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Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis,
model organisms for Gram-negative and Gram-positive bacteria, respectively. However,
cell division in filamentous cyanobacteria is poorly understood. Here, we identified a
novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in
Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv
has been previously described only as an exclusive and conserved hypothetical protein
in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed
that it localizes at different positions depending on cell division timing: poles, septum,
in both daughter cells, but also in only one of the daughter cells. The partial deletion
of CyDiv gene generates partial defects in cell division, including severe membrane
instability and anomalous septum localization during late division. The inability to
complete knock out CyDiv strains suggests that it is an essential gene. In silico structural
protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like
protein, and could therefore, be part of an essential late divisome complex in Anabaena
sp. PCC 7120.

Keywords: filamentous cyanobacteria, cell division, septum

INTRODUCTION

Cyanobacteria are unique microorganisms that have been major determinants of the evolution of
life on Earth as they converted our planet’s reducing atmosphere into an oxidizing one by being
the initiators of oxygenic photosynthesis (Cavalier-Smith, 2010). Cyanobacteria are divided into
five subsections depending on their morphologies, where I and II include unicellular coccoids and
III to V involve filamentous forms. Filamentous cyanobacteria from sub-sections IV and V are
considered true multicellular microorganisms because some cells in a filament can differentiate
into specialized forms (Rippka et al., 1979). Heterocysts, for example, provide a suitable micro-oxic
environment for nitrogen fixation, a process catalyzed by the oxygen-sensitive enzyme nitrogenase
(Singh and Montgomery, 2011). Unlike unicellular forms, filamentous cyanobacterial cells remain
connected even after cell division is completed and the outer membrane is continuous along the
filament. Furthermore, cell communication and filament maintenance is mediated by a continuous
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periplasm (Flores et al., 2006). Thus, the question of
how cell division occurs in filamentous cyanobacteria is
intriguing.

Cell division mechanisms in bacteria have been mostly
studied in model unicellular bacteria such as Escherichia coli
(Gram-negative) and Bacillus subtilis (Gram-positive). The
first stage is the formation of a Z-ring at the division site,
strictly at mid-cell, composed of the polymerized tubulin-
like protein FtsZ. The division process depends on both,
location and time of assembly of the Z-ring. These processes
are controlled by regulatory mechanisms that include the
nucleoid occlusion and Min systems (Egan and Vollmer,
2013). Even though cyanobacteria are considered to be Gram-
negative by cellular morphology (Flores et al., 2006), they
have a close phylogenetic relationship with Gram-positive
bacteria (Battistuzzi and Hedges, 2009). Regarding cellular
division, genes from both Gram-negative and Gram-positive
bacteria have homologs in cyanobacterial genomes (ftsZ, sulA,
ftsI, ftsQ, ftsW, sepF, ami, DIPM/NlpD, envC, and minCDE)
(Miyagishima et al., 2005, 2014) or have not been detected
in cyanobacteria (ftsA, zipA, zapA, ftsK, ftsB, ftsL, ftsN)
(Lutkenhaus, 2007; Marbouty et al., 2009a; Miyagishima et al.,
2014), while other cell division genes seem to be exclusive of
cyanobacteria (ftn2, ftn6, alr2338 also named sepJ) (Koksharova
and Wolk, 2002a,b; Mazouni et al., 2004). Therefore, cell
division in cyanobacteria is probably different from that of
the most studied Gram-positive and Gram-negative model
microorganisms.

Little information is available for specific proteins or
mechanisms involved in cellular division of filamentous
cyanobacteria. Anabaena sp. PCC 7120 (hereafter Anabaena
PCC7120) division genes include ftsZ, zipN (ftn2), which would
encode an anchor protein of FtsZ to the cytoplasmic membrane,
ftn6, with potential function in filamentous cyanobacteria
cellular differentiation and division, and the membrane
associated divisome components encoded by ftsQ, ftsW and
sepJ (Koksharova and Wolk, 2002a; Errington et al., 2003;
Goehring and Beckwith, 2005; Harry et al., 2006; Marbouty
et al., 2009b; Ramos-Leon et al., 2015). In order to unveil
novel proteins involved in cellular division of filamentous
cyanobacteria, we first identified genes found exclusively in
these organisms (Stucken et al., 2010). One of these exclusive
genes is all2320 from Anabaena PCC7120, which codes for a
conserved hypothetical protein. This protein bears topological
similarities to DivIC, one of the proteins that localizes at the
division site during cell division in B. subtilis; and also to its
homolog in E. coli, FtsB (Levin and Losick, 1994; Katis et al.,
1997; Errington et al., 2003; Goehring and Beckwith, 2005;
Harry et al., 2006; Figure 1). Here, we describe the role of
All2320 (hereafter named CyDiv, Cyanobacterial Division)
in Anabaena PCC7120. We developed anti-CyDiv polyclonal
antibodies to investigate cell localization of CyDiv and, in
order to establish the potential function of this protein, we
generated an all2320 mutant strain through site-directed
deletion. Our analyses of CyDiv localization and function suggest
its prospective involvement in filamentous cyanobacterial cell
division.

