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Cryptococcus neoformans (Cn) is a basidiomycetous pathogenic yeast that is a
frequent cause of meningoencephalitis in immunocompromised individuals. Cn is a
facultative intracellular pathogen in mammals, insects and amoeba. Cn infection occurs
after inhalation of spores or desiccated cells from the environment. After inhalation
Cn localizes to the lungs where it can be phagocytosed by alveolar macrophages.
Cn is surrounded by a polysaccharide capsule that helps the fungus survive
in vivo by interfering with phagocytosis, quenching free radical bursts and shedding
polysaccharides that negatively modulates the immune system. After phagocytosis, Cn
resides within the phagosome that matures to become a phagolysosome, a process
that results in the acidification of the phagolysosomal lumen. Cn replicates at a higher
rate inside macrophages than in the extracellular environment, possibly as a result that
the phagosomal pH is near that optimal for growth. Cn increases the phagolysosomal
pH and modulates the dynamics of Rab GTPases interaction with the phagolysosome.
Chemical manipulation of the phagolysosomal pH with drugs can result in direct and
indirect killing of Cn and reduced non-lytic exocytosis. Phagolysosomal membrane
damage after Cn infection occurs both in vivo and in vitro, and is required for Cn
growth and survival. Macrophage treatment with IFN-γ reduces the phagolysosomal
damage and increases intracellular killing of Cn. Studies on mice and humans show that
treatment with IFN-γ can improve host control of the disease. However, the mechanism
by which Cn mediates phagolysosomal membrane damage remains unknown but likely
candidates are phospholipases and mechanical damage from an enlarging capsule.
Here we review Cn intracellular interaction with a particular emphasis on phagosomal
interactions and develop the notion that the extent of damage of the phagosomal
membrane is a key determinant of the outcome of the Cn-macrophage interaction.

Keywords: Cryptococcus neoformans, macrophage, phagolysosomal membrane damage, pH, Interferon γ

Cn AS A FACULTATIVE INTRACELLULAR PATHOGEN

Cryptococcus neoformans (Cn), a basidiomycetous pathogenic yeast, is a relatively frequent cause
of meningoencephalitis in immunocompromised individuals (Horgan et al., 1990; Thinyane et al.,
2015). Cn is ubiquitous in the environment, inhabiting soils (Currie et al., 1994; Gugnani et al.,
2005; Randhawa et al., 2008) and human infection occurs when aerosolized spores or desiccated
fungal cells enter the lung via inhalation where Cn encounters the first line of defense: the alveolar
macrophage (Feldmesser et al., 2000).Macrophages play a critical role in the pathogenesis of
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cryptococcosis, ranging from control of infection to possible
roles in persistence, latency and extrapulmonary dissemination.
Although historically Cn was divided into two varieties known
as neoformans and gattii, genetic studies have subsequently
separated these varieties into two species. The species
Cryptococcus gattii has the potential to cause disease in
immunocompetent individuals and animals (Stephen et al., 2002;
Hoang et al., 2004). However, this review will only focus on
Cn, since most of the macrophage interaction studies have been
done with Cn. Cn is an facultative intracellular pathogen in such
diverse hosts as mammals, amoebae (Steenbergen et al., 2001)
and insects (Tenor et al., 2015; Trevijano-Contador et al., 2015),
and employs various virulence factors to subvert cellular defense
mechanisms. The manner in which Cn interacts with amoeba
and macrophages is similar, suggesting that selection pressures
in soil could lead to the emergence of particular traits that confer
the capacity for virulence, thus making this microbe an accidental
pathogen for mammals (Casadevall, 2012). In mammals, Cn
was established to be a facultative intracellular pathogen in vivo
and in vitro almost two decades ago (Feldmesser et al., 2001). In
subsequent years, several groups have made major contributions
to our understanding of the pathogenic strategy of Cn and those
advances will be reviewed here.

