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The concern of the emergence of a pandemic influenza virus has sparked an
increased effort toward the development and testing of novel influenza antivirals. Central
to this is the animal model of influenza infection, which has played an important
role in understanding treatment effectiveness and the effect of antivirals on host
immune responses. Among the different animal models of influenza, ferrets can be
considered the most suitable for antiviral studies as they display most of the human-like
symptoms following influenza infections, they can be infected with human influenza virus
without prior viral adaptation and have the ability to transmit influenza virus efficiently
between one another. However, an accurate assessment of the effectiveness of an
antiviral treatment in ferrets is dependent on three major experimental considerations
encompassing firstly, the volume and titer of virus, and the route of viral inoculation.
Secondly, the route and dose of drug administration, and lastly, the different methods
used to assess clinical symptoms, viral shedding kinetics and host immune responses
in the ferrets. A good understanding of these areas is necessary to achieve data that
can accurately inform the human use of influenza antivirals. In this review, we discuss
the current progress and the challenges faced in these three major areas when using
the ferret model to measure influenza antiviral effectiveness.
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INFLUENZA – THE DISEASE

Influenza is a highly contagious respiratory disease causing symptoms ranging from headache,
myalgia, malaise, sore throat, sneezing, and nasal discharge (Cox and Subbarao, 1999). Influenza
virus is transmitted via virus-laden secretions propelled by coughing or sneezing from an infected
person. Most influenza infections are self-limiting, lasting for one to 5 days but host factors
such as age, pregnancy, and underlying medical conditions can increase the severity of illness
(Gavin and Thomson, 2003). Influenza causes high global mortality and morbidity annually,
with United States alone experiencing approximately 95,000–172,000 hospitalizations and 21,000–
41,000 deaths annually (Lowen et al., 2006). The morbidity associated with seasonal influenza has a
significant economic impact due to work absenteeism and puts huge pressure on the public health
system.
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INFLUENZA ANTIVIRALS

To date, the neuraminidase inhibitors (NAIs) are the only
licensed class of antiviral drugs effective against currently
circulating influenza viruses. Zanamivir (RelenzaTM) and
oseltamivir (TamifluTM) have been licensed since 1999 while
newer NAIs, such as peramivir (RapivabTM) and laninamivir
(InavirTM), are approved in Japan, and in the case of peramivir
also in South Korea, USA, and China (Ikematsu and Kawai,
2011; Chairat et al., 2013; ChinaBioToday, 2013). However, the
therapeutic and prophylactic efficacy of NAIs against ‘seasonal’
influenza infection remains hotly debated (Jefferson et al., 2014).
The continuous risks posed by the emergence of NAI-resistant
viruses (Takashita et al., 2015) and the pandemic potential of
avian influenza viruses, such as A(H5N1) (Nguyen et al., 2013)
and A(H7N9) (Hu et al., 2013), has sparked a major effort to
develop new antivirals for human use.

Typically, investigational antivirals will first undergo in vitro
efficacy screening, followed by in vivo testing in animal models
to look at pharmacokinetics/pharmacodynamics (PK/PD), drug
toxicity and drug effectiveness prior to clinical trials. As such, the
choice of the animal model for assessing the effectiveness of these
influenza antivirals becomes critical as it provides pre-clinical
data that can inform the decision for progression toward clinical
trials. Currently, there are a large number of influenza antivirals
undergoing clinical trials, a substantial increase from the limited
trials in 2000 (Figure 1). In themajority of human clinical trials of
influenza antivirals, the primary endpoint used to assess the drug
efficacy is the time to alleviation of clinical symptoms, such as
cough, fever, sore throat, myalgia, lethargy, nasal congestion, and
headaches, whereas other aspects, including the ability to reduce
viral shedding, are considered secondary endpoints (Hayden
et al., 1997; The MIST, 1998; Makela et al., 2000; Nicholson et al.,
2000; Treanor et al., 2000; Haffizulla et al., 2014).

