
METHODS
published: 08 February 2016

doi: 10.3389/fmicb.2016.00118

Frontiers in Microbiology | www.frontiersin.org 1 February 2016 | Volume 7 | Article 118

Edited by:

Steve Lindemann,

Pacific Northwest National Laboratory,

USA

Reviewed by:

William C. Nelson,

University of Southern California, USA

Nicholas Chia,

Mayo Clinic, USA

*Correspondence:

James J. Davis

jimdavis@uchicago.edu

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 30 November 2015

Accepted: 22 January 2016

Published: 08 February 2016

Citation:

Davis JJ, Gerdes S, Olsen GJ,

Olson R, Pusch GD, Shukla M,

Vonstein V, Wattam AR and Yoo H

(2016) PATtyFams: Protein Families for

the Microbial Genomes in the PATRIC

Database. Front. Microbiol. 7:118.

doi: 10.3389/fmicb.2016.00118

PATtyFams: Protein Families for the
Microbial Genomes in the PATRIC
Database
James J. Davis 1, 2*, Svetlana Gerdes 2, 3, Gary J. Olsen 4, Robert Olson 1, 5,

Gordon D. Pusch 2, 3, Maulik Shukla 1, 2, Veronika Vonstein 2, 3, Alice R. Wattam 6 and

Hyunseung Yoo 1, 2

1Computation Institute, University of Chicago, Chicago, IL, USA, 2Computing, Environment and Life Sciences, Argonne

National Laboratory, Argonne IL, USA, 3 Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA, 4Department of

Microbiology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL, USA,
5Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, 6 Virginia Bioinformatics

Institute, Virginia Tech University, Blacksburg, VA, USA

The ability to build accurate protein families is a fundamental operation in bioinformatics

that influences comparative analyses, genome annotation, and metabolic modeling. For

several years we have been maintaining protein families for all microbial genomes in the

PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order

to drive many of the comparative analysis tools that are available through the PATRIC

website. However, due to the burgeoning number of genomes, traditional approaches

for generating protein families are becoming prohibitive. In this report, we describe a

new approach for generating protein families, which we call PATtyFams. This method

uses the k-mer-based function assignments available through RAST (Rapid Annotation

using Subsystem Technology) to rapidly guide family formation, and then differentiates

the function-based groups into families using a Markov Cluster algorithm (MCL). This

new approach for generating protein families is rapid, scalable and has properties that

are consistent with alignment-based methods.

Keywords: genome annotation, comparative genomics, metabolic modeling, FIGfams, RAST

INTRODUCTION

The ability to generate accurate protein families is a fundamental component for many
bioinformatic applications. It enables evolutionary and contextual comparisons of homologous
proteins within and across genomes (Smith, 1990). For instance, genome annotation tools often use
protein family data to aid in the propagation of annotations to new genomes (Meyer et al., 2009;
Haft et al., 2013; Tatusova et al., 2013a). In metabolic modeling, protein families are often used to
help fill gaps in draft models (Henry et al., 2010; Benedict et al., 2014; Seaver et al., 2014). On the
PATRIC website, data from protein families are used to drive a variety of comparative analysis tools
including the compare regions viewer where users can compare the genomic context of genes, and
the heat map display where users can view protein family membership across any set of organisms
in the database (Wattam et al., 2014a).

Maintaining up-to-date protein family data for sequenced genomes is challenging because
the number of genomes is growing rapidly and traditional methods of family generation are
computationally intensive. The most commonly used methods for protein family generation start
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by using alignment-based tools such as BLAST (Camacho et al.,
2009) with a similarity-based threshold in order to determine
family membership (Enright et al., 2002; Li et al., 2003; Penel
et al., 2009; Punta et al., 2011; Haft et al., 2013; Mi et al.,
2013; Galperin et al., 2014). In most cases, rather than doing ab
initio all vs. all comparisons, sets of representative alignments
are maintained for each family and new sequences are added
to these representative sets. When a new sequence differs from
the preexisting set, it nucleates a new family (e.g., Hobohm
et al., 1992; Eddy, 2009). Since aligning sequences can be slow,
more recent tools have shifted to using k-mer-based strategies for
computing similarity in order to reduce the cost of comparing
many sequences (in this case k-mers are short amino acid
sequences) (Li and Godzik, 2006; Edgar, 2010; Mahmood et al.,
2012; Hauser et al., 2013). Other approaches have reduced
computation time by building families for close relatives first, and
then subsequently merging the families of more distantly related
phylogenetic groups (Halachev et al., 2011).