The most distinctive feature of Cn is the expression of a
large polysaccharide capsule that is a major virulence factor. The
capsule functions in virulence through numerous mechanisms
including preventing phagocytosis, quenching free radical bursts
and interfering with immune responses (Bulmer and Sans,
1967; Zaragoza et al., 2008). Another mechanism by which
Cn avoids phagocytosis is by the formation of titan cells,
which prevent ingestion as a result of their enormous size
(Okagaki et al., 2010; Zaragoza et al., 2010; Okagaki and
Nielsen, 2012). The antiphagocytic function of the capsule is
particularly relevant for intracellular pathogenesis since this
process requires ingestion of the fungus by phagocytic cells. In
the absence of opsonins, the capsule interferes with phagocytosis
such that ingestion of encapsulated cells by macrophages is
markedly lower (Macura et al., 2007). However, in the presence
of capsule specific antibody and complement opsonins mediate
efficient phagocytosis as described (Voelz and May, 2010).
Although all encapsulated strains are opsonized by capsule
binding antibodies, not all strains are efficiently opsonized by
complement (Zaragoza et al., 2003). The mechanism for strain
differences in complement opsonization involves differences in
the geography of complement deposition in the capsule. If
complement is deposited near the capsule surface, it is an
effective opsonin, while complement deposition in the deeper
layers of the capsule places complement component 3 in a
location where it cannot interact with the complement receptor
resulting in poor phagocytosis (Zaragoza et al., 2003). In addition,
the capsule complement deposition pattern can be affected
by the use of serum from different species, capsule size, and
composition and the chronological age of the fungus (Young
and Kozel, 1993; Gates and Kozel, 2006; Cordero et al., 2011).
Therefore, the ability of Cn to increase its capsule size during
infection is a mechanism that helps avoid complement-mediated
phagocytosis.

Cn is able to survive and replicates at a higher rate inside
macrophage than in the extracellular environment (Diamond
and Bennett, 1973; Feldmesser et al., 2000). This ability of
Cn to survive and replicate inside macrophages correlates
with the virulence of clinical isolates, and is associated with
dissemination via a Trojan horse hypothesis whereby Cn can
cross the blood brain barrier inside macrophages (Charlier et al.,
2009; Alanio et al., 2011). After infection, Cn can persist in the
host in a latent state inside macrophages and multinucleated
giant cells in granulomas. Cn in this latent state can emerge
and cause disease if the host immune status change from
immunocompetent to immunocompromised (Shibuya et al.,
2005; Saha et al., 2007; Alanio et al., 2015). The macrophage-
Cn interaction can have three major outcomes: (1) intracellular
killing of Cn or control growth by the macrophage; (2) lysis of
the macrophage and release of Cn; and (3) non-lytic exocytosis
in which both the macrophage and Cn survive (Figure 1).
In addition, the phenomenon of macrophage to macrophage
transfer of Cn cells has been described in vitro (Alvarez and
Casadevall, 2007; Ma et al., 2007; Stukes et al., 2014). Of these
possibilities exocytosis is the most common outcome (Stukes
et al., 2014). Depletion of alveolar macrophage in rats and
mice shows that the role of macrophages during Cn infection
varies with the host species. Rat macrophages controlled Cn
intracellular growth and were more resistant to pathogen-
mediated lysis. When rat lung macrophages were depleted
the animals became more vulnerable (Shao et al., 2005). In
contrast, murine macrophage served as a replicative niche
for Cn and growth of Cn inside the macrophage can result
in lysis of the macrophage (Shao et al., 2005). Differences
in mouse strain susceptibility to Cn infection correlates with
macrophage permissiveness for fungal intracellular replication
(Zaragoza et al., 2007) but these differences are not well
understood.

Acidification of the phagosome is an important macrophage
antimicrobial mechanism but certain pathogens are able to
adapt to overcome or exploit these acidic environments
(Criscitiello et al., 2013). Pinpointing the mechanism by which
Cn is able to survive within the harsh environment of the
phagolysosome can provide insight to develop ways to reduce
the intracellular replication of Cn and potentially prevent/treat
disease. During infection, Cn experiences different pH levels
and ability to survive in the host requires survival in the
slightly alkaline environment of the blood and the cerebrospinal
fluid, and the acidic environment of the phagolysosome.
Consequently we will review the studies that explore the
interactions of Cn in these diverse ranges of pH and phagosomal
maturation.