ANIMAL MODELS IN INFLUENZA
RESEARCH

Animal models of influenza infection have played an important
role in the understanding of viral pathogenicity and have served
as pre-clinical models for the evaluation of vaccine candidates

and new therapeutics (Kiso et al., 2010; Margine and Krammer,
2014; Marjuki et al., 2014). To date, there are many different
animalmodels of influenza infection, namely ferrets, mice, guinea
pigs, swine, non-human primates (NHP), and more recently,
zebrafish (Gabor et al., 2014). The pros and cons of the different
animal models of influenza to investigate disease pathogenesis,
transmission, and vaccine development have been well-described
in several published reviews and are summarized here in Table 1
(Bouvier and Lowen, 2010; Lowen et al., 2014; Margine and
Krammer, 2014; Thangavel and Bouvier, 2014; Davis et al., 2015;
Enkirch and von Messling, 2015).

Animal Models in Influenza Antiviral
Studies
Among all animal experimental models, mice are most
commonly used for testing influenza antivirals mainly due to
factors, such as lower experimental cost, ease of animal handling
and the ability to use large numbers of animals to attain statistical
power in a single experiment (Ryan et al., 1994; Mendel et al.,
1998; Triana-Baltzer et al., 2009; Kiso et al., 2010; Bantia et al.,
2011; Smee et al., 2012b; Zarogiannis et al., 2012; Marjuki
et al., 2014). To date, weight loss, mortality (lethal model) and
virus titer are the commonly used determinants of antiviral
drug effectiveness in mice studies. Although these measurements
are informative, the usefulness of mice in antiviral studies has
been largely limited by the lack of clinical symptoms following
influenza infection. The absence of clinical symptoms such as
fever, sneezing, nasal discharge, and nasal inflammation in mice
following influenza infection limits the extrapolation of mouse
data to the human scenario where alleviation of symptoms are
considered as the primary endpoint in clinical trials (Table 1).
In contrast, the ferret is the only animal model which displays
comparable clinical symptoms to that of humans following
influenza infection (Table 1). In view of these factors, in this
review we will discuss the current progress, limitations and the
future directions of using ferrets to assess antiviral effectiveness
against influenza infections.

Ferret
Since the discovery of the susceptibility of ferrets (Mustela
putorius furo) to influenza virus in the 1930’s (Smith et al.,

FIGURE 1 | Overview of clinical trials of influenza antivirals in year 2000 and 2015. Data for 2015 extracted from clinicaltrials.gov (ClinicalTrials, 2015) using
search terms: ‘Influenza’ and ‘antivirals’ and ‘antivirals treatment’.
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TABLE 1 | Comparison of different animal models for influenza infection.

Clinical symptoms Human Animal model of influenza infection

Ferrets Mice Guinea Pigs Swine NHP Zebrafish

Sneezing Yes Yes No No Yes Not alwaysa No

Nasal discharge Yes Yes No No Not alwaysa Not alwaysa No

Lethargy Yes Yes Yes No No Not alwaysa Unknown

Fever Yes Yes No No Not alwaysa Not alwaysa No

Weight loss Yes Yes Yes No Minor Not alwaysa No

Viral shedding Yes Yes Yes Yes Yes Yes Yes

Experimental cost − Moderate Low Moderate High High Low

Transmission between animals − Good Poor Good Good Poor Unknown

Can infect with human influenza viruses? − Yes Nob Yes Yes Yes Unknown

A(H1N1)pdm09c − Yes Yes Yes Yes Yes Not reported

A(H3N2)c − Yes Yes Yes Yes Yes Yes

Bc - Yes Yes Not reported Yes Yes Not reported

Avian originc − Yes Yes Yes Not reported Yes Not reported

NHP, Non-human primates. aClinical symptoms vary with different influenza strains. bSerial passaging is required to ‘adapt’ the virus to replicate in majority of mouse
strains. c Influenza virus strain/subtype that have been tested in the animal model.

1933), they remain one of the best animal models of influenza
infection as they exhibit many of the clinical symptoms observed
in humans following influenza infection, can be directly infected
with human influenza virus without prior viral adaptation,
and have the ability to transmit influenza virus efficiently
between one another (Table 1). The susceptibility of ferrets
to human influenza viruses is due to the presence of α2-
6-linked terminal N-acetylneuraminic sialic acids (Neu5AC)
in their respiratory tract which facilitates virus binding and
the initiation of viral replication (Jia et al., 2014; Ng et al.,
2014).

