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Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug

resistance that has made it difficult to cure and development of efficacious treatment

against this pathogen is direly needed. This has led to investigate vaccine approach to

prevent and treat A. baumannii infections. In this work, an outer membrane putative

pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis

of A. baumannii proteome and was found to be conserved among the A. baumannii

strains. It was cloned and expressed in E. coli BL21(DE3) and purified by Ni-NTA

chromatography. Immunization with FilF generated high antibody titer (>64,000) and

provided 50% protection against a standardized lethal dose (108 CFU) of A. baumannii in

murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and

4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the

levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ, and IL-1β significantly

and histology of lung tissue supported the data by showing considerably reduced

damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo

validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by

in silico proteomic analysis and open the possibilities for exploration of a large array of

uncharacterized proteins.
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INTRODUCTION

A. baumannii has, over the last decade, emerged as a threatening cause of bacteremia, pneumonia,
septicemia, urinary tract infections, wound sepsis, endocarditis and meningitis in hospitalized
patients. In certain parts of the world, it is a serious cause of community-acquired infections (Peleg
et al., 2008). Although previously it was ignored as a “low-grade pathogen” due to its low virulence
but its ability to cause disease and its profile of extensive drug resistance is now recognized, making
A. baumannii an “untreatable pathogen,” especially among the patients in intensive care units
(Joly-Guillou, 2005; Fournier and Richet, 2006).

A. baumannii is resistant to broad-spectrum cephalosporins due to overexpression of the
chromosomal AmpC-type cephalosporinase (Corvec et al., 2003; Rodriguez-Martinez et al., 2010).
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Additionally, there are frequent reports of acquired resistance
(Coelho et al., 2004) to all beta-lactams, mainly due to enzymatic
degradation by carbapenem hydrolyzing beta-lactamases.
Resistance to fluoroquinolones and aminoglycosides is also very
common (Coelho et al., 2004; Peleg et al., 2008), facilitating its
adaptation to environmental selection pressure and leading to
the rapid worldwide emergence of multidrug-resistance. As a
last resort, there has been increased use of antibiotics such as
colistin (Li et al., 2006; Peleg et al., 2008), unfortunately leading
to the emergence of colistin-resistant strains (Adams et al., 2009;
Rolain et al., 2011; Qureshi et al., 2015). The extensive drug
resistance of this pathogen and the predictable failure of future
antibiotic treatment options warrant the development of vaccine
against A. baumannii.

Several attempts have provided immunological insights
to such treatment options against A. baumannii infections
e.g., monoclonal antibodies against the iron regulated outer
membrane proteins (IROMPs) were found bactericidal and
exhibited opsonizing activities during in vitro studies (Goel and
Kapil, 2001). Active and passive immunization with inactivated
whole cell (McConnell and Pachón, 2010), outer membrane
vesicles (OMVs) (McConnell et al., 2011; Huang et al., 2014) and
outer membrane complexes (OMCs) (McConnell et al., 2011)
demonstrated protection of mice from bacterial challenges. Sub-
unit vaccine candidates such as Bap (Fattahian et al., 2011),
rOmpA (Luo et al., 2012), Ata (Bentancor et al., 2011) and
nuclease (Garg et al., 2016) have been found to provide protection
against pathogenic strains. Recently, Moriel et al. (2013) and
Chiang et al. (2015) reported a few vaccine candidate proteins
in the outer membrane and secretome, and immunization with
OmpK, FK IB and Ompp1 provided partial protection from
A. baumannii ATCC 17978. In spite of all these studies, there
is no vaccine-based treatment available to prevent A. baumannii
infections.

There are numerous proteins that need to be explored for
their role in virulence and pathogenesis of A. baumannii and
also for their vaccine potential. In this work, in silico analysis
of A. baumannii ATCC 19606 proteome predicted FilF, an outer
membrane, uncharacterized putative pilus assembly protein, as a
potential vaccine candidate. It was found to be conserved though
its role in virulence is not yet known. FilF was cloned, purified
and analyzed by in vitro and in vivo experiments in a murine
pneumonia model for its immunoprotective efficacy.