Cn LOCALIZATION INTO THE
PHAGOLYSOSOME

The localization of the microbe in tissue can play an important
role on the virulence and survival of the pathogen. In tissues,
such as lungs, that mount granulomatous responses, Cn is often
found inside macrophages or in close approximation to them
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FIGURE 1 | A schematic summary of the Cryptococcus neoformans and macrophage interaction. Upon internalization Cn reside within phagosomes that
mature into phagolysosomes by interacting and fusing with the early- and late- endosome, and lastly with the lysosome. Cn-containing phagolysosomes acidify
shortly to around pH 4.3 but increased later to 5.3, which is less acidic than the normal phagolysosomal of pH 4.5 (Levitz et al., 1999). Phagolysosomal membrane
permeabilization could contribute to the increase in pH, possibly by affecting the proton gradient require to maintain acidification and/or promoting leakage of
contents into the cytoplasm and vice-versa. Phagosomal membrane damage favors Cn replication and survival. In contrast, IFN-γ reduces phagolysosomal
membrane damage and promotes Cn killing (Davis et al., 2015). Phagosomal membrane integrity appears to be a key determinant of whether Cn lives or dies after
ingestion. Intracellular Cn survival and replication can have three major outcomes: (1) lysis of the macrophage and release of Cn; (2) non-lytic exocytosis in which
both the macrophage and Cn survive (non-lytic exocytosis can be complete or partial), and (3) cell-to-cell transfer in which one macrophage can pass a previously
ingested Cn to another macrophage.

(Yamaoka et al., 1996; Kobayashi et al., 2001). To survive in
their hosts, pathogenic microbes implement different strategies
to avoid killing and degradation by the phagocytic cell, including
inhibiting phagosome maturation (Clemens et al., 2000) or
phagolysosome fusion (Horwitz, 1983), blocking phagosomal
acidification (Horwitz and Maxfield, 1984) or escaping from the
phagosome (Gaillard et al., 1987). By examining the localization
of known endosomal and lysosomal markers, any inhibition
of phagosome maturation or phagolysosome fusion during Cn
infection can be observed. Studies done with Cn-infected human
monocyte-derived macrophage and J774.16 macrophage-like
cells showed co-localization of the yeast with the lysosomal-
associated membrane protein (LAMP-1), a lysosomal marker
(Levitz et al., 1999; Alvarez and Casadevall, 2006). Cn-containing
phagosomes in murine bone marrow derived dendritic cells and
monocyte derived human dendritic cells fused with the early
endosome marker (EEA-1) and LAMP-1 as early as 10 minutes
after incubation with Cn (Wozniak and Levitz, 2008). In vivo
studies also showed that phagolysosomal fusion occurred by two
hours after infection in the alveolar macrophage in a murine
model (Feldmesser et al., 2000). Furthermore, studies with bone
marrow derived dendritic cells expressing CD63-mRFP1 and

Class II MHC-eGFP determined that these markers are recruited
to Cn-containing vacuoles. Thus, class II MHC proteins are
recruited before CD63 and CD63 recruitment is dependent
on the acidification of the phagosome (Artavanis-Tsakonas
et al., 2006). In contrast, LAMP-1 recruitment is independent
of phagosome acidification (Artavanis-Tsakonas et al., 2006).
Cryptococcal phagolysosomes have some characteristics of
autophagomes such as manifesting LC3 (microtubule-associated
protein 1 light chain 3 alpha) co-localization (Nicola et al., 2012).

Cn intracellular trafficking is conserved in Drosophila
melanogaster S2 cells and J774.A1 cells, upon internalization by
both cell types Cn co-localized with EEA-1, the late endosome
marker, mannose-6-phosphatase receptor (M6PR), LAMP-1 and
Cathepsin D, another lysosomal marker (Qin et al., 2011).
Furthermore, surfactant protein D was shown to enhance
phagocytosis of acapsular cryptococcal mutants by macrophages
in vitro but the resulting Cn-containing phagolysosome shows a
decrease in co-localization with LAMP-1 (Geunes-Boyer et al.,
2009), suggesting that surfactant protein D influences Cn-
containing phagosome maturation. Based on these studies, it
was generally thought that Cn resided in the phagolysosome
upon internalization by the macrophage and did not interfere
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with phagosome maturation. However, new evidence based
on the analysis of the Rab GTPases localization, which are
early endosomes and phagosomes markers, revealed a different
pattern for the interaction of these molecules with phagosomes
containing live Cn, heat killed Cn or latex beads, suggesting that
Cn influenced phagosome maturation. Rab 5 and 11 are recruited
to the Cn-containing vesicle shortly after phagocytosis but their
presence diminishes more rapidly in phagosomes containing live
fungal cells than in those containing latex beads- or heat killed
Cn-cells (Smith et al., 2015). However, the extent to which Cn
affects phagosome maturation is unknown but it is likely that
the effect is smaller than other pathogens, like Mycobacteria
tuberculosis, which directly interfere with phagosome maturation
by blocking fusion with late endosomes and lysosomes (Kelley
and Schorey, 2003).