However, the use of ferrets for influenza studies has
been limited by factors such as animal availability, genetic
heterogeneity (out-bred) (Margine and Krammer, 2014), the
requirement of a complex husbandry facility and caging system
(Mabry et al., 2013; Enkirch and von Messling, 2015), and a
lack of immunological reagents and genetically modified mutants
for immunological investigation (Margine and Krammer, 2014;
Enkirch and von Messling, 2015). As a consequence, ferret
experiments can be limited by small sample sizes (n ≤ 5)
(Belser et al., 2013b; Nishiura et al., 2013; Buhnerkempe et al.,
2015), where large animal-to-animal variability has resulted in
the detection of non-statistically significant trends of antiviral
effectiveness between the treatment groups in variables, such as
weight, temperature, nasal inflammation, and virus titer (Rowe
et al., 2010; Govorkova et al., 2011; Oh et al., 2014, 2015).
Ideally, a larger number of ferrets should be used but limitations,
such as high experimental cost, low animal availability, limited
caging capacity and ethical constraint, typically restricts most
studies to group sizes of five or less ferrets. Unlike the more
commonly used animal models, such as rodents and guinea pigs,
the use of larger animals for experimentation, such as ferrets,
can be met with greater scrutiny by animal ethics governing
bodies on aspects, such as the choice of animal, animal numbers
and husbandry concerns. Only a small number of countries
or regions (such as USA, UK, and Europe) have guidelines

regarding the husbandry of ferrets for animal experimentation.
Therefore in the absence of any local directives, animal ethics
committees may rely on guidelines provided by other countries,
particularly where the committee has little experience in the use
of ferrets.

Despite these limitations, the use of ferrets in influenza
research has increased considerably since 2008 (Figure 2).
This increment was largely attributed to a global effort to
better understand viruses with pandemic potential such as the
avian influenza viruses A(H5N1) and A(H7N9), and the virus
responsible for the 2009 pandemic, the A(H1N1)pdm09 virus
(Govorkova et al., 2005; Yen et al., 2007; Boltz et al., 2008; Itoh
et al., 2009; Maines et al., 2009; Munster et al., 2009; Belser et al.,
2013a; Richard et al., 2013; Zhang et al., 2013). With the recent
publication of the ferret genome (Peng et al., 2014), it is likely
that the use of the ferret as a model of influenza will continue to
rise.

FIGURE 2 | The number of publications using different animal models
of influenza. Number of papers published on topics relating to influenza and
mice/ferret/guinea pig from 1950 to 2013. Data tabulated by online automated
yearly statistics of PubMed results (http://dan.corlan.net/medline-trend.html).
Search terms used are ‘Influenza’ and ‘Mice/ferret/guinea pig.’
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To date, the ferret model has been used to investigate viral
susceptibility and transmission (Yen et al., 2007; Maines et al.,
2009; Zhang et al., 2013), and as a preclinical model to investigate
poorly understood areas such as immunological responses to
influenza in young children (newly weaned ferrets) (Huang
et al., 2012), impaired immunity in older individuals (aged
ferrets) (Paquette et al., 2014) and the treatment effectiveness
of different antivirals to reduce influenza infection (Boltz et al.,
2008; Kubo et al., 2010; Govorkova et al., 2011; Kitano et al., 2011;
Marriott et al., 2014). Recently, the use of ferrets in influenza
antiviral studies has extended to treatment effectiveness in an
immunocompromised setting (van der Vries et al., 2013), the
effectiveness of antiviral treatment or prophylaxis in preventing
infections in secondary contacts (Oh et al., 2014) and the
transmission of influenza between an infant and mother during
breast-feeding (Paquette et al., 2015).

There are a large number of experimental variables in a
typical ferret antiviral effectiveness study that can alter the study
outcome and that should be carefully considered to ensure that
the most reliable data is generated. These variables are discussed
in detail below and are summarized in Figure 3.

INOCULATION OF INFLUENZA VIRUS IN
FERRETS

The initiation of influenza infection in animal experimental
models, and even in the human challenge model (Darton et al.,
2015), is routinely carried out by instilling virus via the intranasal
route. In general, intranasal instillation of virus is considered
to be a simple procedure (Turner et al., 2011) compared to
intratracheal (Kreijtz et al., 2013; van der Vries et al., 2013)
or ocular (Belser et al., 2014), by which ferrets can also be
infected in a reproducible manner. However, the decision on
which inoculation route to initiate infection can be dependent
on the virus strain to be tested. For avian influenza viruses, such
as A(H5N1) and A(H7N9), intratracheal instillation is preferred
over direct inoculation into the lower respiratory tract of ferrets,
as it is found to induce a more severe pneumonia that more
closely resembles pathogenesis observed in humans, compared to
intranasal inoculation which causes mild tomoderate pneumonia
in ferrets (Bodewes et al., 2011; Kreijtz et al., 2013). For human
seasonal viruses, such as influenza A(H1N1)pdm09, A(H3N2),
and B viruses, intratrachel instillation has been used in only a