RESULTS

CyDiv is Associated to the Assembly of
the Divisome
Our in silico analyses of CyDiv (see Materials and Methods)
show a predicted protein of 197 amino-acids in Anabaena
PCC7120. This protein comprises a 42-residue “coiled-
coil” (CC) region near the N-terminus (residues 27 to 69),
which may allow interaction with other proteins; and a
predicted “transmembrane” domain of 22 residues near the
C-terminus (residues 166 to 188), that includes a leucine
zipper motif (L-7L-7L) (Figure 1). The topology prediction
indicates that the N-terminus is periplasmic, while the short
C-terminal tail is cytoplasmic (Figure 1). CyDiv shows
its highest similarity to the gamma Proteobacteria FtsB
protein (16%) and to the previously mentioned conserved
domains. Albeit having its “CC” domain in the opposite
end, CyDiv shows its highest secondary structure similarity
to E. coli FtsB (52%) and to DivIC (63%), its homolog in
B. subtilis.

CyDiv Localizes at Different Positions
During Cell Division
To localize the protein in the cell, CyDiv was expressed in
E. coli and purified, and anti-CyDiv polyclonal antibodies were
generated as described in Section “Materials and Methods”.
The antibodies specificity was tested by western blot analysis
of Anabaena PCC7120 extracted proteins from the membrane
fraction (Supplementary Figure S1), since the protein was
not detected in the soluble fraction (data not shown).
A signal corresponding to a protein slightly higher than
23 kDa was detected for Anabaena PCC7120, probably owed
by post translational modifications produced in the protein.
Less intensified and unspecific bands were also detected
in the western blot, possibly due to a common post-
purification degradation process or tight interaction between
CyDiv–CyDiv and other proteins, which have not been
yet identified but are being analyzed by our group. Also,
the antibodies were evaluated against a C-truncated CyDiv
protein (residues 1–180) of approximately 19 kDa expressed
heterologously in E. coli, where a predicted sized intensified
band was observed (Supplementary Figure S1). An anti-
HisTag antibody was also analyzed, were we could observe the
expected sized band in the truncated protein (Supplementary
Figure S1).

We labeled Anabaena PCC7120 filaments grown under
combined nitrogen with these antibodies and analyzed around
100 filaments by confocal microscopy (Figure 2). We found that
the pattern of CyDiv localization correlates with cell division
state. CyDiv is not present in most average size vegetative cells
not undergoing division (Figure 2a). However, in some cases,
it was possible to observe that CyDiv spread slightly across the
cell membrane (Figure 2b). In longer vegetative cells (elongated
cells) CyDiv localizes in the cell membrane and as a very thin
line at mid-cell (Figure 2c). Eventually, the protein localizes at
the poles and in the mid-cell area (Figure 2d). Some cells that
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FIGURE 1 | In silico analysis of functional and structural segments of the CyDiv (Cyanobacterial Division) protein. (A) Topology comparison of
“transmembrane” (TM) and “coiled-coil” (CC) domains of the CyDiv protein, and the homolog proteins FtsB of Escherichia coli, and DivIC of Bacillus subtilis. IM: Inner
membrane (B). Sequence comparison of the “CC” domain of CyDiv with the homologous “CC” domains of FtsB and DivIC. The secondary structure prediction
analysis was performed in ITASSER, PSI-PRED, and SOMPA servers. H: Helix, C: Coil. Predicted Solvent Accessibility: Values range from 0 (buried residue) to 9
(highly exposed residue). Conserved amino acids are indicated in red.

were visibly constricting show (i) a sharp signal of CyDiv at mid-
cell, coinciding with the space between cells (Figure 2e), or (ii), a
sharp signal of CyDiv at mid-cell and in only one pole of the cell
(Figure 2f). Finally, in small cells, CyDiv is primarily located in
one cell pole (Figure 2g). After division is completed, the protein
is no longer observed (Figure 2h). We used the pre-immune
serum to label the filaments as a control of cellular localization,
which resulted negative, as expected (data not shown).

