely reported in alkane
degradation (Naïtali et al., 2003; Mohanty and Mukherji,
2008). The top six keystone PAH genes are nidA (33333869,
47 connections), oxoH (2072733, 45 connections), bphD
(115421687, 43 connections), bphA (3820519, 29 connections),
phdCI (126626855, 26 connections), and bphC (84694163,
25 connections). These genes are mainly derived from
Mycobacterium, Pseudomonas, Bordetella, Burkholderia,
Marinobacter, and Polaromonas, which have been found to be
capable of naphthalene and phenanthrene utilization (Chaillana
et al., 2004), as well as the degradation of other petroleum
hydrocarbons (Atlas, 1981; Hamamura et al., 2013; Meyneta
et al., 2014). Our study further indicated that these functional
groups carrying the keynote functional genes may play important
roles in maintaining the stability of the biological network.

Microorganisms do not exist in isolation but form complex
ecological interaction webs with several interaction types (Faust
and Raes, 2012). Detecting and investigating various types of
interactions in microbial ecosystems are difficult to accomplish
(Raes et al., 2007), specifically in an environment disturbed
by anthropogenic activities. A previous study experimentally
demonstrated that increasing disturbance promotes microbial
interspecies competition (Violle et al., 2010). Competition can
constrain the specific functions of a community in several cases
because of limited resources and habitat available to the most
productive species (Bell et al., 2013a). In oil-contaminated soils,

negative co-occurrence patterns prevailed among functional
genes involved in alkane and PAH degradation. This finding
suggests the competition for carbon compound and/or nutrient
under oil contamination. For example, Sphingomonas is more
competitive in nutrient acquisition than other genera in
hydrocarbon-contaminated sites (Bell et al., 2011). In our
study, we also observed that gene xylJ (28971837) derived from
Alphaproteobacteria (Sphingomonas sp.) with the highest links
in BS showed negative interactions with several other genes
derived from Gammaproteobacteria (Pseudomonas sp. and
Aeromonas sp.), Actinobacteria (Mycobacterium sp., Nocardia
sp., and Corynebacterium sp.), Spirochaetes (Spirochaeta sp.), and
Firmicutes (Streptococcus sp.). A small proportion of positive
interactions, particularly, 4.5% of the total interactions in the alk
functional gene network, were also observed. These interactions
include those between alkK (6320852, Saccharomyces) and alkH
(154156259, Parvibaculum); alkB (11558298, Oleiphilus) and the
other two genes alkB (54649960, Gordonia) and alkK (78042621,
Carboxydothermus); alkK (13093059, Mycobacterium) and
the other four genes alkK (27886596, Fusobacterium), alkK
(39936362, Rhodopseudomonas), alkB (83026018, uncultured
bacterium), and alkK (134093504, Herminiimonas); and alkB
(54649960, Gordonia) and the other three alkB genes (76803727,
83025994 and 134143109), which are all derived from uncultured
bacterium. The positive interactions may reflect the commonly
preferred environmental conditions or cooperative behaviors,
such as cross feeding, syntrophic interactions, and mutualistic
interactions (Raes and Bork, 2008; Steele et al., 2011).

Interactions between domains (bacteria, fungi, and archaea)
were reported previously (Rousk et al., 2008; Steele et al.,
2011; Bell et al., 2013b). In the current study, the network of
functional genes involved in contaminant degradation showed
that bacteria, fungi, and/or archaea were connected. Bacteria
and fungi are generally described as antagonists for substrate
competition in the soil environment (Mille-Lindblom et al., 2006;
Meidute et al., 2008; Rousk et al., 2008). In oil-contaminated
soils, the negative interactions among functional genes (alk and
PAH degrading) derived from different microorganisms may be
inferred as competition among microbial groups for degradable
carbon sources, limited supply of nitrogen, and phosphorus.

Comprehensive information on microbial species or
taxonomic units across relatively large numbers of samples is
essential in detecting the co-occurrence relationships among
microbial communities using network analysis (Barberan et al.,
2012). Sample sets should ideally include spatial or temporal
gradients in environmental conditions to achieve sufficient
variability in taxon abundances to resolve co-occurrence patterns
(Barberan et al., 2012). In the RMT-based molecular ecological
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network approach (Zhou et al., 2010), 10 samples are required
to construct a network of microbial communities to ensure
that the co-occurrence patterns are statistically significant
rather than a random process. Thus, in this study, 20 soil
samples (10 contaminated and 10 uncontaminated soils)
were selected to infer the possible co-occurrence relationship
between microbial functional genes under long-term oil
contamination. Although we could not scale the results to
all the situations with only a few samples, constructing a co-
occurrence network is important to determine the potential
interactions among different microorganisms. The results would
provide better understanding of the responses of biological
communities to severe environmental contamination. Additional
sampling efforts combined with laboratory experiments
are required to further obtain fundamental insight into
microbial ecological networks in complex environmental
habitats.
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