FIGURE 3 | Overview of the three experimental considerations when assessing an antiviral in a ferret model of influenza infection. i.n: Intranasal; i.p,
intraperitoneal; i.v, intravenous; i.t, intratracheal; PK/PD, pharmacokinetics/pharmacodynamics; BAL, bronchoalveolar lavage; AUC, area under curve.
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small number of studies (van der Vries et al., 2013). Instead,
ferrets can be effectively infected by intranasal instillation (Huang
et al., 2011). However, the clinical severity of influenza infection
via intranasal instillation is highly dependent on the volume of
inoculum (Bodewes et al., 2011; Moore et al., 2014). A larger
volume of inoculum (1 mL) results in the delivery of virus
down into lower respiratory tract and into the lungs compared
to smaller volumes (0.2 mL and 0.5 mL) which are primarily
retained in the upper respiratory tract (Moore et al., 2014). As
a result, ferrets intranasally infected with the larger volumes of
inoculum have a more severe illness and lung histopathology
compared to those infected with a smaller volume (0.2 mL)
even when the same infectious titer of virus was used (Moore
et al., 2014). These finding not only underscored influenza strains,
inoculum route and volume to be important considerations in
the ferret model of influenza infection but also highlighted the
difficulties in interpreting data across studies using different
inoculation protocols.

The alternatives to intranasal infection are the use of a ‘natural’
infection, that can be achieved by either contact (Roberts et al.,
2012; Oh et al., 2014) or non-contact transmission (Hamelin
et al., 2011; van der Vries et al., 2011; Herfst et al., 2012) of
virus by exposing a naïve ferret to an infected ferret in the
same or adjacent cage, or aerosolized challenge (Gustin et al.,
2011). Despite ‘natural infection’ being a more clinically relevant
route of transmission, few studies have used this methodology,
presumably due to the additional experimental time involved,
additional ferret use, the requirement for larger cages to house
multiple animals for contact transmission or a more complex
caging system for non-contact transmission, and the lack of
transmissibility of influenza viruses, such as avian influenza
A(H5N1) and A(H7N9) (Yen et al., 2007; Belser et al., 2013a) and
influenza B virus (Kim et al., 2015), via the aerosol and/or contact
route. Nevertheless, ‘natural’ infection has the clear benefit of
infecting ferrets with a realistic infectious viral dose and results
in viral replication kinetics that better mimic those of ‘natural’
influenza infections in humans (Figure 4). Unlike ‘natural’
infection, which relies on infected donor ferrets to transmit
viruses to naïve recipients, a more standardized alternative is
aerosol challenge which involves exposing naïve ferrets directly to
known doses of aerosolized influenza viruses delivered by specific
devices. Ferrets exposed to low aerosolized viral dose (1.5–2.2
FID50) have been shown to exhibit similar viral shedding kinetics
and disease pathogenesis to those infected via ‘natural’ infection
(Gustin et al., 2011). In contrast to ‘natural’ infection, aerosol
challenges eliminates the need for donor ferrets, allows ferrets
to be infected with viruses with poor aerosol transmissibility,
and enables the manipulation of variables, such as dose and
timing of viral exposure, to achieve a more standardized way of
infecting ferrets in a ‘natural’ fashion. However, few studies have
reported using this methodology presumably due to the high cost
involved in requiring specialized aerosol system and cages for
such inoculation protocol.