For several years PATRIC has been providing protein family
data that are based on FIGfams (Meyer et al., 2009). FIGfams
are protein families that are built from the manually curated
annotation data in the SEED database (Overbeek et al., 2005).
When an annotator identifies the function of a protein in the
literature, they attach it to the protein sequence in the SEED.
When possible, collections of related functions called subsystems
are built to aid in projecting functions to new genomes. Each
function in a subsystem is then used to nucleate a FIGfam.
When a new protein matches a representative set of proteins
from a given FIGfam, it is considered to be a family member.
Providing protein families based on FIGfams is advantageous
because they are projections of manual annotations and they can
be computed quickly for any set of genomes by k-mer projection
(Edwards et al., 2012; Overbeek et al., 2014; Brettin et al., 2015);
however, the FIGfam collection only grows as quickly as new
annotations are incorporated into subsystems. For the PATRIC
project, we wanted protein families that reflect our manual
genome annotation efforts, but can also cover all of the proteins
in the database.

In this report, we describe a rapid and scalable method
for protein family generation that we have designed for the
comparative analysis tools on the PATRIC website. Similar to
FIGfams, the PATtyFams are based on the standard RAST
annotation vocabulary, which is used by the automatedmetabolic
modeling applications in PATRIC, ModelSEED (Henry et al.,
2010), and KBase (kbase.us). We describe the PATtyFam
algorithm and compare PATtyFams to other protein family
generation algorithms.

MATERIALS AND METHODS

The Algorithm for Generating PATtyFams
The algorithm for generating PATtyFams has three parts. The first
part is the computation of local protein families for each genus in
PATRIC. The second part is the merger of protein families across
genera in order to provide global families. We separated the
generation of local and global families because the local families

are valuable for many analyses, such as pangenome studies
(Tettelin et al., 2005). They also provide a more highly resolved
view of protein family membership, which is often lost at greater
phylogenetic distances when orthologs and paralogs become
difficult to distinguish. The third part is the projection of global
family membership to genera with very few sequenced genomes.
This third step is also used to compute family membership for
new genomes, without having to recompute the entire PATtyFam
collection. A flow diagram describing the local and global family
generation is shown in Figure 1, and each step is described in
detail below.

Step 1. Local protein families for each genus in PATRIC are
computed. The first part of the PATtyFam computation is the
generation of local protein families as described in the steps
below.

Step 1.1. Genomes are binned by genus, pooling identical
proteins to make a nonredundant protein database. The first part
of the PATtyFam computation starts by generating genus-level
protein families. All of the genomes in PATRIC are binned by
genus using the NCBI taxonomy database (Sayers et al., 2009;
Benson et al., 2013). Genera with fewer than four genomes
typically do not contain enough proteins for clustering and are
excluded from the genus-level family generation.

Some of the genera in PATRIC contain thousands of strains,
and a large number of the proteins among these strains
are identical. To avoid the redundancy of comparing these
identical proteins, one representative of each unique protein
sequence is kept for the subsequent family computation, and
the remaining proteins are reinserted into the family containing
the representative copy at the end. This is achieved rapidly
through MD5 hashing of the amino acid sequence (Rivest, 1992).
Performing this simple step for the genus Brucella—currently 475
genomes—results in a 20-fold reduction in the number of protein
sequences for comparison.

Step 1.2. Functional roles are assigned using signature k-mers
for the proteins within each genus. For many years we have been
manually annotating genomes for the SEED project and RAST
(Overbeek et al., 2005; Aziz et al., 2008). Recently, we have
been focusing our manual annotation efforts on a set of 983
representative bacterial and archaeal genomes that we call the
CoreSEED in order provide annotation consistency and accuracy
spanning a broad diversity of organisms. The second step in
PATtyFam generation therefore utilizes a k-mer-based projection
of function from the proteins in the CoreSEED, as is also done by
the RAST tool kit (Brettin et al., 2015).

In order to rapidly project protein functions from the
CoreSEED, we have been using collections of “signature” k-
mers. In this case, “signature” k-mers are computed by first
finding all of the 8-mer amino acid sequences in each protein.
Then the set is reduced to only those k-mers that occur in
≥80% of proteins that have identical functions. We call this
set the “signature” k-mers because they are signatures of a
particular function. To assign a function to a protein, its signature
k-mers are found and its function is based on the SEED
function that has the largest number of signature k-mers in
common. The use of signature k-mers differs from other k-
mer-based clustering methods because in this case, repetitive
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FIGURE 1 | Flow diagrams outlining the PATtyFam generation procedure for (A) local families and (B) global families.

elements such as conserved motifs and domains typically do not
generate signature k-mers since the k-mers characterizing these
domains are found in proteins with different functions. This
is advantageous for family generation because these repetitive
regions are unlikely to contribute to our measure of similarity
(described in Step 1.3).