MATERIALS AND METHODS

Animals, Ethical Clearance, and Bacterial
Strains
Pathogen-free, 6–8 weeks old female Balb/c mice were procured
from animal house, Panjab University, Chandigarh, India and
housed in clean polypropylene cages and fed a standard
antibiotic-free diet (Hindustan Lever Products, Kolkata, India)
and water ad libitum. Animal studies were approved by the
Animal Ethics Committee of Panjab University, Chandigarh,
India. All experiments were performed in accordance with
the guidelines of Committee for the Purpose of Control and

Supervision of Experiments on Animals (CPCSEA), Government
of India. All efforts were made to minimize the suffering of
animals.

A. baumanniiATCC 19606 was procured fromATCC and was
used to establish murine pneumonia model. E.coli BL21 (DE3)
and pET28-a plasmid from Novagen were used for cloning and
expression of FilF. The bacterial strains were grown in Luria-
broth (LB) containing kanamycin (25µg/ml), wherever required.

In silico Analysis of A. baumannii ATCC
19606 Proteome
Complete proteome of A. baumannii ATCC 19606 was
downloaded from NCBI nucleotide database and analyzed for
potential vaccine candidates using the Vaxign online tool (He
et al., 2010) by searching (i) localization in outer membrane
using PSORTb, (ii) number of trans-membrane helices using
HMMTOP, (iii) adhesion probability using SPAAN, (iv) no
similarity with human and mouse proteome using OrthoMCL,
and (v) ability to bind to MHC molecules using Vaxitop. B
cell, MHC I and MHC II binding epitopes were predicted by
IEDB tools (www.iedb.org). ProtParam was used to analyze
the physico-chemical parameters such as molecular weight,
hydropathicity, pI and stability. Phyre2 and GOR IV online tools
were used to predict the secondary structure of FilF. Tertiary
structure of FilF was generated using I-TASSER online tool based
on homology modeling. Procheck (Ramachandran Plot) and
verify 3-Dwere used to validate the quality of generated structure.

Cloning and Purification of FilF
Chromosomal DNA of A. baumannii ATCC 19606 was
isolated (Sambrook and Russell, 2001) and used as
template for PCR. Primers were designed by online tool
“OligoEvaluator™” for filF (Accession ID- EEX03804.1,
the 6th ORF in fil operon, Supplementary Table S3)
having BamHI and XhoI restriction sites in forward (5′-
ATAGGATCCTGTGGTGGAGGAAGTT-3′) and reverse primer
(5′- TCACTCGAGTTATTTTGTCTTAATTTGATAACAAT-
3), respectively. PCR reaction was performed with initial
denaturation at 94◦C for 3min followed by 33 thermal cycles of
denaturation at 95◦C for 1min, annealing at 55◦C for 45 s, and
extension at 72◦C for 2min. Final extension was carried out at
72◦C for 5min. The BamHI and XhoI digested PCR product was
ligated to similarly digested pET-28a and transformed into E. coli
BL21 (DE3) by electroporation. Transformants were selected on
LB-kanamycin agar plates and confirmed by PCR.

Five hundred milliliter of LB-kanamycin was inoculated
with 2.5ml of overnight grown culture of E. coli BL21
(DE3) containing pET-28a-filF. Isopropyl β-D-1-thiogalactoside
(IPTG) (0.5mM) was added when OD600 reached 0.8 and
induced for 5 h at 37◦C/150 rpm. The cells were pelleted and
suspended in 50ml lysis buffer (100mM phosphate buffer,
300mM NaCl, 0.2% Tween 20, pH 8) containing 1mg/ml
lysozyme. The cell suspension was sonicated, centrifuged and
pellet was solubilized in 100mM phosphate buffer, pH 8
containing 8M urea and 300mM NaCl. The lysate was
centrifuged at 13,000 × g for 40min and supernatant was
filtered (0.45µm) and loaded on Ni-NTA column equilibrated
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with equilibration buffer (8M urea, 20mM Tris–HCl, 100mM
phosphate buffer, pH 8.0). The nonspecific proteins were
removed by washing with five column volumes of wash buffer
(8M urea, 20mM Tris–HCl, 500mM NaCl, pH 6.9). The
bound FilF was eluted with buffer containing 8M urea, 20mM
Tris–HCl, 500mM NaCl, 100mM phosphate buffer, pH 4.5.
Eluted fractions were collected and analyzed by 12% SDS PAGE
(Laemmli, 2011). The protein was refolded by urea gradient
dialysis method according to Qiagen’s guidelines. Protein
concentration was estimated by Bradford protein estimation kit
(Bangalore Genei India Pvt. Ltd.). The endotoxin level of purified
recombinant FilF was determined using Limulus Amebocyte
Lysate assay kit (Hycult Biotech, The Netherlands) according to
manufacturer’s guidelines.

