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Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and
Chagas disease, respectively, two neglected tropical diseases that affect about 25
million people worldwide. These parasites belong to the family Trypanosomatidae, and
are both obligate intracellular parasites that manipulate host signaling pathways and the
innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs)
are serine and threonine protein kinases that are highly conserved in eukaryotes,
and are involved in signal transduction pathways that modulate physiological and
pathophysiological cell responses. This mini-review highlights existing knowledge
concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target
the host’s MAPK signaling pathways and highjack the immune response, and, in this
manner, promote parasite maintenance in the host.
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INTRODUCTION

Leishmania spp. and Trypanosoma cruzi are protozoan parasites of the Trypanosomatida order
(Kent, 1980) and Trypanosomatidae family (Doflein, 1901). They are the etiological agents
of leishmaniasis and Chagas disease, respectively, and are transmitted by the bite of infected
sandflies (leishmaniasis) or through triatomine bug feces (Chagas disease). Both Leishmania
spp. and T. cruzi have complex life cycles comprising diverse developing forms that alternate
between the insect vector and the vertebrate host. Leishmania spp. promastigotes and amastigotes
preferentially infect phagocytic cells of vertebrates, while T. cruzi metacyclic trypomastigotes,
blood trypomastigotes and amastigotes are able to infect both phagocytic and non-phagocytic cells
(Tanowitz et al., 1992; Alexander et al., 1999; Ferreira et al., 2012).

Although the persistence of Leishmania spp. and T. cruzi within a host depends on several
factors, the manipulation of host signal transduction pathways involved in the modulation of the
immune response is probably one of the most commonly used mechanisms by parasites. In this
mini-review, we will focus on the mechanisms that Leishmania spp. and T. cruzi use to subvert
mitogen-activated protein kinase (MAPK) signaling pathways—more specifically, extracellular-
signal-regulated kinase (ERK), and p38 MAPK—that are highly relevant in the context of the
regulation of the immune response against intracellular parasites.
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MAPK PATHWAYS

Mitogen-activated protein kinases are protein kinases that
phosphorylate their own dual serine and threonine residues
(autophosphorylation), or those found on their substrates,
to activate or de-activate their target (Johnson and Lapadat,
2002; Peti and Page, 2013). Accordingly, MAPKs regulate
important cellular processes such as proliferation, stress
responses, apoptosis and immune defense (Dong et al., 2002;
Liu et al., 2007; Arthur and Ley, 2013). MAPKs are ubiquitously
expressed and evolutionarily conserved in eukaryotes (Kyriakis
and Avruch, 2001; Kyriakis and Avruch, 2012; Peti and
Page, 2013). The activation of a MAPK cascade occurs in a
module of consecutive phosphorylations, i.e., after a previous
stimulus, each MAPK is phosphorylated by an upstream
MAPKs. A MAPK module comprises a MAP3K that activates
a MAP2K, which then, in turn, activates a MAPK (Pimienta
and Pascual, 2007; Turjanski, Vaqué and Gutkind, 2007;
Johnson, 2011; Kyriakis and Avruch, 2012; Peti and Page,
2013). MAPK phosphorylation events can be inactivated by
MAPK protein phosphatases (MKPs) that dephosphorylate both
phosphothreonine and phosphotyrosine residues on MAPKs
(Liu et al., 2007; Pimienta and Pascual, 2007; Zhang and Dong,
2007).

There are three well-known MAPK pathways in mammalian
cells (Figure 1): the ERK1/2, the c-JUN N-terminal kinase 1, 2
and 3 (JNK1/2/3), and the p38 MAPK α, β, δ, and γ pathways.
ERK, JNK, and p38 isoforms are grouped according to their
activation motif, structure and function (Owens and Keyse, 2007;
Raman et al., 2007; Zhang and Dong, 2007). ERK1/2 is activated
in response to growth factors, hormones and proinflammatory
stimuli, while JNK1/2/3 and p38 MAPK α, β, δ, and γ are
activated by cellular and environmental stresses, in addition to
proinflammatory stimuli (Owens and Keyse, 2007; Kyriakis and
Avruch, 2012; Figure 1).