Partially Deleted CyDiv Generates
Defects in Cell Division
To evaluate the potential role of CyDiv in filamentous
cyanobacteria cell division, we generated a partially segregated
all2320 mutant strain by interrupting the gene with the
Streptomycin and Spectinomycin resistance cassette C.S3 (for
details, see Materials and Methods). To corroborate the
interruption of all2320 with C.S3 in the mutant strain, we
used all2320-1 and all2320-2 primers to amplify the region of
the insertion, and all2320extCS3F and CS3rev primers set to
amplify an internal 535 bp C.S3 region (Supplementary Table
S1; Supplementary Figure S2). We observed the presence of two
stronger bands in all2320::C.S3 strain using the first primer set:
a 1,039 bp that indicated the absence of the cassette insertion,
and also a 3,101 bp that indicated that the strain was not fully
segregated. The amplification of the second primer set showed
the expected 535 bp CS.3 cassette amplification, confirming that

not all the copies of the cyanobacterial chromosome had all2320
disrupted.

The previous result was concordant with our observation
of two different types of filaments in the all2320::C.S3 strain
grown in the presence or absence of combined nitrogen:
most of the filaments (around 70%) exhibited a wild type
phenotype, showing no differences in filament length or
cell size compared to Anabaena PCC7120 (Figures 3a,b).
However, fewer filaments revealed an altered cell division
compared to the wild type strain (mutant phenotype filaments)
(Figures 3d,e). By light microscopy, these altered filaments
displayed a misplaced septum formation during cell division
that dramatically affects cell morphology (Figures 3d,e).
Nevertheless, when grown under nitrogen deprivation, both
types of all2320::C.S3 filaments developed normal heterocyst
differentiation and pattern formation when compared to the wild
type strain (Figures 3b,e, respectively), suggesting that all2320
is not regulated by nitrogen. To confirm this hypothesis, we
performed a transcriptional analysis of all2320 in Anabaena
PCC7120 cultures grown in the presence and absence of
combined nitrogen, using internal primers qall2320 F and
qall2320 R (Supplementary Table S1), as described in Section
“Materials and Methods.” As an experimental control, we
analyzed the transcription of hglD (GenBankAAA93154.1)
(primers qhglD F/qhglD R, Supplementary Table S1), under
the same conditions. This gene is responsible for the glycolipid
synthase protein, essential for heterocyst development (Bauer
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FIGURE 2 | Immunolocalization of CyDiv in Anabaena PCC7120. Immunolocalization of CyDiv by confocal fluorescent microscopy. Confocal images show
different immunolocalizations of the protein depending on the division state of each cell using a polyclonal anti-CyDiv antibody and as a secondary antibody, Alexa
Fluor 488 goat anti-rabbit IgG (Invitrogen). The red autofluorescence observed in the cells is due to cyanobacterial chlorophyll. (a) Cyanobacterial chlorophyll
fluorescence in average size vegetative cells not undergoing division. (b) CyDiv spread slightly across the cell membrane. (c) CyDiv localization in the membrane of
elongated vegetative cells and as a very thin line at mid-cell. (d) CyDiv localization at the poles and in the mid-cell area of some cells of the filament. (e) CyDiv
localization as a sharp signal at mid-cell, coinciding with the space between cells visibly constricting. (f) CyDiv localization as a sharp signal at mid-cell and in only
one cell pole. (g) CyDiv localization primarily in one cell pole of small cells. (h) No CyDiv fluorescence observed in average size vegetative cells. Bar: 1 μm.
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FIGURE 3 | Phenotype of Anabaena PCC7120 and all2320::C.S3 strains. Light microscopy of Anabaena PCC 7120 (wild type, wt) and all2320::C.S3 cultures
grown with combined nitrogen (a,d, respectively) and in the absence of combined nitrogen (b,e, respectively). White arrows indicate heterocysts. Transmission
electron microscopy of wt and all2320::C.S3 strains (c,f, respectively). Cytoplasmic membranes of wt and all2320::C.S3 strains stained with
FM1-43FX R© (g,k, respectively). Micrographs showing the autofluorescence of the same previous samples in wt and all2320::C.S3 strains (h,l, respectively). DNA
DAPI staining of wt and all2320::C.S3 strains (i,m, respectively). Micrographs showing the autofluorescence of the same previous samples in wt and all2320::C.S3
strains (j,n, respectively). Scanning electron microscopy (SEM) of filaments from wt (o) and all2320::C.S3 strains (p–s). White bar: 10 μm, gray bar: 2 μm.
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et al., 1997). As expected, hglDwas only overexpressed in cultures
grown under nitrogen deprivation for 24 and 48 h, when there
were a large number of heterocysts per filament (Supplementary
Figure S3). Regarding all2320, we did not observe transcription
induction or repression of the gene under either condition
(Supplementary Figure S3). These results indicate that all2320
transcription is not regulated by nitrogenmetabolism and suggest
that CyDiv is necessary for a biological process that probably
operates independently of the nitrogen source.