A. baumannii Associated Pneumonia
Model
A. baumannii associated mouse pneumonia model was
established by intratracheal route. Briefly, A. baumannii ATCC
19606 was grown in LB broth to late-logarithmic phase at
37◦C/150 rpm. Cells were harvested by centrifugation at 6000 ×
g for 10min, washed and resuspended in PBS. Different doses of
bacteria (106–109 CFU) were obtained by appropriate dilutions
and the final cell count was quantified by plating serial dilutions
on LB agar plates. Mice were anesthetized with a mixture of
xylazine, ketamine and PBS in the ratio 6:1:3, respectively by
injecting intraperitoneally. Desired dose of bacteria in a total
volume of 50µl was inoculated directly in trachea by surgery.
The incisions were sealed using surgical sutures and betadine was
applied on cuts to prevent infections. Group of mice inoculated
with PBS served as control. At specific time intervals mice were
sacrificed, lungs were isolated aseptically and homogenized for
histology and to determine the bacterial counts.

Mouse Immunization and Antibody Titer
Measurement by ELISA
FilF specific antibodies were produced in mice according to
McConnell et al. (2006). Briefly, the concentration of refolded
protein was adjusted to 0.4mg/ml in sterile PBS and diluted
1:1 (v/v) with Freund’s Complete Adjuvant (Sigma). 100µl
of protein-adjuvant mixture was administered in mice sub-
cutaneously (20µg FilF per mouse). Booster doses of protein
were given with Freund’s Incomplete Adjuvant (Sigma) at 14th
and 21st day and sera were collected at day 7, 18, and 25. FilF
specific IgG antibodies were measured by ELISA. Briefly, 200
ng FilF in sodium bicarbonate buffer (pH 9.6) was coated to
each well by incubation at 4◦C overnight. The wells were washed
thrice with 0.1% Tween 20 in PBS (PBST) and blocked with 5%
BSA in PBST (PBSTM) for 1 h at room temperature. Sera were
serially diluted two fold in PBSTM and added to wells followed
by incubation for 1 h at 37◦C. Wells were washed thrice with
PBST and 100µl of horseradish peroxidase-conjugated anti-IgG
(Bangalore Genei) diluted in PBSM (1:5000) was added to each
well and incubated at room temperature for 1 h. Wells were again
washed with PBST thrice and 100µl of horseradish peroxidase
substrate (Bangalore Genei India Pvt. Ltd.) was added to each

well and developed for 20min at room temperature. The reaction
was stopped with the addition of 100µl of 2M HCl, and the
absorbance was read at 450 nm on an ELISA reader (BioRad).
The endpoint titer was defined as the highest dilution at which
the optical density at 450 nm was significantly higher than that of
control wells receiving control adjuvant serum.

Serum Cytokine’s Levels Estimation
Sera were collected from adjuvant control and FilF immunized
mice at 12 and 24 h post infection. Serum levels of cytokines
TNF-α, IL-6, IL-33, IFN-γ, IL-1β, and IL-10 were estimated
using Krishgen Biosystems, India and GenAsia, Philippines kits
according to the supplier’s instructions. Concentrations were
calculated in Graphpad Prism 5 software.