The majority of ferret infection studies have used intranasal
infections with inocula of high infectious viral titers (e.g., 106
TCID50/PFU/EID50 per animal) which may result in a very large
number of infectious particles infecting the nasal epithelial in a

FIGURE 4 | Schematic representation of the viral shedding kinetics of
intranasally infected (102–103, 104–106 TCID50 viral inoculum) ferrets,
ferrets naturally infected by contact transmission via an infected
donor and intranasally infected human in a challenge model (Hayden
et al., 1999; Baccam et al., 2006). Ferret viral data were adapted from
published studies (McBrayer et al., 2010; Smith et al., 2011; Stark et al.,
2013; Oh et al., 2014, 2015).

short time period (Maines et al., 2009; Govorkova et al., 2011;
Kim et al., 2013; Stark et al., 2013; Paquette et al., 2014; Marjuki
et al., 2015). Ferrets infected with high viral inocula (104−6

TCID50/animal) can show viral shedding kinetics where titers
peak as early as 1 day post-infection (Figure 4). In contrast,
ferrets infected with a lower viral inocula (102−3 TCID50/animal)
can show a more ‘typical’ viral shedding curve that more closely
resembles a natural infection where viral titers gradually rise,
peak and then fall (Baccam et al., 2006; Figure 4). Although high
titer viral inoculums have been used to increase the chances of
infection or increase pathogenicity, several studies have shown
that the initial titer of the inoculum does not correlate to disease
severity in ferrets (Marriott et al., 2014; Oh et al., 2015).

Influenza antivirals, such as NAIs, typically act by interrupting
the viral replication cycle, whereas antibiotics directly eliminate
and reduce the causative pathogen (McCullers, 2011).
Therefore, the common practice of infecting ferrets with a
high viral inoculum could overwhelm the host (ferret) with
an unrealistically large number of infectious viral particles and
under such experimental conditions, the effectiveness of an
antiviral treatment could be undermined as the antivirals would
not be able to contain such rapid onset of viral infection. As
demonstrated by Marriott et al. (2014), oseltamivir treatment
significantly lowered viral shedding, lowered inflammatory
nasal cell count and improved activity levels following a 102
PFU/animal dose of infection, but had no significant effect on
these parameters when a high viral inoculum of 106 PFU/animal
was used (Marriott et al., 2014). Therefore, in the context
of antiviral testing in ferrets and in particular to intranasal
inoculation, careful consideration should be given to the amount
of virus used, to prevent undermining the effectiveness of
antivirals in influenza infection.
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DRUG ADMINISTRATION

Administration of therapeutics into animals requires the careful
consideration of many factors including the drug pharmacology,
concentration, volume, timing, frequency of dose and route of
administration (Urso et al., 2002). The antivirals for influenza
treatment that are currently approved or in late-phase clinical
trials in humans encompass various routes of administration
including oral, inhaled and intravenous (Table 2). Where possible
the route of administration in animals should follow the same
route of delivery as in humans so that the results can be
better extrapolated to the findings in man (Turner et al., 2011;
Table 2).

The delivery of parenterally administered antivirals, such as
peramivir, in ferrets is relatively straight-forward and can be
easily administered by intravenous injection (Yun et al., 2008;
Kitano et al., 2011). Administering drugs via the enteral (oral)
route in ferrets can be limited by many factors such as the
requirement for multiple dosing regimens, poor drug solubility
and palatability of the drug to animals. In ferrets, direct feeding
of orally administered compounds is preferred over oral gavage
(which is commonly used in mice) as it does not require
anesthesia, which can impact on the animal’s health and behavior
if given repeatedly, such as twice daily for 5 days. For oseltamivir
administration, ferrets can be fed oseltamivir phosphate dissolved
in sugar solution to achieve an accurate dosing (Oh et al.,
2014, 2015). The drug in sugar solution is well-tolerated by
ferrets allowing multiple dosing without the need for sedation,
although higher doses of the drug (e.g., 25 mg/kg) are less readily
swallowed than the standard 5 mg/kg dose. In contrast, oral
antivirals with poor solubility, such as nitazoxanide (Haffizulla
et al., 2014; Rossignol, 2014), pose difficulties when administering
to ferrets, and therefore alternative methods, such as spiking the
drug into food or in special ‘treats’, may be necessary (Turner
et al., 2011).