The “classic” version of RAST uses projections that are
based on signature k-mers that are generated from the FIGfam
collection (Overbeek et al., 2014). In this case, we chose the
strictly annotation-based signature k-mer collection from the
CoreSEED in an attempt to reduce the influence of the FIGfam
collection on the generation of the PATtyFam collection. Unlike
the FIGfams, which are typically updated by adding new proteins
to previously computed families, the PATtyFam generation
always starts from the functions of the CoreSEED proteins. This
is important because it helps to prevent errors that result from the
accidental merger of unrelated families, which sometimes occurs
during FIGfam generation because of chimeric proteins (such as
fusions and mobile elements).

After annotating all of the proteins in each genus, we pass a
list containing the signature k-mers that were found and the list
of proteins containing each signature k-mer to Step 1.3.

Step 1.3. A pairwise similarity matrix is computed for proteins
with the same function. A pairwise similarity matrix is computed
for each set of proteins with the same function within each genus.
Our measure of similarity is defined as the number of signature
k-mers that are held in common between the pair of proteins
divided by the total length of both proteins. This distance
measure resembles common distance measuring techniques
such as the Sørensen–Dice index, which have been used by
other k-mer comparison algorithms (Dice, 1945; Sørensen, 1948;

Mahmood et al., 2012). However, we use total protein length in
the denominator because the density of signature k-mers can
vary within each protein. Note that we do not cross compare
proteins with different functions. This helps to keep the number
of total comparisons tractable, but also represents a tradeoff in
our ability to gather potentially misannotated proteins into the
correct family.

Step 1.4. Markov clustering is performed on each similarity
matrix. Since homologs and paralogs often occur in a set of
proteins with the same annotation, it is necessary to attempt
to differentiate the members of the set. We do this by using a
Markov Cluster (MCL) algorithm, which is a robust clustering
method that has been used successfully by previous studies for
generating protein families (van Dongen, 2001; Enright et al.,
2002; Li et al., 2003). The MCL algorithm has an inflation value
parameter that controls the tightness of the clusters. At this step
we use an inflation value of 3, which was chosen empirically by
manually building and assessing alignments and trees for protein
families that were built using different inflation values (data not
shown).

Step 1.5. “Hypothetical proteins” lacking signature k-mers
are clustered using BLAST. All of the proteins that have
fewer than 5 signature k-mers (the default RAST cutoff)
are annotated as hypothetical proteins. This set is clustered
using BLASTP (Camacho et al., 2009) and a similarity-
based clustering algorithm that resembles (Hobohm et al.,
1992). The clustering works by making the first sequence in
the set a representative. Then the next sequence joins the
family if it has ≥80% protein sequence identity with the
previous representative, otherwise it becomes the representative
of a new family. This process is repeated until all of the
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sequences are clustered. Presumably faster clustering could be
achieved by implementing k-mer similarity-based comparison
methods at this step, but the fraction of total proteins
is small enough that the BLAST operation is currently
manageable.

The clusters of proteins from Steps 1.4 and 1.5 represent the
local genus-level protein families.

Step 2. Global protein families are generated. The second
part of the PATtyFam computation is the merger of genus-level
families into global families. Similar to the genus-level families,
we also use the annotations of protein functions to guide the
formation of the global families. Each global family is made
by first finding all of the genus-level families with the same
function as defined by the RAST and CoreSEED annotation
vocabulary. Since the number of proteins in each genus-level
family varies, we randomly select up to 10 proteins to represent
each genus-level family and combine them to form a single set
of representatives, in order to prevent cluster formation that is
based upon the genus rather than protein similarity. We chose
to randomly select proteins to represent each genus-level family
in order to rapidly select a manageable number of proteins
for pairwise comparisons. Next, a pairwise distance matrix is
computed for the representatives of the set (as described above)
and this is passed to MCL for clustering. In this step we use
a more inclusive inflation value of 1.1, which was also chosen
empirically by comparing alignments and trees built for families
using different inflation values (data not shown). Because of
the random selection of representatives, we occasionally observe
instances where the representatives of a single genus-level family
are split into different clusters because the family members
that linked them were not chosen as representatives. When
this happens, we merge the incorrectly split clusters into a
single cluster. Finally, after the clusters are formed for the set
of representatives, the remaining members of the genus-level
family are added to the appropriate cluster containing their
representatives. These fully populated clusters represent the final
set of global families.