Bacterial Load in Lungs
Mice were sacrificed by cervical dislocation and dissected
aseptically to remove lungs. The lungs were suspended in 1ml
PBS and homogenized. Homogenates were serially diluted and
spread plated on Luria agar followed by incubation at 37◦C
overnight. The number of colony forming units was counted and
the results were expressed as log CFU.

Histopathology Examination
Aseptically collected lung specimens were fixed in 10% buffered
formalin, stained with hematoxylin-eosin and observed under
microscope at 100X magnification.

Statistical Analyses
All statistical analyses were performed using Graphpad Prism
5 software. The data were presented as mean with standard
deviations represented as error bars. One way analysis of
variance (ANOVA) was applied for all the comparisons. Survival
rates were analyzed by log-rank test. Results were considered
significant at p < 0.05.

RESULTS

Prediction of FilF as Vaccine Candidate
using Vaxign
Complete proteome analysis ofA. baumannii yielded 57 proteins,
predicted as vaccine candidates by Vaxign. An uncharacterized
protein FilF was selected for further analysis as it was conserved
among the strains of A. baumannii. Physical and chemical
parameters of FilF were computed using ProtParam online
tool (Supplementary Table S1). FilF is 641 amino acid protein
having signal peptide of 20 amino acids which directs its
localization to outer membrane. Its predicted molecular weight
is ∼68kDa with pI 5.21. It possesses high adhesion probability
(p = 0.879), no trans-membrane helix and no similarity to
human and mouse proteome. Protein-BLAST of FilF showed
that it matched and belonged exclusively to Acinetobacter and
was present in the sequenced genomes (complete and drafted)
of 250 strains of Acinetobacter available in UniProt database.
It shared >99% similarity with 25 strains of A. baumannii
(Supplementary Table S2), further FilF shared 50–90% in other
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strains and 35–50% identity in other species of Acinetobacter.
Though similarity levels vary but majority of epitopes (B
cell, MHC I and MHC II) fall in these identical regions.
Upstream and downstream DNA sequences showed that filF
is regulated in fil operon and there are 5 other fil genes
having different functions (Supplementary Table S3). Secondary
structure prediction (Supplementary Figure S1) revealed that
FilF is composed of mainly random coils (369 amino acids),
extended strands (153 amino acids) and alpha helices (119
amino acids). Homology modeling was done using I-TASSER
and 3-D structure was predicted (Supplementary Figure S2).
FilF shared no structural similarity in Protein Data Bank (PDB)
and I-TASSER used pilus adhesin (RrgA) from Streptococcus
pneumoniae as the closest template to generate a 3D structure
for FilF but quality of predicted structure was not acceptable as
13 residues out of 641 amino acids of FilF fell into disallowed
region of Ramachandran plot (Supplementary Figure S3). B
cell, MHC I and MHC II binding epitopes for the HLA
alleles prevalent in North India were predicted by IEDB
(Supplementary Tables S4–S6, respectively) which supported
the strong FilF immunogenicity.

FilF Formed Inclusion Bodies
FilF was cloned in pET-28a (Supplementary Figure S4) and
expressed in E.coli BL21 (DE3). Due to over expression, FilF
formed inclusion bodies and accumulated in insoluble fraction.
Prevention of inclusion bodies was tried by optimizing IPTG
concentration (0.01to 1mM), temperature (15◦C to 37◦C) and
time (1–16 h) but protein still accumulated as inclusion bodies
which were dissolved in 8M urea and purified by Ni-NTA
chromatography up to a concentration of 40 mg/L. Purified
protein was refolded by urea gradient dialysis and resolved
on SDS-PAGE (Figure 1). The endotoxin level of purified
recombinant protein used for immunization was found to be <1
EU/ml.

FilF-Specific Antibodies
In order to evaluate the antibody response to immunization with
the FilF protein, mice (n = 10) were immunized at day 1,
14, and 21 with 20µg of purified FilF protein. Significant levels
of IgG antibody titer were observed after each booster in the
sera of immunized mice as compared to adjuvant control mice
(Figure 2). Antibody titer significantly increased to >6.4 × 104

after second booster. The adjuvant control mice did not show any
FilF-specific IgG response at any time point.