When analyzing the all2320::C.S3mutant phenotype filaments
by TEM, it was evident that the forming septum showed an
atypical location in some of the cells (Figures 3c,f). Therefore,
it is possible to presume an unusual positioning of the Z-ring
in vegetative cells of these filaments. This phenotype suggests
that early cell division proteins are not affected in the mutant
phenotype filaments since the septum-like structures can be
formed.

To analyze the continuity and stability of the cell inner and
outer membranes in all2320::CS3, around 150 filaments were
stained with the FMR©1-43FX dye that binds to phospholipids
bilayer membranes (Molecular ProbesTM) (Schneider et al.,
2007). We noticed a brighter labeling of the molecular dye
into the all2320::CS3 mutant cells when compared to wild
type filaments (Figures 3g,k). We performed the membrane
staining of all2320::CS3 mutant phenotype filaments several
times, always observing the same diffusion of the molecular dye
into the cytoplasm. This result suggests membrane instability
in these cells as (Nurnberg et al., 2014) and (Zeineddine et al.,
2015) have previously reported this type of leakage in cells
with membrane perturbations. Due to “minicell” formation in
all2320::CS3mutant phenotype filaments, we evaluated the DNA
distribution by DAPI staining. This staining showed a normal
DNA localization (Figures 3i,m), thus quantitative methods are
needed to identify if all2320::CS3 mutant phenotype filaments
show defects in DNA segregation. The autofluorescence due to
chlorophyll was observed normal for the all2320::CS3 mutant
cells when compared to wild type filaments (Figures 3h,j,l,n).
Based on these observations, we performed SEM to test if
the cell envelope structure of all2320::CS3 was affected. The
results revealed that the cells in all2320::CS3 mutant phenotype
filaments have delocalized division planes (Figures 3p,r) and
show wrinkled cell surfaces when compared to the wild
type strain (Figures 3p–s,o). Finally, we observed that after
approximately 48 h of growth in the presence and absence of
combined nitrogen, both in liquid and in solid medium, the
mutant phenotype filaments of all2320::C.S3 began to disappear
from the culture (Supplementary Figure S4).

DISCUSSION

FtsB and DivIC belong to the subcomplexes FtsQ-FtsL-FtsB and
DivIB-FtsL-DivIC, which are involved in the late recruitment of
proteins of the divisome in E. coli and B. subtilis respectively,
including proteins required for cell wall synthesis (Katis et al.,
1997; Buddelmeijer and Beckwith, 2004; Harry et al., 2006). Our
in silico analyses showing the highest similarity of CyDiv with

FtsB and DivIC are the first evidence that suggests that CyDiv
may be a new component in the cyanobacterial divisome, and
that it is likely to interact with other protein(s) during filamentous
cyanobacteria cell division. Moreover, when analyzing the protein
localization (Figure 2), we observed that the pattern of CyDiv
localization correlated with cell division state. This is not new
when observing other proteins involved in the bacterial cell
division process, where the spatial localization of these proteins
include (i) one or both cell poles in rod-shaped cells; (ii) mid-
cell in rod-shaped and spherical cells; (iii) along the long axis
of rod-shaped cells; (iv) in specific structures such as stalks or
endospores, and (v) oscillatory localization (Treuner-Lange and
Sogaard-Andersen, 2014). Nevertheless, the localization of CyDiv
during cell division is not exactly the same to what has been
described for cellular division proteins in other microorganisms.
Thus, the determination of CyDiv localization dynamics, could
have given additional insights in its role in multicellularity and
cellular division. First attempts using GFP fusion protein were
unsuccessful although fusion at both ends of the protein were
constructed. It is important to mention that we did not observe
any labeling when using the pre-immune serum to mark the
filaments as a control of cellular localization. We could not
label CyDiv mutant phenotype filaments as an antibody labeling
control because these filaments lysed before we could perform
this assay.