The delivery of inhaled drugs, such as zanamivir and
laninamivir, to ferrets poses additional challenges. Both

zanamivir and laninamivir are delivered to humans as a dry
powder formulation that is actively inhaled by the patient via
specially designed inhalers (Chairat et al., 2013). Mimicking this
type of administration in animals is difficult, and is presumably
why the majority of animal studies investigating zanamivir
(Herlocher et al., 2003; Hurt et al., 2010; Smee et al., 2012a,b) and
laninamivir (Kubo et al., 2010) have dissolved the compounds
in saline or water and administered intranasally (Table 2).
While intranasal instillation of drugs is a simple technique that
can be easily adopted by most laboratories, the relevance of
delivering the drug in this manner when it is designed to be
inhaled is questionable (Turner et al., 2011). In addition, it
has been demonstrated in mice that intranasal instillation of
drug administration can exacerbate viral infection leading to
lower drug effectiveness (Smee et al., 2012b). Insufflators are
devices that have been widely used as a non-invasive method to
administer powdered drugs for drug deposition studies in small
animals such as mice or rats (Nahar et al., 2013), but have been
less commonly used in larger animals such as ferrets. To bridge
this unmet need for a delivery system for powdered antivirals
such as laninamivir, we recently characterized the usage of a
dry powder insufflator to deliver laninamivir octanoate (LO) to
ferrets prior to influenza infection (Panozzo et al., 2015). In vitro
laser diffraction analysis showed that ∼80% LO together with its
lactose carrier can be effectively discharged from the device and
intratracheal administration of LO in anesthetized ferrets can be
easily performed (Panozzo et al., 2015). For LO where a single
dose is sufficient, the method is highly applicable, but repeated
dosing would be difficult due to the need for regular anesthesia.
The use of the insufflator device may be useful to investigate
other inhaled drugs in ferrets, such as DAS181.

DRUG DOSAGE

Besides route of administration, accurate evaluation of the
effectiveness of antivirals in animals is also dependent on the

TABLE 2 | The differences in antiviral drug administration route between human and animal model of influenza infection.

Drugs Approved administration
route in human

Typical administration route used in animal studies Reference

Ferrets Mice

Amantadine Oral Intraperitoneal Oral Herlocher et al., 2003; Bantia et al., 2011; Smee
et al., 2012a

Rimantadine Oral NR Oral Smee et al., 2012a

Oseltamivir Oral Oral Oral Govorkova et al., 2011; Marriott et al., 2014; Oh
et al., 2014, 2015; Bird et al., 2015; Marois et al.,
2015

Zanamivir Powder inhalation Intranasal (L) Intranasal (L)/Intraperitoneal Herlocher et al., 2003; Hurt et al., 2010; Smee
et al., 2012a,b

Laninamivir Powder inhalation Intranasal (L)/Intratracheal (P) Intranasal (L) Kubo et al., 2010; Panozzo et al., 2015

Peramivir Intravenous Intravenous Intravenous/Intramuscular/Oral Yun et al., 2008; Bantia et al., 2011; Kitano et al.,
2011; Smee et al., 2012a

T-705 Oral NR Oral Kiso et al., 2010

DAS181a Powder inhalation NR Intranasal (L) Marjuki et al., 2014

a Investigational drug; NR, Not reported; L, Liquid; P, Powder.
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dose of drug being administered. In humans, the optimal dose
is determined by pharmacokinetic/pharmacodynamic (PK/PD)
analysis. The PK/PD of influenza antivirals is often determined
during pre-clinical testing in animals by pharmaceutical
companies (Urso et al., 2002), but data from these studies is
often not in the public domain. For example, the majority of
studies have used 5 mg/kg oseltamivir phosphate in ferrets
as being ‘equivalent’ to the 75 mg dose in humans, although
limited publicly available PK/PD data is available to support
this (Li et al., 1998; Mendel et al., 1998; Reddy et al., 2015).
At the time of writing this review, we have found only a small
number of PK studies of the influenza antivirals in animals
such as mice, rats, and ferrets (Table 3). As the generation
and analysis of PK/PD data can involve a large number of
animals and requires specialized modeling expertise, it is not
always a viable option for research laboratories to complete such
studies. Therefore, if PK/PD data of approved drugs in ferrets
or other animals was made publicly available in open access
databases, then this would greatly assist and encourage the use

TABLE 3 | Pharmacokinetics reports of different influenza antivirals in
mice, rats, and ferrets.

Drugs Mice/Rats Ferrets

Amantadine NR NR

Rimantadine Hoffman et al., 1988 NR

Oseltamivir Li et al., 1998 Li et al., 1998; Reddy et al., 2015

Zanamivir Li et al., 1998 NR

Laninamivir Koyama et al., 2009, 2010 NR

Peramivir Kodama et al., 2014 Kitano et al., 2011

T-705 NR NR

DAS181 NR NR

NR, Not reported.

of a consensus dose in an animal to allow a better assessment
and comparison of the effectiveness of the drugs across different
studies.