Effect of FilF Immunization on Bacterial
Load in Lungs
Different bacterial doses (106–109 CFU) of A. baumannii ATCC
19606 were intratracheally administered to groups of mice and
effects were observed. Mice showed mild clinical symptoms
postinfection with 106 and 107 CFU of bacteria which were
cleared from the body within 2–3 days (data not shown). 108 CFU
caused infection resulting in mice death within 24–48 h and this
dose was selected for further experiments.

Using the developed murine pneumonia model, the effect
of FilF immunization on bacterial load was determined by

FIGURE 1 | Expression and purification of FilF protein. Lane 1, pink plus

marker; lane 2, uninduced sample; lane 3, induced FilF; lane 4, purified FilF

protein.

quantifying bacteria in the lungs of unimmunized and FilF
immunized mice 12 and 24 h after infection with 108 CFU of the
A. baumannii ATCC 19606. Bacterial load was lowered by only 2
log cycles 12 h postinfection but it showed significant reduction
by 4 log cycles 24 h postinfection as compared to adjuvant control
mice (Figure 3).

Histological Examination
Lungs of normal uninfected, adjuvant control and FilF
immunized mice were removed 12 and 24 h post-infection,
stained and visualized for histopathological changes
(Figure 4). Bacterial challenge caused pneumonia and bacterial
consolidation in the unimmunized mice. Lungs were filled with
the increased number of lymphocytes and neutrophils 12 h post
infection in unimmunized mice whereas immunized mice had
moderate inflammation with infiltration of mixed mononuclear
cells and neutrophils around peribronchial and perivascular
areas. Moreover, lungs of immunized mice appeared normal
with small number of neutrophils 24 h postinfection indicating
that FilF immunization was able to limit the infection.

Effect of Immunization on Serum
Cytokines Levels
Levels of pro- and anti-inflammatory cytokines were determined
to check whether FilF immunization was able to prevent the
release of these cytokines (Figure 5). Serum levels of pro-
inflammatory cytokines TNF-α (p < 0.001), IFN-γ (p <

0.001) and IL-1β (p < 0.05) were found to be significantly
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FIGURE 2 | Total IgG antibody levels in the sera. Groups of female

BALB/c mice (n = 10) were sub-cutaneously immunized with 20µg FilF

formulated with CFA/IFA at day 1, 14, and 21. Sera from adjuvant control and

FilF immunized mice were collected 3 days after booster dose and IgG titer

was determined. Antibody response at 14 and 21-day rose as compared to

adjuvant control. ***p < 0.001 (Adjuvant control vs. FilF immunized mice).

FIGURE 3 | Bacterial burden in lungs. Groups of female Balb/c mice (n = 6)

were immunized subcutaneously with 20µg FilF formulated with CFA/IFA

adjuvant on day 1, 14, and 21. The mice were intra-tracheally challenged with

108 CFU of A. baumannii ATCC 19606 at day 29. Immunization with FilF

reduced the bacterial burden by 2 and 4 log cycles in the lungs of pneumonia

model mice sacrificed 12 and 24 h post infection, respectively. The data are

presented as mean ± SD (n = 6). p-value was determined by the one way

analysis of variance (ANOVA). ***p < 0.001 (Adjuvant control vs. FilF

immunized mice).

lower in immunized mice 12 h postinfection whereas IL-6
and anti-inflammatory cytokine IL-10 levels were comparable
with unimmunized adjuvant control mice group. After 24 h
postinfection, levels of all the pro-inflammatory cytokines TNF-
α (p < 0.001), IFN-γ (p < 0.001) and IL-1β (p <

0.001) were significantly low in immunized mice. However,
IL-6 levels increased in adjuvant control and remained low in
FilF immunized mice group 24 h postinfection (p < 0.001)
(Figure 5). IL-10 levels remained comparable to unimmunized
mice and the change was non-significant 24 h postinfection.