According to the observation of all the phenotypic results
obtained from the mutant strain, and bearing in mind that
all2320::C.S3 is not a fully segregated strain, we propose
that probably the filaments presenting the mutant phenotype
displayed a lethal phenotype caused by an apparent essentiality of
the protein, while wild type phenotype filaments were probably
due to a not fully segregated mutation of all2320 or no mutation
at all in the copies of their chromosomes. It is imperative to
mention that although there is a need to develop a 100%knockout
of the protein in order to really evaluate the essentiality of the
protein, the variable polyploidy ofAnabaena sp. PCC 7120makes
it a difficult task. In fact, we performed the CyDiv mutation
process twice (biological replicates), and we could never obtain
fully segregated clones. Nevertheless, our group is working in the
development of an inducible CyDiv deletion strain and in the
generation of strains with deletion of some motifs of the protein,
in order to try to resolve this issue in the future.

In the filaments of all2320::C.S3 that showed a mutant
phenotype, TEM analysis evidenced an atypical location of
the forming septum (Figures 3c,f). Therefore, it is possible to
presume an unusual positioning of the Z-ring in vegetative
all2320::C.S3 mutant cells in these filaments. This phenotype
suggests that early cell division proteins are not affected in the
mutant strain since the septum-like structures can be formed.
FMR©1-43FX staining and SEM observations imply that CyDiv
could be involved in membrane stability, suggesting that the cell
wall is also affected at such level that the osmotic pressure causes
cell lysis. A recent study in E. coli (Tsang and Bernhardt, 2014)
supports a model in which the FtsQLB protein complex would
function as part of a sensing mechanism that promotes the onset
of the cell wall remodeling processes needed for the initiation
of cell constriction after divisome assembly. The participation
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FIGURE 4 | Model of cellular localization of CyDiv in Anabaena PCC7120 based on immunolocalization. Initially, CyDiv is localized in the cell membrane (b),
and then in the membrane and septum of growing and dividing cells (c). Afterward, it localized mainly in the septum and to a lesser extent at the poles (d). Later,
CyDiv localizes only in the septum (e). Subsequently, CyDiv remains in the septum but it also localizes in the pole of one of the daughter cells (f). Finally, the protein is
located only at the pole of one of the daughter cells (g). The initial and final steps are represented in (a,h), respectively. Bar: 1 μm.

of FtsB in the initiation of cell constriction could explain the
extreme damage observed in the cell wall of the CyDiv mutant
strain. Furthermore, the mutant phenotype observed by SEM
is similar to that of the triple mutant AmiABC, peptidoglycan
(PG)-cleaving proteins in E. coli (Heidrich et al., 2001). This
triple mutation causes the formation of “minicells” between
long filaments and a tendency to cell wall damage in E. coli.
Therefore, we suggest that there is a link between the cytosolic
and periplasmic divisome elements involved in the positioning
of the Z- ring and the synthesis of the cell wall, with consequent
hydrolysis of PG in Anabaena PCC7120. In this way, CyDiv
seems to be involved in a crucial role in stabilizing the cell wall
during cell elongation, perhaps in association with other proteins
that have not been identified yet.

Consequently and mainly based on the immunofluorescence
observations and the all2320::CS3 mutant phenotype filaments,
we propose a model for CyDiv dynamic and distinctive
localization during cellular division (Figure 4). Initially, CyDiv
is expressed and then anchored to the cell membrane in some
of the cells that present average size (Figure 4b). Subsequently, in

the elongated cells, CyDiv remains localized in the cell membrane
and also in mid-cell, possibly interacting with the Z-ring (Sakr
et al., 2006; Figure 4c); sometimes, there is also strong labeling
in the cell poles (Figure 4d). Next, CyDiv is located only in the
mid-cell constriction sites (Figure 4e), suggesting that CyDiv
interacts with divisome elements, but its particular function is
not associated to Z-ring assembly at early stages of cell division.
TEM to the all2320::CS3 mutant phenotype filaments indicate
that CyDiv affects the constriction ring position (Figure 3f).
Therefore, we propose that CyDiv migrates to the pole in one
of the two daughter cells, as has been described for cell division
proteins PopZ and TipN of Caulobacter crescentus, which show
a unipolar to bipolar transition during the cell division (Huitema
et al., 2006; Vecchiarelli et al., 2012). Thus, the final localization
of CyDiv would be only in one cell pole of one of the daughter
cells (Figure 4g). In the case of CyDiv, it is risky to define
whether this protein is involved in the recognition of one specific
pole, either new or old, as is the case of TipN (in C. crescentus)
or ActA (in Listeria monocytogenes). Therefore, experiments of
co-localization of CyDiv with other cell division proteins are
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being developed by our group in order to better understand the
“mother” cell issue in filamentous cyanobacteria.