During the global family generation, the inflation value for
MCL must be set lower in order to allow the bridging of families
across larger phylogenetic distances. This has a tendency to result
in the re-merger of the highly resolved genus-level families that
had been computed in Step 1.4. In other words, within-genus
paralogs often get merged back into the same global family
because they aremore similar than orthologs from other genomes
(Remm et al., 2001). To avoid complications from this, we retain
both the genus-level and global families.

Step 3. Proteins from underrepresented genera are added to
global families. Since the genera with less than four genomes
lack adequate numbers of proteins for de novo genus-level
family generation, they have been excluded to this point. To
determine global family membership for each of their proteins,
we first annotate the genome (as in Step 1.2) and then find
the corresponding global families with the same function. We
then count the number of signature k-mers that are held in
common between the protein and the set of representative
proteins that were used to build that global family (from Step
2). The protein is then placed into the global family with the

largest number of shared signature k-mers. This procedure is also
used for determining global protein family membership for new
sequences being annotated by RAST and at PATRIC.

Selection of Genomes for Analysis
Forty-three representative Brucella genomes from Wattam et al.
(2014b) were downloaded from PATRIC and used to represent
protein family generation for the genus (Table S1). Escherichia
genomes were selected by first downloading all of the Escherichia
genomes in PATRIC—2299 at the time. A concatenated
alignment of the DNA sequences corresponding to universal
genes from Ciccarelli et al. (2006) was generated and a tree was
rendered using FastTree with default nucleotide settings (Price
et al., 2010). In order to obtain a set of genomes that was similar in
size to the Brucella set, we selected 38 representative Escherichia
genomes with the longest branches from the tree (Table S2). We
also selected a set of 80 diverse genomes from the NCBI reference
genome collection (Tatusova et al., 2013b) (Table S3).

Comparison of PATtyFams to other Family
Generation Methods
Data for the local PATtyFam computations for Brucella and
Escherichia were extracted from local family runs performed
on the entire set of Brucella and Escherichia genomes in
the PATRIC database. These local families were compared
with families produced by other methods of family generation
that were performed directly on the 43 Brucella and 38
Escherichia genomes. This was done because performing BLAST-
based family generation on all Brucella and Escherichia is
computationally intensive. FIGfams (release 60) (Meyer et al.,
2009) were generated from the RAST website (Overbeek et al.,
2014). Families based on raw k-mer similarity were generated
using kClust (Hauser et al., 2013) with the default settings, which
cluster proteins to 30% identity. No iterative clustering was
performed. BLAST-based families were generated using BLASTP
(Camacho et al., 2009) and OrthoMCL (Li et al., 2003), using the
FastOrtho package (http://enews.patricbrc.org/fastortho/). We
used an inflation value of 1.5 and a BLASTP e-value cutoff of
1e-5. The 80 diverse genomes were used as a proxy for global
family generation. In all cases the protein families were computed
directly on the set of 80 genomes, as described above. For
PATtyFams, global families were approximated using the local
family algorithm with the global family inflation value of 1.1 for
MCL. This allowed us to compare de novo runs for each method.

Estimating Runtimes
The de novo genus-level family runtimes reported in Table 1

were computed for PATtyFams and OrthoMCL using the
FastOrtho package as described above by running both methods
sequentially on a machine with an Intel Xeon 2.2 GHz processor
and 529GB of memory. For runtime estimations of PATtyFam
assignment displayed in Table 2, proteins were drawn randomly
from all genomes in PATRIC. For local family estimation,
proteins were drawn randomly from all Escherichia genomes in
PATRIC. Reported runtimes are estimates that are intended to
mirror the performance of RAST. Network speed and caching
can influence the overall run times.
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TABLE 1 | A comparison of runtimes for de novo genus-level family

generation using OrthoMCL and PATtyFams.

Genome sets* Total computation time (seconds)

OrthoMCL (FastOrtho package) PATtyFams

43 representative

Brucella genomes

37,039 932

38 representative E. coli

genomes

193,916 2473

80 diverse genomes 91,975 9901

All Brucella (466

genomes)

Not computed 1764

All Escherichia (2707

genomes)

Not computed 46,207

*Representative genomes used in this study are listed in Tables S1–S3.

TABLE 2 | Approximate run times for assigning proteins to the current set

of PATtyFams.