PARAMETERS TO ASSESS THE
EFFECTIVENESS OF ANTIVIRAL
TREATMENT

Pathology
One advantage of using the ferret is the ability to track viral
shedding kinetics from both the upper and/or lower respiratory
tract via nasal washing or lower bronchoalveolar lavage (BAL),
although the latter is rarely used (Lee et al., 2014). In addition,
ferrets can be monitored for clinical symptoms associated with
human influenza infections including weight loss, rise in body
temperature, sneezing, nasal discharge, and lethargy (Table 4).
Whilst weight, temperature and symptoms such as sneezing
and nasal discharge can be easily assessed, lethargy is more
challenging to quantitate accurately. Conventionally, the activity
of ferrets has been determined by visually assessing movement
of the animal and assigning an arbitrary score (Reuman et al.,
1989; Govorkova et al., 2011; Kim et al., 2013; Stark et al., 2013;
Marriott et al., 2014; Oh et al., 2014). However, we have recently
reported on the use of video-tracking methodology, which allows
the activity level of ferrets to be quantitated by computer software
analysis (Oh et al., 2015). Not only did video-tracking improve
the sensitivity of detecting activity changes post-infection, it also
enabled the assessment process to be simplified and less prone
to bias. To date, many studies including ours have shown that
treatment with an antiviral, such as oseltamivir, can improve
the activity level of ferrets infected with influenza (Govorkova
et al., 2011; Marriott et al., 2014; Oh et al., 2014, 2015). This
improved methodology allows a more accurate assessment and

TABLE 4 | Different types of clinical and symptomatic parameters measured in influenza studies in ferrets.

Parameters Reference

Symptomatic Sneezing Huang et al., 2011, 2012; Roberts et al., 2012; Kim et al., 2013; Paquette et al., 2014

Weight loss Govorkova et al., 2011; Huang et al., 2011, 2012; Kim et al., 2013; van der Vries et al., 2013; Marriott
et al., 2014; Oh et al., 2014, 2015; Paquette et al., 2014; Panozzo et al., 2015

Body temperature Govorkova et al., 2011; Huang et al., 2011; Roberts et al., 2012; Kim et al., 2013; van der Vries et al.,
2013; Marriott et al., 2014; Oh et al., 2014, 2015; Panozzo et al., 2015

Activity (manual scoring) Govorkova et al., 2011; Huang et al., 2011; Kim et al., 2013; Marriott et al., 2014; Oh et al., 2014

Activity (video-tracking) Oh et al., 2015

Virological Viral shedding kineticsa,b,c Govorkova et al., 2011; Huang et al., 2012; Kim et al., 2013; van der Vries et al., 2013; Marriott et al.,
2014; Oh et al., 2014, 2015; Paquette et al., 2014; Panozzo et al., 2015

Histopathological Lung histology Cameron et al., 2008; Rowe et al., 2010; Huang et al., 2011, 2012; Kim et al., 2013

Inflammation Total viable cell counta Govorkova et al., 2011; Marriott et al., 2014; Oh et al., 2014, 2015; Panozzo et al., 2015

Total protein concentrationa Govorkova et al., 2011; Oh et al., 2014, 2015; Panozzo et al., 2015

Immunological Differential cell count (innate immune cells)c Kim et al., 2013

Influenza-specific antibodies van der Vries et al., 2013; Oh et al., 2014, 2015; Panozzo et al., 2015

Hematology chemistry Stark et al., 2013

RNA expression (RT-PCR) Kim et al., 2013; Carolan et al., 2014, 2015; Paquette et al., 2014

RNA expression (Microarray) Cameron et al., 2008; Rowe et al., 2010

aNasal wash; bAssay by TCID50, PFU or RT-PCR; cBronchoalveolar lavage.

Frontiers in Microbiology | www.frontiersin.org 7 February 2016 | Volume 7 | Article 80

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Oh and Hurt Antiviral Effectiveness Using the Ferret

extrapolation of the associated effect of antivirals on activity or
‘wellness’.