Bacterial cell polarity can be explained, according to the
literature, by three hypotheses: “Diffusion and capture” (Rudner
and Losick, 2010), “Protein localization by matrix-dependent,
self-organizing ParA/MinD ATPases” (Thanbichler and Shapiro,
2006) and “Protein localization by small GTPases” (Treuner-
Lange and Sogaard-Andersen, 2014). The closest hypothesis
fitting the unusual localization pattern of CyDiv is “Diffusion
and capture”. This hypothesis includes three aspects: protein-
protein interaction, where one protein diffuses through the
cytoplasm until it recognizes another polar protein, such as
the MinC-D and MinE interaction (Bramkamp et al., 2008);
protein affinity to the negative curvature of cell poles such
as DivIVA, which preferentially assemble to membranes with
negative curvature (Lenarcic et al., 2009); and affinity for polar
features of the cell envelope, for example ProP of E. coli, which
localizes in the cell pole in a cardiolipin-dependent manner
(specific phospholipids) (Romantsov et al., 2007). The protein-
protein interaction hypothesis fits with our proposed model
described in Figure 4, due to the changing localization of CyDiv
through cell division stages in Anabaena PCC7120, suggesting
a coordinated movement until an asymmetric polar position
is achieved at the end of cell division, possibly by recognition
of other polar proteins involved in this process. On the other
hand, multimerization of a protein controlled by cell cycle events
that result in a unipolar to bipolar transition localization also
resembles the proposed model of CyDiv dynamics. This is the
case of PopZ protein of C. cressentus. The multimerization
process of PopZ is coupled to the asymmetric distribution
of other proteins, including ParA, ParB (proteins involved
in plasmid and chromosome segregation, positioning of cell
division site and cytoplasmic and polar protein complex) and
cell cycle regulators of the G1-to S transition (Vecchiarelli et al.,
2012). Moreover, PopZ multimerization includes temporal and
spatial localization events during the assembly in regions of
low DNA content. This location is confined to one pole of
the mother cell that will be transmitted to the old pole of
the daughter cells. These events are related to the cell division
stage and to the “stochastic multimerization” that leads to the
migration of these proteins to one cell pole (Hakkinen et al.,
2013; Laloux and Jacobs-Wagner, 2013). Hence, taking together
all these information, the localization pattern of CyDiv implies its
participation in the cell division process of Anabaena PCC7120.

CONCLUSION

CyDiv localization, partial mutant phenotype and its topological
characteristics strongly suggest that this protein is a filamentous
cyanobacteria cell division protein. The suggestion that its
mutation is lethal implies that it is essential for this process,
where it is involved in Z-ring positioning at mid-cell, as well
as in negative FtsZ polymerization (like the Min system and
nucleoid occlusion). Intriguingly, the unusual localization of
CyDiv in one cell pole does not resemble the localization of
these other proteins. Nevertheless, due to topological similarities

to the essential proteins DivIC and FtsB, which are part
of the sensing mechanism that promotes cell wall synthesis
(Tsang and Bernhardt, 2014), we propose that CyDiv is part
of an essential late divisome complex in Anabaena PCC7120.
Additionally, scarce information is available for specific proteins
or mechanisms involved in cellular division of filamentous
cyanobacteria. The best studied genes in Anabaena sp. PCC 7120
are: ftsZ, zipN (ftn2), ftn6, ftsQ, ftsW, and sepJ (Koksharova and
Wolk, 2002a; Errington et al., 2003; Goehring and Beckwith,
2005; Harry et al., 2006; Marbouty et al., 2009b; Ramos-Leon
et al., 2015). It is important to notice that some of these genes
seem to be exclusive of cyanobacteria: ftn2, ftn6, and sepJ. Those
exclusive genes do not have homologies in Gram-negative or
Gram-positive bacteria, thus they seem relevant for the cellular
division process in cyanobacteria. Hence, if we know that the
role of most cellular division proteins in these microorganisms
is preliminary; the division in filamentous cyanobacteria is
quite different to what has been usually observed in model
microorganisms; and that CyDiv is an exclusive filamentous
cyanobacteria protein, is not rare to discover that CyDiv has
a novel cellular division location/function in these distinctive
multicellular microorganisms. Therefore, it is crucial to identify
the proteins that could be interacting with CyDiv (given its “CC”
domain) to better understand its precise function in the division
process of filamentous cyanobacteria. Our results imply that cell
division inAnabaena PCC7120 is likely a combination of features
that have been described in Gram-positive and Gram-negative
bacteria, but that also has novel components like CyDiv that help
to elucidate the intriguing mechanisms behind the distinctive
division process observed in these multicellular microorganisms.