Number of proteins Approximate run time (seconds)

Local families Global families

100 0.9 0.8

1000 2.5 2.0

10,000 19.6 13.2

100,000 97.4 42.4

1,000,000 2011.0 1212.0

Protein Comparisons
Protein family content between core protein families (those with
proteins from≥90% of the genomes) was compared using Venny
2.0.2 (Oliveros, 2007). For protein families with more than one
member, proteins were compared using BLASTP (Camacho et al.,
2009). All pairwise comparisons between family members were
computed and the median percent identity was reported for
each family. Protein domains were generated by comparison to
the NCBI Conserved Domain Database (CDD) (Marchler-Bauer
et al., 2014). Unless otherwise stated, domains are reported as
matches to “specific” hits. Chromosomal context was computed
for each member of a protein family by finding all functions
5 kbp upstream and downstream of the protein encoding gene
for each family member and comparing the corresponding sets
of functions for each protein in a given family.

RESULTS

PATtyFam Characteristics
Supporting accurate protein families for all microbial genomes
is critical for maintaining a robust comparative analysis
infrastructure at PATRIC. In the past we have used BLAST-
based methods such as OrthoMCL to generate families, but the
computational overhead of all-vs.-all BLAST comparisons has
made this infeasible (Li et al., 2003). We have been maintaining
FIGfam assignments for all genomes, but these annotation-
based families were not designed to cover all proteins (Meyer

et al., 2009). In building the PATtyFams, we sought to create a
method that captures the annotation consistency of RAST, while
incorporating the efficiency of non-alignment-based clustering
methods using k-mers (Edgar, 2010; Hauser et al., 2013).

We started by computing local families for all of the
bacterial and archaeal genera in PATRIC for which we have
a sufficient number of genomes—currently 409 genera. Many
factors influence the number of protein families that are formed
for each genus, including the number of genomes, evolutionary
divergence of strains, genome sizes, horizontal gene transfer
events, and nomenclatural boundaries. We observe a large
range in the number of families formed per genus with the
smallest being 305 local families in Candidatus Portiera, bacterial
endosymbionts of whiteflies (Jiang et al., 2012), to 247,449
families in Streptomyces, soil bacteria that are well known for
having very large genomes and diverse secondary metabolic
abilities (Bentley et al., 2002). An average of 70% of the
local families in each genus are generated by signature k-mers
rather than by BLAST comparison, with the lowest coverage by
signature k-mers occurring in Entomoplasma (with 40% of the
families being generated by signature k-mers) and the highest
coverage by signature k-mers occurring in Candidatus Portiera
(with 97% of the families being generated by signature k-mers)
(Table S4). After the local families were formed, we merged them
across genera in order to generate the set of global families.
Overall, 3,935,759 global families were generated for the entire
PATRIC database.

The amount of time required to generate PATtyFams for
each genus varies, but is much faster than OrthoMCL, which
requires an all-vs.-all BLAST comparison. For instance, a de
novo generation of PATtyFams for 43 representative Brucella
genomes is ∼40 times faster than OrthoMCL, and a de novo
generation of PATtyFams for 38 representative Escherichia
genomes is ∼80 times faster than OrthoMCL (Table 1). The
most time-intensive steps in the PATtyFam algorithm are the k-
mer distance computation and the MCL-based family formation,
so as the number of new families begins to plateau with the
addition of new genomes, the total time required to process
each genome decreases. For instance, family generation for the
38 representative Escherichia genomes takes ∼65 s per genome
and family generation for the entire genus (2707 genomes)
takes∼17 s per genome (Table 1).

The de novo generation of global protein families for the
entire PATRIC database currently takes ∼2–3 days. Once the
entire set is built, the assignment of local and global family
membership to the proteins from a new genome is rapid. For
a typical genome encoding 5000 proteins, assigning local and
global family membership takes∼10 s (Table 2).

Protein Family Size and Content
We wanted to compare the characteristics of the PATtyFams
with other methods of protein family generation, because unlike
other methods, PATtyFams use signature k-mers for calling
functions, and generating clusters. To do this, we compared
them with FIGfams as an example of an annotation-based
method, OrthoMCL as an example of a BLAST-based method,
and kClust as an example of a k-mer similarity-based method.
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Although the overarching design goals of each method differ
(e.g., building isofunctional homologs, vs. building sets of
orthologs, vs. building similarity based clusters), these methods
provide a useful benchmark for understanding the characteristics
of the PATtyFams. We want to gain an understanding of
their inclusivity by comparing the sizes of the families that
are made. More specifically, we want to determine if the
PATtyFams generate a common set of core families with the other
methods.