Phagosomal maturation and acidification are required for
both the localization and optimal enzymatic activity of lysosomal
proteases, respectively (Boya and Kroemer, 2008). Cn localization
in the phagolysosome exposes the yeast to cathepsins, other
hydrolases, and reactive oxygen species in the lysosomal
lumens. Cathepsins are lysosome related proteases with a role
in lysosomal protein recycling, Toll-like receptors signaling,
extracellular matrix degradation, activation and inhibition of
cytokines, antigen processing, and more recently have been
implied in apoptosis. To activate apoptosis, cathepsins need
to be released from the lysosomes into the cytosol via
lysosomal membrane permeabilization (Conus and Simon,
2010). Lysosomal extracts purified from bone marrow derived
dendritic cells can kill Cn in a dose dependent manner
(Wozniak and Levitz, 2008). Analysis of purified lysosomal
enzymes showed that Cathepsin B and Cathepsin L inhibited
Cn growth, and that an inhibitor of Cathepsin B enzymatic
activity surprisingly increased inhibition of Cn growth (Hole
et al., 2012). These results suggested that Cn exposure to
lysosomal proteases, specifically cathepsin B and L inhibited
cryptococcal growth. In vivo analysis of Cathepsins B and
Cathepsin L activity in Cn-containing phagolysosome has
shown little evidence of enzymatic activity, but macrophages
challenged with heat killed Cn show Cathepsin L activity
(Smith et al., 2015). The discrepancy between these results
might be attributed to the fact that in the first studies Cn was
incubated in vitro with lysosomal extracts whereas in the later
studies the analysis was done in infected cells. The Cn capsule
confers resistance against reactive oxygen species (Zaragoza
et al., 2008) and presumably protects the fungal cell during the
lysosomal oxidative burst. However, as to whether the capsule
also provides resistance against cathepsins and others proteases
remain unclear. In this regard, the dense polysaccharide fibrillar
network that surrounds the cell could provide protection by
trapping cytotoxic enzymes but this mechanism remains to be
shown.

In summary, the difference between cathepsin activity in
phagosomes containing live and dead Cn suggests that Cn
can affect cathepsin enzymatic activity but the mechanism is
unknown. Given that phagosomes containing live Cn become
progressively leaky during intracellular residence, one possible
explanation for the discordance between the results obtained

with live and dead Cn is that the negative cathepsin activity
observed with the live cells is lost with a degraded phagosomal
membrane.

EFFECT OF pH ON THE Cn GROWTH
(STUDIES INDEPENDENT OF HOST)

The response of Cn to pH is important in pathogenesis
because the fungus goes from neutral to slightly alkaline
conditions in extracellular body fluids to acidic conditions in
the mature phagolysosomal compartment. An inverse correlation
between growth of Cn and the pH of the growth medium
was initially established more than 60 years ago (Mosberg and
Mc, 1951; Howard, 1961), when several investigators reported
that acidic milieus enhanced growth while alkaline conditions
inhibited growth. More recent studies have confirmed those
results by showing that Cn can grow in the pH range of
5–8 and also revealed that the optimal growth for Cn is
at pH 5 (Levitz et al., 1997). These studies also established
differences in the susceptibility of Cn strains to pH and a
dependence on temperature such that fungal cells were less
resistant at 37◦ to alkaline pH. However, a Cn strain deficient
in the Ca+2-regulated protein Calcineurin is more susceptible
to alkaline pH, and become avirulent in a rabbit model of
cryptococcal meningitis (Odom et al., 1997). Interestingly,
a Cn strain lacking glycosphingolipid glucosylceramide was
avirulent in a murine animal model when challenged intranasally
but was virulent when the infection was done intravenously,
suggesting that the lung environment controlled the infection.
The glycosphingolipid glucosylceramide mutant was arrested in
the S and G2/M phase at pH 7.4 in 5% CO2, but is not affected
at pH 4 in 5% CO2 (Rittershaus et al., 2006). One explanation
for these observations is that during the intranasal infection
the glycosphingolipid glucosylceramide mutant is not able to
replicate in the alkaline extracellular environment of the lung.
Those fungal cells that are ingested by the alveolar macrophage
can replicate in the acidic environment of the phagolysosome
but these are controlled by the formation of granulomas.
In contrast, after intravenous infection the glycosphingolipid
glucosylceramide mutant growth was also arrested in the alkaline
environment of the blood, but was able to replicate once it
invaded other organs and reside in abscess with an acidic
environment optimal for the growth of the mutant (Rittershaus
et al., 2006). These studies suggest that the ability of Cn to grow
at different pH is important for pathogenicity.