MATERIALS AND METHODS

Growth Conditions
Anabaena PCC 7120 and mutant strains were grown in BG11
medium (supplemented with NaNO3) or BG110medium (N-free
medium) at 30◦C in the light (25 to 75 μE m−2 s−1), in shaken
(90 to 100 rpm) liquid cultures or in medium solidified with 1%
Difco agar, except for samples taken from cultures used for rt-
PCR. These samples were grown in MLA medium according to
(Castro et al., 2004), with the addition of 2 mM NH4Cl as the
nitrogen source instead of NaNO3 (MLAn), or free of combined
nitrogen (MLA0) in liquid cultures at 25◦C in the light (25 to
75 μE m−2 s−1).

Alignments
CyDiv analysis from local alignment was performed by “domain
enhanced lookup time accelerated BLAST” (Delta-blast) for long
sequences using a subset of NCBI’s Conserved Domain Database
(CDD).

Construction of Mutants
DNA was isolated from Anabaena PCC7120 by the CTAB
method described by (Wilson, 2001). DH5α and HB101 E. coli
strains were used for plasmid constructions and for conjugations
with Anabaena PCC7120, respectively, and were grown in LB
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medium and supplemented, when it was appropriate, with
antibiotics at standard concentrations. The all2320 gene was
interrupted in a central region introducing a C.S3 cassette
(SmR/SpR) (Elhai and Wolk, 1988b) using all2320-1/all2320-3
and all2320-4/all2320-2 primers (Supplementary Table S1). The
mutation was introduced by interrupting the gene with C.S3
because by genetic context analysis, all2320 is monocistronic
(all2320 transcription is in the same direction as glnB, which was
demonstrated to be monocistronic; Paz-Yepes et al., 2009), thus
this mutation strategy should not generate a polar transcriptional
effect. The construction was assembled in the pMBL-T vector
(Dominion MBL, Spain), sequenced and inserted into Cargo
plasmid pRL278 (KmR/NeoR) generating the pCSD10 vector.
Conjugation of Anabaena PCC7120 with E. coli HB101 carrying
the plasmid pCSD10 with methylation plasmid pRL623 (CmR)
and E. coliHB101 with conjugal plasmid pRL443 was achieved as
described (Elhai and Wolk, 1988a), with selection for resistance
to Sm/Sp. After conjugation, SmR/SpR clones were spread on
BG11 medium supplemented with 5% sucrose (Cai and Wolk,
1990), and individual SucR colonies were checked by PCR looking
for clones that had all2320 interrupted by C.S3. Selected clones
were studied by PCR using primers all2320-1/all2320-2 and
primers all2320 extCS3F/CS3rev to analyze the presence of C.S3
in all2320. The mutant strain was named all2320::C.S3.

Real Time RT-PCR
RNA was isolated from Anabaena PCC7120 using RNeasy Plant
Mini Kit (Qiagen Sciences) according to the manufacturer’s
instructions. 15 ml samples for RNA extraction were taken from
cultures grown during 0, 3, 6, 12, 24, and 48 h in MLAn
or MLA0. Integrity of RNA was determined in 1% agarose,
86% DEPC, MOPS 1X, and formaldehyde 450 mM gels run at
7 V/cm during 3 h and stained with ethidium bromide. Ten
microgram of RNA from each sample were treated with DNAse
using the TURBO DNA-free Kit (Ambion) according to the
manufacturer’s instructions. One microgram of the treated RNA
was retrotranscribed using the ImProm-II Reverse Transcription
System (Promega) with random primers and according to
the specifications of the manufacturer. For real time RT-PCR
amplification and quantification (Light Cycler 480, Roche), the
LightCycler 480 SYBR Green I Master (Roche) kit was used
following the instructions from the manufacturer. To normalize
the transcripts abundance, rnpB (RNA portion of ribonuclease
P) amplification was used as a reference gene (Vioque, 1997).
To calculate gene expression fold induction (N2/NH4

+), we used
the mathematical model for relative quantification in real time
rt-PCR described by (Pfaffl, 2001). As experimental controls
for gene transcription we used hglD. Also, vegetative cells and
heterocysts of 100 filaments of each biological replicate were
counted in each condition. The average number of heterocyst
over the total number of cells of the three biological replicates
at all time points were averaged and statistically compared by
ANOVA test.

Antibody Generation
Polyclonal antibody generation against CyDiv was carried out
by rabbit immunization with synthetic peptides. Selection

of antigenic peptides was based on the hydrophobicity
analysis method (Hopp and Woods, 1981). The peptide
112-cPVVPEAPSSKNRRT-125 was synthesized and inoculated
into two New Zealand rabbits with boosts at 14, 35, and 56 dpi
Polyclonal anti CyDiv antibodies were affinity purified and
lyophilized by GenScript R© . The antibody specificity was tested by
Western Blot analysis of Anabaena PCC7120 extracted proteins
in the presence of combined nitrogen Also, the antibodies were
evaluated against a truncated CyDiv protein of approximately 19
kDa expressed heterologously in E. coli.