For local family generation, we examined genomes from
Brucella and Escherichia. We chose Brucella because we have
extensively annotated these genomes in the past (Wattam et al.,
2014b; Faria et al., 2015) and they are a good example of a
genus where the sequenced members are closely related. We
chose the 43 genomes from Wattam et al. (2014b) to represent
the genus (Table S1). We also examined 38 diverse Escherichia
genomes because they are well studied and are known for having
a large amount of horizontally transferred DNA that impacts
their phenotypes (Perna et al., 2001) (Table S2). As a proxy
for global family generation, we chose to build families for
80 diverse reference genomes taken from the NCBI reference
genome collection (Tatusova et al., 2013b) (Table S3).

For all three genome sets, we observe that kClust generates
the largest number of protein families and that FIGfam
assignment generates the fewest (noting that FIGfams were
not designed to cover all proteins) (Table 3). For local family
generation, OrthoMCL and PATtyFams generate 5340 and 4266
families respectively for Brucella and 17,940 and 18,432 families
respectively for Escherichia (Figure 2). In the case of global family
generation, PATtyFams generate more families than OrthoMCL
(123,263 vs. 79,013). In all three cases, kClust generates more
singleton families than the other methods. For local family
generation, PATtyFams generate fewer singleton families than
OrthoMCL, but for global family generation PATtyFams generate
more singletons than OrthoMCL. For all three genome sets,
OrthoMCL generates the largest number of families for which
the number of proteins is equal to the number of genomes in
the set; however, when you compare the number of families
that are generated by each method for which the number of
proteins is greater than or equal to the number of genomes in
each set, FIGfams and PATtyFams generate more families than
OrthoMCL (1956 and 2612 vs. 1516) for Brucella, and PATtyFams
generate more families than OrthoMCL for Escherichia (2477 vs.
2424). This is likely due to OrthoMCL attempting to differentiate
paralogs. Although the methods differ greatly in the number
of small families that are generated, they yield similar numbers
of families that are greater than or equal to the number
of genomes in each set (Table 3). These results indicate that
PATtyFams are yielding clusters that are comparable in size
with other family generation methods, even though they use
signature k-mers, rather than alignments or similarity-based
k-mers, to create clusters, and they limit the comparison space
to proteins with the same functions rather than doing all-vs.-all
comparisons.

We also wanted to compare the content of the protein
families generated by each method. Since the number of small
families varies considerably, we chose to focus on the core set

TABLE 3 | A comparison of PATtyFams to FIGfams, kClust, and OrthoMCL.

FIGfams kClust OrthoMCL PATtyFams

LOCAL FAMILIES FOR Brucella (43 GENOMES)

Total Families 3407 8182 5340 4266

Families with >43 members 1000 372 704 1246

Families with 43 members 956 1010 1812 1366

Families with <43 members 1451 6800 2824 1654

Families with one member 236 3009 1200 524

LOCAL FAMILIES FOR Escherichia (38 GENOMES)

Total Families 8681 24,046 17,940 18,432

Families with >38 members 1297 638 477 1124

Families with 38 members 961 970 1947 1353

Families with <38 members 6423 22,438 15,516 15,955

Families with one member 1411 12,744 7611 7487

GLOBAL FAMILIES (80DIVERSE GENOMES)

Total Families 57,147 137,785 79,013 123,263

Families with >80 members 329 24 219 158

Families with 80 members 61 7 73 50

Families with <80 members 56,757 137,754 78,721 123,055

Families with one member 36,700 99,876 51,582 94,844

of protein families—those that contain a protein from =90%
of the genomes in each set. We then searched for families
that were identical between each method (Figure 3). Overall for
the local families, PATtyFams have the most proteins families
in common with other methods: 2437 vs. 2189, 1400, and
1818 for Brucella; and 2292 vs. 1978, 1308, and 1796 for
Escherichia for OrthoMCL, kClust, and FIGfams respectively.
For the global families, PATtyFams share fewer protein families
(78) than OrthoMCL (87) or FIGfams (91), but more than
kClust (8). PATtyFams also tend to have a smaller number of
idiosyncratic families that are not identical with those generated
by the other methods. For the local families, PATtyFams have
the most families in common with OrthoMCL; for the global
families, PATtyFams have two more families in common with
FIGfams (60) than OrthoMCL (58). Overall, the core protein
content of the PATtyFams is consistent with other methods, and
more closely resembles OrthoMCL and FIGfams than kClust.
PATtyFams also appear to be advantageous because they find the
set of shared core families but generate few idiosyncratic core
families.