The conserved Rim101 pathway mediates fungal response to
extracellular neutral/alkaline pH, for reviews see (Davis, 2009;
Cornet and Gaillardin, 2014). Extensive work has been done to
identify the homologues of the Rim101 pathway and the role
of Rim101 pathway during Cn–host interaction. Cn Rim101
mutants show a capsule defect, altered cell wall composition and
increased susceptibility to different host induced stress stimulus
(O’Meara et al., 2014). Recently, the Rim pathway was shown
to be activated by the increase of pH, with the protein Rra1
functioning as a pH sensor, but others components of the pH
sensing complex have not been identified (Ost et al., 2015).
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Further studies of this pathway may shed light unto how Cn is
able to modulate gene expression to survive between the different
pH environments it encounter during host infection.

Cn AND PHAGOLYSOSOMAL
ACIDIFICATION

Phagosome maturation results in the acidification of the
phagosomal lumen, creating an optimal environment for the
proteases recruited to that site during the maturation process.
In the next two sections, we review what is known about
phagosomal acidification during Cn infection of phagocytic
cells and the effect of chemical modulation of phagosomal
acidification on the outcome of Cn infection. Initial studies
measuring in vivo phagolysosomal pH done in rabbit alveolar
macrophages after 24 h infection using fluorescein-labeled
heat-killed cryptococcal cells revealed an average pH 5
and 5.2 for phagolysosomes containing heat killed Cn and
fluorescein-labeled silica particles, respectively. They noted that
approximately 2% of the phagolysosomes containing heat-killed
Cn had a pH of 6.5, which never occurred with the silica particles
(Nessa et al., 1997). The pH of Cn-containing phagolysosomes
was also measured in monocyte-derived macrophage using live
Cn and heat-killed Cn after 3 and 24 h infection. The pH of
phagolysosomes containing heat-killed Cn remained stable over
time, ranging from 5.2 to 5.1, but the pH of phagolysosomes
containing live Cn increased from 4.3 to 5.3, which closely
matches the optimal pH for fungal growth. The phagolysosomal
pH of neutrophils infected with live Cn remained constant
over a 3 h period hovering between 5.2 and 5.0 (Levitz et al.,
1999). A more recent study suggests that live Cn, but not
heat-killed Cn, could block acidification of the phagolysosome
(Smith et al., 2015). The differences in these studies could reflect
the use of different cell models, Cn strains, and/or technical
approaches. Cn mutants in phospholipase B, Sec14 secretion
system, urease expression, and the acapsular mutant maintained
their ability to prevent acidification, suggesting that prevention
of acidification occurred through an independent process that
is unrelated to those virulence factors (Smith et al., 2015).
However, a strain of Cn that overexpressed the antifungal
resistance protein 1 (AFR1) delayed the acidification of the
phagolysosome and resided in phagolysosomes with a lower
degree of co-localization with Rab5-, Rab7- and LAMP2 (Orsi
et al., 2009). In summary, Cn growth is affected by pH but the
acidity of the phagolysosomal compartment does not appear to
be a significant mechanism for microbial control and may in fact
promote fungal replication.

Cn AND CHEMICAL MANIPULATION OF
PHAGOSOMAL ACIDIFICATION

Experiments done in the late 1990s showed that treatment of
BV2 microglial cells with the weak bases, chloroquine, and
ammonium chloride, enhanced the anticryptococcal activity of
microglial cells. These weak bases act as lysosomotropic agents