SDS/PAGE and Immunoblotting
Protein extracts and purified C-truncated All2320 were separated
with SDS/PAGE in a 15% polyacrylamyde gel and stained
with colloidal coomassie blue G250. Following, proteins were
transferred to PVDF membranes, blocked with 5% BSA in 1X
TS buffer (blocking buffer) for 1 h at room temperature, then
incubated with primary antibodies diluted 1:1000 in blocking
buffer and washed three times with TS-T (0.005% Tween
20) buffer. Bound antibodies were detected using Alkaline
Phosphatase goat anti-rabbit IgG (Invitrogen) (1:5,000 diluted
in blocking buffer). Control experiments were performed with
pre-immune serum. Proteins were detected using the Alkaline
Phosphatase Conjugate Substrate Kit (BioRad).

Immunofluorescence
A 50 μL cyanobacterial culture (OD750 nm 0.3) was spread on
a poly-lysine microscope slide (Sigma–Aldrich, USA) and dried
for 20 min at 50◦C. The sample spots were fixed in 70% ethanol
(Merck) for 30 min at –20◦C. The slides were air-dried and
subsequently washed three times with PBS 0.1% tween 20 for
2 min. Then, the spots were blocked with PBS 3% BSA (bovine
serum albumin) 0.1% tween 20 for 15 min at room temperature.
The slides were incubated with the anti All2320 primary antibody
(1:1,000 dilution in PBS 3% BSA 0.1% Tween 20) for 1.5 h at 4◦C,
in a moisture chamber. After washing the excess serum with PBS
0.1% tween 20 three times for 2 min, the spots were incubated
with the secondary antibody (Alexa Fluor488 goat anti rabbit
IgG) in PBS, final concentration 10μg/ml (Invitrogen) for 45min
at 4◦C, in a moisture chamber. Afterward, spots were washed
again, 20 μl of Prolong antifade reagent (Invitrogen) were added,
a cover slip was placed over the spot and a sealed. The slides were
visualized with a Fluoview FV1000 Confocal Microscope. Alexa
Fluor R© 488 was excited at a wavelength of 495 nm and emitted
the fluorescence at 509 nm. To visualize autofluorescence due to
chlorophyll, samples were excited using 510 nm irradiation and
fluorescent emission was monitored at 590 nm.

Microscopy
For standard light microscopy (Nikon Eclipse TS100), culture
samples were harvested after 48 h of growth at 30◦C in the
light. For TEM (Philips Tecnai 12 at 80 kV accelerating voltage),
samples were concentrated by centrifugation and the pellets
were fixed 4 h in 3% glutaraldehyde in a 0.134 M sodium
cacodylate buffer (pH 7.2) at room temperature. Cells were
washed overnight with the sodium cacodylate buffer at 4◦C,
and post-stained 1 h with osmium tetroxide 1% (w/v). Samples
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were washed three times for 10 min with distilled water, stained
1 h with uranyl acetate 1% (w/v) and washed again. Samples
were dehydrated in an acetone series [30–100% (v/v), pre-
embedded overnight in an EPONTM resin–acetone 1:1 solution,
embedded 6 h in pure EPONTM resin (London Resin, Reading,
UK], and finally polymerized for 24 h at 60◦C. Samples were
sectioned with a ultramicrotome (Sorvall MT5000, Norwalk,
CT, USA), and mounted on copper grids for examination and
photographed with camera CCD Megaview G2, Olympus Soft
Imaging Solutions (Johan-Krane-Weg 39, D-48149 Münster).
For SEM (HITACHI TM3000 at 15 kV accelerating voltage),
culture samples were harvested by centrifugation and fixed in 3%
glutaraldehyde in a 0.134 M sodium cacodylate buffer (pH 7.2) at
room temperature. Cells were washed overnight with the sodium
cacodylate buffer at 4◦C, and post-stained 1 h with osmium
tetroxide 1% (w/v). Fixed samples were filtered on Millipore
GS filters and dried at critical point in liquid CO2. Finally, the
samples were coated with gold. For epifluorescence microscopy
(Nikon Labophot-2), 20μL of culture samples were used for both,
cell membrane staining with FMR©1-43FX (Molecular ProbesTM)
using 5 μL of a 5 μg/ml dye working solution according to the
manufacturer’s protocol, and for nucleic acid staining with DAPI
(Life Technologies) as the mounting solution.
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