Protein Similarity within Families
Since the PATtyFams are based upon signature k-mers rather
than protein similarity per se, we wanted to perform a BLAST
comparison of the protein family members in order to measure
the similarity amongmembers of a given protein family. For each
protein family, we performed all pairwise BLASTP comparisons
measuring the median percent identity for the comparison of
all family members for PATtyFams (Camacho et al., 2009). We
then compared this to the same analysis for FIGfams, kClust
and OrthoMCL (Figure 4). For Brucella, the median percent
identity for comparisons is nearly the same for all protein family
methods. OrthoMCL and kClust appear to have slightly more
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FIGURE 2 | Protein family sizes. Histograms depict the number of protein families vs. the number of family members. Protein families were generated with

PATtyFams (blue bars), FIGfams (red bars), kClust (orange bars), and OrthoMCL (green bars). The first row (A–C) shows families generated for the 43 Brucella

genomes. The second row (D–F) shows families generated for the 38 Escherichia genomes. The third row shows families generated for the 80 diverse genomes. Note

that the scale of the Y-axis changes and is shown in log-scale for (G–I).

families with 100% median identity, but this may be due to
the larger number of small families made by both methods
(Figure 2). For Escherichia, PATtyFams have a larger number of
families with 100% median identity and slightly more families

with median percent identities >90%. In the case of the global
families, PATtyFams have slightly more families with >80%
identity, and dramatically fewer families with lowmedian percent
identities between 50 and 20%.Overall, the signature k-mer based
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FIGURE 3 | Venn diagrams showing the number of identical protein families held in common between PATtyFams (blue), OrthoMCL (yellow), kClust

(green), and FIGfams (red) for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes. Data are shown for core

protein families, defined as those families that have proteins from ≥90% of genomes in each set.

PATtyFams are consistent when the members are compared
with BLAST, and they are stricter than other methods at
excluding lower similarity proteins during the global merging
process.

The conservation of protein domains among the members of
a protein family can be an indication of consistency of a family
because infrequently occurring protein domains can indicate the
presence of fragmented proteins and protein fusions. For each
protein in a family generated by PATtyFams, OrthoMCL, kClust,
and FIGfams, we found the protein domains by comparing
each protein to the NCBI CDD (Marchler-Bauer et al., 2014).
In order to avoid small fragmented clusters influencing the
analysis, we examined protein domain conservation in the set
of protein families that are represented by at least 90% of
the genomes in each set (Table S5). PATtyFams have slightly
fewer families than OrthoMCL in the set of protein families
that have 100% conservation among all members (Figure 5).
The number of families with domain conservation <100% is
nearly identical between PATtyFams and Ortho MCL, except
in the 80 diverse genomes set, where the PATtyFams have
fewer families in the bin with =10% conservation of a protein
family (Figure 5C). Overall, PATtyFams are most similar to
OrthoMCL in protein domain conservation between family
members.

Conservation of Chromosomal Context
among Family Members
In most microbial genomes there is strong conservation
in the chromosomal context of protein encoding genes
across phylogenetic distances. This provides the bedrock for
comparative analysis and the projection of protein functions
(Overbeek et al., 1999, 2005; Davis et al., 2014). We compared
the functions of proteins found 5 kbp upstream and downstream
of each protein in a family, and compared this set of nearby
functions among family members (Figure 6). As above, we
performed this analysis on the set of core proteins to prevent
the influence of fragmented families on the analysis. Overall, the
PATtyFams track very closely with OrthoMCL, having slightly
fewer families with 100% chromosomal conservation in all three

cases. In the other bins, PATtyFams track closely with OrthoMCL
except for the 80 diverse genomes, where the PATtyFams generate
dramatically fewer proteins families with aberrant chromosomal
contexts (Figure 6C). This may indicate a better resolution
of paralogs, protein fusions or protein fragments, or that the
inclusion criterion for global family membership is simply
stricter.

Availability
The current version of PATtyFams is available for browsing
on the PATRIC website (www.patricbrc.org) where they can
be used to drive the comparative analysis tools. PATtyFams
have also been computed for all genomes in PATRIC and can
be downloaded with each genome from the FTP site (e.g.,
ftp://ftp.patricbrc.org/patric2/patric3/genomes/83332.12/83332.
12.PATRIC.cds.tab, where 833332.12 is an example genome
ID). The RASTtk version of RAST (rast.nmpdr.org) and the
annotation service on the PATRIC website can both be used to
compute PATtyFam membership for the proteins in a genome.
The command line script for generating PATtyFams, rast-
annotate-families-patric, has also been distributed in the RAST
tool kit (https://github.com/TheSEED/RASTtk-Distribution).