FIGURE 4 | Lung histopathology. Groups of female Balb/c mice (n = 6)

were immunized subcutaneously with 20µg FilF formulated with CFA/IFA

adjuvant on day 1, 14, and 21, and intra-tracheally challenged with 108 CFU

of A. baumannii ATCC 19606 at day 29. The mice were sacrificed at 12 and

24 h post-challenge and lungs were collected for histopathology. (A) The lung

from an unimmunized uninfected mouse showing normal histological

characters. (B) Unimmunized infected mouse lung showing increased

inflammatory cell infiltration in the perivascular and peribronchial areas, and

within the airway lumen (arrows) 12 h postinfection. (C) The lung from an

immunized infected mouse showing mild inflammatory cell infiltration in the

perivascular and peribronchial areas (arrows) 12 h postinfection. (D) The lung

from an immunized infected mouse showing significantly reduced infiltration of

inflammatory cells 24 h postinfection. H&E, Magnification 100X.

Levels of IL-33, associated with the inflammatory responses
of lung tissues, were also determined and interestingly, FilF
immunized mice showed significantly low levels (p < 0.001) as
compared to unimmunized mice 12 and 24 h postinfection.

Survival against Challenge with Lethal
Dose of A. baumannii
Effectiveness of FilF immunization was determined by
determining the survival rate after challenge with lethal
dose of A. baumannii. Groups of mice (n = 10) were immunized
sub-cutaneously with 20µg FilF formulated with CFA/IFA
adjuvant on day 1, 14, and 21, and intra-tracheally challenged
with 108 CFU of A. baumannii ATCC 19606 at day 29. The
survival rate of mice was recorded continuously over the next
seven days. FilF immunized (n = 10) mice showed improved
survival rate as compared to unimmunized mice (n = 10) after
challenge. All adjuvant control mice died within 24–48 h whereas
FilF immunized mice showed 50% survival rate observed till
seven days (Figure 6).

DISCUSSION

Advances in bioinformatics have opened new possibilities for
rapid identification of vaccine candidate proteins against MDR
pathogens. Reverse Vaccinology (Rappuoli, 2001) has emerged
as a robust method for identifying subunit vaccines and has
been successfully used to develop vaccines against pathogens
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FIGURE 5 | Cytokine levels in the sera. Groups of female Balb/c mice (n = 6) were immunized subcutaneously with 20µg FilF formulated with CFA/IFA adjuvant on

day 1, 14, and 21. The mice were intra-tracheally challenged with 108 CFU A. baumannii ATCC 19606 at day 29, and sacrificed at 12 and 24 h post-challenge. The

detection limit for all cytokines and chemokines is <10 pg/ml. p-value was determined by the one way analysis of variance (ANOVA). *p < 0.1, **p < 0.05,

***p < 0.001, #non-significant, (Adjuvant control vs. FilF immunized mice).

viz. Neisseria meningitidis (Pizza et al., 2000), Porphyromonas
gingivalis (Ross et al., 2001), Streptococcus pneumoniae (Maione
et al., 2005), Hepatitis C virus (Sarbah and Younossi, 2000) and
Mycobacterium tuberculosis (Ridzon and Hannan, 1999) showing
its potential to be tested on the other emerging pathogens such as
A. baumanniiwhich is gaining attention of themedical world due
to the rapid acquisition of multidrug resistance. Development
of nonspecific immune response and chances of reverting back
to virulent form dissuade the use of inactivated whole cells
or outer membrane complexes. To generate specific immune
response, outer membrane proteins such as porins, lipoproteins,
ton-b receptors, biofilm associated proteins, transporter proteins
or pilus proteins can be assessed as single subunit vaccine
candidates. These outer membrane proteins are recognized

as foreign by host immune system and are potential vaccine
candidates against pathogens.