by accumulating in the lysosomal compartment (Villamil Giraldo
et al., 2014). Similar effects were observed when microglial cells
were treated with bafilomycin A1, an inhibitor of the vacuolar-
type H+-ATPases. These investigators also demonstrated an
increase in the median survival time of mice treated with an
intracerebral administration of chloroquine before challengewith
a lethal dose of Cn (Mazzolla et al., 1997). Similar results were
noted when treating human monocyte-derived macrophages
(MDM) with chloroquine and ammonium chloride, which
increased anticryptoccocal activity of the MDM independent of
iron deprivation. Chloroquine enhancement of anticryptococcal
activity was also observed with monocytes derived from HIV-
seronegative and HIV-seropositive donors, and in a murine
model of experimental cryptococcosis using immunocompetent
and immunodeficient mice (Levitz et al., 1997). Chloroquine
treatment increased the pH of phagosomes containing heat-
killed Cn in a dose dependent manner showing pH values
of approximately 5.2 at 1 μM, 6.5 at 10 μM, and 7.5 at
100 μM (Levitz et al., 1999). Interestingly, both chloroquine
and quinacrine accumulate within Cn and directly inhibit its
growth. Accumulation of chloroquine and quinacrine within Cn
increased at physiological conditions, but the mechanism by
which it exerts its anticryptococcal activity remains unknown
(Harrison et al., 2000). Cn growth was also inhibited by
ammonium chloride and bafilomycin A in a concentration
dependent manner (Harrison et al., 2000). These results suggest
that treatment of phagocytic cells with lysosomotropic agents
had a direct effect on Cn as well as an alternative indirect
effect by increasing the pH of the Cn-containing phagolysosome
(Harrison et al., 2000; Weber et al., 2000).

Non-lytic exocytosis can occur after phagocytosis of Cn by
macrophages, and results on the expulsion of viable Cn to the
extracellular environment without the lysis of the macrophage.
Blockage of phagosome maturation using Concanamycin A, an
inhibitor of V-ATPase, reduced Cn non-lytic exocytosis (Ma
et al., 2006). Macrophage treatment with bafilomycin A revealed
a slight decrease in non-lytic exocytosis, while treatment with
ammonium chloride and chloroquine significantly increase non-
lytic exocytosis (Ma et al., 2006; Nicola et al., 2011; Qin et al.,
2011). The mechanism for how pH affects non-lytic exocytosis
remains unexplained.

Cn AND PHAGOLYSOSOME MEMBRANE
PERMEABILIZATION OR DAMAGE

As a consequence of lysosomal membrane permeabilization,
cathepsins and other proteases are released from the lysosomal
lumen into the cytosol where they can activate cell death (Boya
and Kroemer, 2008). Phagolysosomal membrane damage was
observed in alveolar macrophage of mice infected with Cn
at 7 days post-infection (Feldmesser et al., 2000). Subsequent
studies revealed that Cn-containing phagosomes pre-loaded
with fluorescently labeled dextran showed diffusion of the
fluorescent signal, indicative of leakage of phagosomal contents
into the cytoplasm. Lysosomal membrane permeabilization was
confirmed by demonstrating the inability of the Cn-containing
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phagosome to maintain an acidic environment (Tucker
and Casadevall, 2002). The mechanisms responsible for
phagolysosomal permeability are unknown. Cn extracellular
phospholipase activity was hypothesized to have a role on the
degradation of the phagolysosomal membrane but this effect was
not experimentally demonstrated (Cox et al., 2001). Nonetheless,
Cn phagolysosomal damage is associated with cryptococcal
replication and survival, but activation of macrophages with
IFN-γ can reduce phagolysosomal damage (Davis et al., 2015).
In Cn-infected THP-1 macrophage-like cells, phagolysosomal
membrane permeabilization induces formation of the adaptor
protein apoptosis-associated speck-like protein containing a
CARD speck, suggesting that release of phagolysosomal content,
including Cathepsin B, activates inflammasomes resulting in
processing and release of IL-1β. Treatment with Cathepsin B
inhibitor reduced IL-1β secretion implying that phagolysosomal
damage is required for activation of the canonical caspase-8
inflammasome (Chen et al., 2015). Taken together, internalized
Cn induces phagolysosomal membrane permeabilization and
leads to host cell death in amanner dependent on inflammasomes
activation.