Immunology
The major disadvantage of using ferrets as a model for studying
influenza (or influenza antiviral effectiveness) is the lack of
validated ferret-specific reagents, such as antibodies, to study
the immunology of disease pathogenesis. However, because of
the significant benefits of the model many laboratories are now
attempting to validate cross-reactive antibodies and develop
novel reagents for ferret research (Rutigliano et al., 2008; Martel
and Aasted, 2009; Music et al., 2014). One such collaborative
effort is chaired by the United States Centre of Excellence for
Influenza Research and Surveillance group at St. Jude Children’s
Research Hospital in Memphis, USA. To date, several groups
have assessed ferret host immune responses to influenza infection
based on RNA expression by either quantitative real-time PCR in
either nasal washes, blood or lung (Maines et al., 2012; Carolan
et al., 2014, 2015; Paquette et al., 2014; Vidana et al., 2014), or
by using a canine microarray platform (Cameron et al., 2008;
Rowe et al., 2010; Table 4). Recently, the report of an annotated
ferret transcriptome during influenza infection has also opened
up an avenue for interrogating the global host gene expression
to further understand host immunity toward influenza infection
(Leon et al., 2013). In addition, simple immunological analysis
such as measuring total cell count or protein concentration
in nasal wash samples can also be useful as a determinant of
inflammation (Govorkova et al., 2007, 2011; Marriott et al., 2014;
Oh et al., 2015; Panozzo et al., 2015). Other basic immune
measurements include differential staining of various leukocytes
populations in the BAL or blood, and also clinical chemistry of
different proteins in blood post influenza infection (Kim et al.,
2013; Stark et al., 2013; Table 4).

Despite a great effort to study the interplay between influenza
infection and immunity in ferrets, the effect of antivirals on
immunity in this model is still poorly understood. To date, the
majority of the immunity-related studies on influenza antivirals
have used mice as the animal model (Burger et al., 2000; Wong
et al., 2011; Bird et al., 2015; Marois et al., 2015). Oseltamivir
was found to reduce innate cell populations in BAL, such
as neutrophils and macrophages, when given prophylactically,
and reduced pro-inflammatory cytokines when given pre- and
post-infection (Wong et al., 2011). In contrast, the effect of
oseltamivir on the adaptive immune cell population, such as
cytotoxic CD8+ T cells, is still unclear. While Burger et al.
(2000) reported that oseltamivir had minimal impact on the
splenic population of T and B cells, and had no effect on
the cytolytic activity of CD8+ T cells and natural killer cells
in A(H1N1) influenza-infected mice (Burger et al., 2000), a
recent study by Marois et al. (2015), found oseltamivir reduced
circulating and tissue-resident effector andmemory CD8+ T cells
in A(H1N1) influenza-infected mice and significantly reduced
the protective effect in a subsequent infection episode (Marois
et al., 2015). In addition, a study by Bird et al. (2015) showed
that although oseltamivir treatment reduced the number of

CD8+ T cells in mice, they had normal recall responses and
conferred protection against subsequent infection (Bird et al.,
2015).

FUTURE DIRECTIONS FOR THE USE OF
FERRETS TO ASSESS ANTIVIRAL
EFFECTIVENESS

To date, the ferret remains as one of the preferred models
for assessing influenza infection and as such has become an
important model for antiviral testing. Although the ferret poses
many advantages compared to other animal models, this review
has highlighted some of the challenges of using the ferret
to assess antiviral effectiveness. Researchers conducting studies
in the ferret model of influenza infection need to consider
progressing toward a more ‘natural’ infection methodology by
either contact or non-contact transmission, or aerosol challenge,
using drug doses that are based on PK/PD analysis and
to deliver the drugs via a relevant route (Figure 3). The
development of more robust parameters to measure antiviral
effectiveness in ferrets, such as computational analysis of
behavior/activity and the development of ferret-specific reagents
to explore the immunological effects of antiviral treatment,
will both greatly improve our understanding of antiviral
modes of action and the effect on viral pathogenesis. In our
opinion, the application of ferrets in antiviral studies should
not be limited to just understanding therapeutic effectiveness.
Instead, the ferret model can be applied to address other
questions such as the in vivo effectiveness of antivirals against
drug ‘resistant’ viruses, and the effectiveness of different
antiviral treatment or prophylaxis strategies on preventing or
minimizing transmission. Therefore, we anticipate that with
continuous development and refinement of the ferret model
for influenza antiviral testing, it has the potential to provide
more meaningful data to better inform human use of influenza
antivirals.
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