FilF is such a candidate protein predicted by in silico analysis
of A. baumannii proteome. It is a putative pilus assembly protein
and exact role in virulence is unknown but presence of FilF
in virulent clinical isolates and in the outer membrane vesicles
of invasive clinical strains makes it a crucial antigen (Mendez
et al., 2012; Li et al., 2015). Bioinformatic analysis shows its
localization in outer membrane, no transmembrane helices, high
adhesion probability, conservation among the different strains of
A. baumannii, presence of epitopes specific to the HLA alleles
prevalent in north India (Rani et al., 2007) and dissimilarity
with human and mouse proteome, thus presenting it as a
highly potential vaccine candidate. B cell and T cell (MHC–I
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FIGURE 6 | Survival rate of mice. Groups of female Balb/c mice (n = 10)

were immunized sub-cutaneously with 20µg FilF formulated with CFA/IFA

adjuvant on day 1, 14, and 21, and intra-tracheally challenged with 108 CFU

of A. baumannii ATCC 19606 at day 29. The survival rates of mice were

recorded for seven days.

and MHC–II) epitopes in FilF were determined in order to
assess its antigenicity and to look for the epitopes prevalent in
north Indian population. Though FilF is well conserved among
A. baumannii strains, yet determining the absolutely conserved
regions containing the highly antigenic epitopes will tell about
the protective immunity against all strains of A. baumannii and
may lead to generation of a peptide vaccine by epitope stitching,
which could be used to elicit immunity against a group of gram
negative co-infecting pathogens.

To monitor immunoprotecive efficacy of FilF, a murine
pneumonia model was established via intratracheal route. In
case of A. baumannii, respiratory tract is the most common
site of infection and colonization. Administration of bacteria
to lungs through intranasal route produces bronchopneumonia
and intratracheal route results in lobar pneumonia resulting
in rise in cytokine levels and mice death (Joly-Guillou et al.,
1997). But a major limitation of A. baumannii infection models
(pneumonia and sepsis) is that mice clear the large proportion
of the pathogen. Intranasal route was tried to establish the
infection in mice with moderate (105) to high (108) CFU count
but bacteria were cleared without causing the infection (results
not shown). Later, intratracheal administration of optimized
lethal dose of bacteria i.e., 108 CFU into mice caused infection
resulting in mice death within 24–48 h. Such high dose (108

CFU) of A. baumannii could match the pathogenesis and
virulence level of even the most virulent strain. Challenge with
108 CFU caused severe pulmonary infection in unimmunized
mice and caused 100% mortality. FilF immunization elicited
high humoral response resulting in decreased bacterial load,
reduced levels of pro-inflammatory cytokines and increased
survival rate (50%) by controlling the severity of infection.
Although survival rate of more than 50% has been reported
by immunization with crude cell extract or outer membrane
vesicles (McConnell et al., 2011; Huang et al., 2014) but
the immunoprotective efficacy of subunit recombinant FilF
is significant. Besides, bacterial burden in lungs was also
significantly reduced by 2 and 4 log cycles, 12 and 24 h post
challenge, respectively. This considerable reduction in bacterial

loads is indicator of FilF efficacy. OMVs have FilF as a component
and are effective vaccine formulations, but because of the
complications of solubility, variability and low prevalence of
antigens in OMVs, exploration of other vaccine candidates
which may provide broad spectrum protection against this
evolving pathogen is required. Identification and evaluation
of individual vaccine candidates through immunoinformatics
analysis of proteomes is an ideal choice for rational vaccine
development. Recombinant FilF as antigen has advantages over
inactivated whole cell or outer membrane vesicles such as the
high levels of antigen purity, easy and reproducible large scale
protein production, generation of specific immune response
and absence of contaminating bacterial components such as
lipopolysaccharide that could produce unwanted side effects.
These attributes assist in the approval from regulatory agencies.
OMVs contain many proteins which could affect the immune
response generated by the effective antigens present in the
formulation.