DISCUSSION

We have created an annotation-based method for generating
protein families that is scalable and provides rapid protein family
assignments locally at the genus level and globally across all
genomes. Unlike other methods, PATtyFams are not built from
all-vs.-all comparisons, instead utilizing the annotation data from
RAST to form the initial clusters and the signature k-mer data
associated with each protein to differentiate the clusters. The data
presented in this report suggest that this approach is robust and
accurate.

In this study, we compared PATtyFams to other commonly
used protein family generation methods. It is difficult to
objectively assess whether one method of protein family
generation is superior to another because each method was
designed for a different purpose. Furthermore, depending on the
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FIGURE 4 | Median percent identity among family members. Histograms depict the number of protein families vs. the median percent identity for all pairwise

BLAST comparisons between family members for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes. Families generated

by FIGfams are depicted as red lines with square plot points, kClust are orange lines with diamond plot points, OrthoMCL are green lines with triangle plot points, and

PATtyFams are blue lines with circle plot points.

FIGURE 5 | Conservation of protein domains within family members. Histograms depict the total number of protein domains vs. their conservation across all

members of each family as generated by FIGfams (red), kClust (orange), OrthoMCL (green), and PATtyFams (blue). Data are shown for the subset of families in which

≥ 90% of the genomes are represented for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes.

circumstances, one may wish to have very tight protein clusters
and another may wish to have clusters that are very inclusive.
Nevertheless, we observe that the PATtyFams are consistent with
these other methods and tend to have characteristics that are
most similar to families generated by OrthoMCL. OrthoMCL
creates more bins that are equal to the number of the genomes
in the set, while PATtyFams can create bins that are somewhat
larger. This is likely due to OrthoMCL attempting to distinguish
“recent” paralogs, which PATtyFam algorithm does not do.
PATtyFams also share the most identical core local families with
other methods, with the largest subset being held in common
with OrthoMCL. The median percent identity, conservation
of protein domains, and conservation of chromosomal context
among family members also most closely resembles OrthoMCL.

The comparison of global families indicates that PATtyFams
are more strongly conserved in median percent identity having

dramatically fewer proteins with percent identities below 40%.
We consider this to be a favorable behavior because families
with <40% identity among members are likely to be inaccurate
(Rost, 1999). This is probably the result of the annotation
data limiting initial cluster formation. Presumably this behavior
could also be achieved by raising the similarity threshold or
inflation value for kClust and OrthoMCL, but PATtyFams have
this natural behavior in the presence of potentially binnable
low similarity sequences. Similar to percent identity, the global
families also have fewer core family members with aberrant
protein domains and dramatically fewer core family members
with aberrant chromosomal contexts. Although this indicates
a tighter clustering behavior for global family generation, we
consider this to be a favorable behavior as well. We conclude
therefore, that PATtyFams method is valuable for binning
isofunctional homologs.
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FIGURE 6 | Chromosomal context conservation within family members. For the protein-encoding gene of each family member, the functions of its neighboring

genes 5 kbp upstream, and downstream were obtained. Histograms depict the total number of functions vs. their conservation among family members. Data for

families generated by FIGfams are shown in red, kClust are orange, OrthoMCL are green, and PATtyFams are blue. Data are shown for the subset of protein families in

which ≥90% of the genomes are represented for (A) the 43 Brucella genomes, (B) the 38 Escherichia genomes, and (C) the 80 diverse genomes. Note that the

number of proteins in the 0.1 bin is not displayed for the 80 diverse genomes and is 96,117 for FIGfams, 5540 for kClust, 75,070 for OrthoMCL, and 55,525 for

PATtyFams.

This project has enabled us to make improvements in several
important comparative analysis tools on the PATRIC website.
These include the compare regions tool which allows users to
compare the chromosomal context of protein-encoding genes
across phylogenetic distances, the protein family sorter which
allows users to browse and compare protein family members and
to select protein sets for making alignment and trees, and the heat
map display of protein family membership which allows users
to visually compare genomes and locate horizontally transferred
regions. When a user uploads a new genome to the PATRIC
annotation service, local and global PATtyFams are automatically
computed enabling an integrated contextual view of each
genome through the website tools. PATRIC has also recently
released a service that enables automated metabolic model
reconstruction that is similar to that in the KBase (kbase.us)
and ModelSEED (Henry et al., 2010) resources. We anticipate
that the ability to build automated metabolic models coupled
with the added curation advantage of having comprehensive
annotation-based protein families will be beneficial to the
modeling community.
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