CONCLUSION AND PERSPECTIVE

During the preparation of this review, it was apparent that the
literature is inconsistent with how it refers to the phagolysosome
and the timing of its appearance. According to LAMP-1 staining,
the Cn-containing phagosome fuses with the lysosome as early
as one hour post incubation, implying that Cn resides inside the
phagolysosome by one-hour post ingestion. To avoid confusion
during this review, we used the term phagolysosome whenever
we referred to studies that used experimental time of one-
hour post incubation or longer. Readers should note that
phagosomal maturation is a dynamic process that may vary
between individual phagosomes. For example, EEA1 and LAMP-
1 were each associated with some phagosomes at early time of
macrophage infection but the number of phagosomes positive
for these markers increased gradually with time (Wozniak
and Levitz, 2008). Phagosomal acidification is a critical step
during phagosomal maturation to allow phagosome-lysosome
fusion and provide an optimal environment for the activity of
antimicrobial enzymes. However, internalization of Cn results in
a decrease of phagolysosomal pH shortly after ingestion, which
is followed by an increase in phagolysosomal pH over time
culminating in an inability of the Cn-containing phagolysosome
to maintain the acidic pH as a result of membrane damage
(Levitz et al., 1999; Tucker and Casadevall, 2002). Further
studies are needed to determine the precise relationship between
changes in pH in the Cn-containing phagolysosome, Cn growth
and the onset of phagolysosomal membrane damage. Future
studies should take in consideration the effect of phagolysosomal
membrane permeabilization with regards to the acidification of
the Cn-containing phagolysosome and determined causal and
temporal relationships, if any. If phagolysosomal membrane
permeabilization occurs only in a fraction of those Cn-containing
phagolysosome, it is possible that will result in a gradient of pH

values, as damage of the phagolysosomal membrane will result
in neutralization of phagolysosome acidification by cytoplasmic
contents.

Phagolysosome membrane damage can promote Cn growth
after cell ingestion (Davis et al., 2015), presumably by disabling
microbicide mechanisms or damaging the host cells through the
spillage of vesicular content into the cytoplasm. The mechanism
for Cn induction of phagolysosome membrane damage remains
unknown but various hypotheses have been discussed in
the literature. These include the notion that phagolysosomal
membrane damage is a result of Cn replication and capsular
growth that produce physical damage (Feldmesser et al., 2000).
Secondly, secreted fungal proteins damage the phagolysosomal
membrane directly. In this regard, extracellular phospholipase
was suggested as a candidate for phagolysosomal membrane
damage (Cox et al., 2001). Phospholipids induce enlargement
of Cn capsule which also requires phospholipase B activity
(Chrisman et al., 2011). It is possible that there is a synergistic
effect that combines damage of the phagolysosomal membrane
by the extracellular fungal phospholipase activity and physical
damage of the phagolysosomal membrane by growth of the
fungal capsule induced by the phospholipase products.

Cn intracellular residence was shown to result in damage to
a variety of cellular systems including mitochondrial function
(Coelho et al., 2015). The amount of damage incurred by the
host cell may depend on the degree of cellular activation. In
this regard, treatment of macrophage with IFN-γ was shown
to protect the phagolysosomal membrane from damage and
promoted the anti-fungicidal ability of the macrophages (Davis
et al., 2015). Previous studies shows that IFN-γ also increased
anti-fungicidal activity in rat alveolar macrophage and natural
killer cells, and increase survival time in two murine models
of Cn infection (Mody et al., 1991; Salkowski and Balish,
1991; Kawakami et al., 1995, 1996). IFN-γ administrations were
shown to prolong mice survival when used as an adjuvant
treatment in combination with amphotericin B in normal mice
and SCID mice infected with Cn (Joly et al., 1994; Lutz et al.,
2000; Clemons et al., 2001). IFN-γ has been used clinically as
adjuvant treatment and was shown to improve in Cn clearance
from the cerebrospinal fluid in HIV-positive patients with
cryptococcal meningitis (Jarvis et al., 2012). These observations
in rodents and humans suggest that interventions that promote
phagosomal membrane integrity could have potential therapeutic
applications.

In summary, it appears that the phagolysosomal membrane
is a key battleground in the struggle between Cn and phagocytic
cells. Damage to the membrane with loss of acidity and spillage
of phagolysosomal contents into the cytoplasm favors the fungus
and catalyzes as series of events that compromise the host
cells and interfere with their ability to control infection. On
the other hand, integrity of the phagolysosomal membrane is
associated with control of infection. At this time the factors that
tip the balance toward membrane damage or integrity are poorly
understood and their elucidation is a research priority in the field.
The understanding of this process is given additional urgency
since therapeutic interventions to stabilize the phagolysosome
may tip the balance to the benefit of the host.
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