These results were further supported by histological
evaluation of lungs. A. baumannii associated pneumonia
can be identified by various disorders in the lung such as
inflammation, bronchitis, abscess and edema. Oxidative stress
and inflammation induced by this pathogen contribute to the
death of lung epithelial cells (Smani et al., 2011). Reduced
neutrophil infiltration in immunized mice as compared to
unimmunized controls showed the efficacy of FilF. Interestingly,
levels of IL-33 were significantly lower in immunized mice.
IL-33, a critical mediator of the innate immune response,
is released by epithelial cells on invasion by pathogen and
initiates the immune response. It is supposed to play role in
the recruitment of immune cells to the lungs and promotes
bacterial clearance from the lungs of mouse in pneumonia
model (Huang et al., 2014). Also, during infection, inflammation
of lungs followed by increase in pro-inflammatory cytokine
levels occurs due to the bacterial virulence factors such as pilus,
porins, outer membrane proteins, lipopolysaccharides, capsular
polysaccharides, proteases and nucleases. Pro-inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 have been reported
to play important role in cell death induced by A. baumannii.
TNF-α binds to its specific receptor and initiates the caspase
8, 10, and 3 mediated apoptosis whereas IL-6 modulates
expression of pro- or anti-apoptopic factors involved in the
activation of intrinsic pathways of apoptosis (Smani et al., 2011).
IFN-γ is a critical cytokine for innate and adaptive immunity
against viruses and some bacterial pathogens. It activates
macrophages and induces MHC II molecules (Schoenborn
and Wilson, 2007). In this study, significant increase in the
levels of pro-inflammatory type 1 (TNF-α, IFN-γ, IL-6, IL-1β),
pro-inflammatory type 2 (IL-33) and anti-inflammatory type
2 cytokines was observed in unimmunized mice after bacterial
challenge indicating the spread of infection. Increase in levels
of pro-inflammatory cytokines has been observed in other
immunoprotective studies and is related to the high bacterial
load in organs (McConnell et al., 2010, 2011; Huang et al.,
2014). The strong inflammatory response in unimmunized
mice was possibly due to high bacterial challenging dose. FilF
immunization, but not the adjuvant control, was able to reduce
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the levels of pro-inflammatory cytokines significantly (Figure 4),
that controlled the infection and decreased the damage to
lung cells. But the levels of anti-inflammatory cytokine IL-10
remained comparable to unimmunized controls even after 24 h
postinfection.

Antibody response is also a critical indicator to assess the
effectiveness of a vaccine and FilF immunization evoked a
high humoral response in mice. IgG antibody titer after first
booster was >32,000 and after second booster reached >64,000.
Anti-FilF antibodies may bind to A. baumannii surface and
promote opsonization, phagocytosis and killing of the pathogen
by macrophages and neutrophils. Moreover, antibody-mediated
complement activation can lead to lysis of the pathogen
and can also induce localized production of immune effector
molecules that help to develop an amplified and more effective
inflammatory response. FilF is a part of the specialized secretion
system for the delivery of virulence factors in A. baumannii
(Mendez et al., 2012). Anti-FilF antibodies could have bound
to FilF and prevented the delivery of bacterial virulence factors
to the host. Also, FilF is a putative pilus assembly protein, so
anti-FilF antibodies, in addition to T cell activation, may bind
to FilF and prevent the attachment of A. baumannii to the
lungs of mouse, an initial and crucial step in establishment of
A. baumannii, thus resulting in the enhanced survival of mice
after challenge.

This is the first report on FilF immunoprotective efficacy
and supports the significance of in silico prediction and in vivo
validation of FilF, elicting strong protective response against
A. baumannii. Compared to the earlier vaccine development
efforts, FilF can be considered a promising vaccine candidate
against infections caused by A. baumannii.

CONCLUSION

This work shows that FilF (i) is conserved among the strains
of A. baumannii (ii) is a potential vaccine candidate predicted
by in silico analysis (iii) raises high antibody titer in mouse
(>64,000), (iv) reduces cytokine response [significant reduction
in pro-inflammatory cytokines TNF-α, IL-33, IFN-γ, IL-6, and
IL-1β (p < 0.001)], (v) protects mice from A. baumannii
challenge (survival rate 50%) and (vi) reduces the severity
of infection and bacterial burden in lungs of mice (4 log
cycles reduction). These results underscore the potential of
FilF as a vaccine candidate against rapidly emerging, multidrug
resistant A. baumannii. FilF efficacy is further being examined
by using virulent clinical strains, different animal models and

human-friendly adjuvant such as alum. Also, it will be interesting
to monitor the immunomodulatory potential of epitopes of FilF
and comparison with the complete FilF protein.
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