ERK AND P38 MAPK PATHWAYS

The classical activation of ERK1 and ERK2 isoforms is initiated
by the binding of a ligand to a receptor tyrosine kinase (RTK)
at the plasma membrane (PM), followed by activation of the
small G-protein, Ras. In turn, Ras recruits and activates the
serine/threonine protein kinase, Raf, a MAP3K, which activates
the MAP2K, MEK, that, in turn, phosphorylates the MAPK,
ERK1/2, at both threonine and tyrosine residues within the TEY
motif (Kolch, 2000; Chambard et al., 2007; Shaul and Seger, 2007;
Knight and Irving, 2014). The Ras/Raf/MEK/ERK1/2 pathway
can be deactivated by dual-specificity MAPK phosphatases
(MKPs). For example, MKP2/4 dephosphorylates ERK1/2, but
can also deactivate other MAPKs while MKP3 and MKP-X
are specific to ERK (Owens and Keyse, 2007). The tyrosine
phosphatase, SHP2, also acts on this signaling pathway by
activating the G-protein, Ras (Zhang et al., 2004; Matozaki et al.,
2009; Figure 1A).

Both stress and cytokines activate p38 MAPK isoforms that
play an important role in inflammatory responses (Johnson

and Lapadat, 2002; Yang et al., 2014), despite each isoform
being encoded by different genes and showing different tissue
expression patterns (Cuadrado and Nebreda, 2010). As with
ERK isoforms, p38 MAPKs are also sequentially activated.
A canonical activation occurs when, in response to stress or
cytokines, a MAP3K, such as MEKK1, ASK1, or TAK1, is
activated by TRAF [TNF (tumor necrosis factor) receptor-
associated factor] 2/3/6 or by Rho proteins. In turn, the MAP3K
phosphorylates a MAP2K, either MKK3 or MKK6, that then
phosphorylates the TGY motif of p38 isoforms (Cuenda and
Rousseau, 2007; Cuadrado and Nebreda, 2010; Figure 1B). The
p38 MAPKs α, β, δ and γ, are dephosphorylated by several
dual-specificity protein phosphatases, such as MPK2/4, that
can also deactivate ERK. The phosphatases, MPK5/7, can also
dephosphorylate JNK and p38, while MPK1 exhibits a higher
specificity for p38 (Owens and Keyse, 2007; Salojin and Oravecz,
2007).

MAPKs AND THE IMMUNE SYSTEM

Many pathogens target host intracellular signaling pathways,
including MAPK pathways, to inhibit immune responses (Roy
and Mocarski, 2007; Arthur and Ley, 2013). The immune
response is one of several key functions regulated by MAPKs,
with the production of immunomodulatory cytokines, such as
TNFα, interleukin (IL)-1, IL-10, and IL-12, induced by the
activation of p38 MAPK, JNK, and ERK pathways (Dong et al.,
2002; Arthur and Ley, 2013). The regulatory cytokines, IL-12
and IL-10, produced by specialized dendritic and macrophage
cells, play an important role in the coordination of the
immune response since IL-12 modulates the development of
a Th1 response, which protects the host against intracellular
parasites, and IL-10 promotes a Th2 response, which provides
protection against extracellular infectious agents (Romagnani,
2006).

The production of IL-12 is regulated by p38 MAPK
and, consequently, is involved in the induction of a Th1
response (Jackson et al., 2010; Arthur and Ley, 2013).
Upon p38 MAPK activation and IL-12 production, Th cell
differentiation is guided into a Th1-type cell that releases
pro-inflammatory cytokines such as IL-2, IFN-γ, and TNF-α/β
(Romagnani, 2006). Such cytokines mediate the immune
response by acting to kill intracellular pathogens such
as the protozoans, Leishmania spp. and T. cruzi (Beiting,
2014).

Conversely, the ERK1/2 pathway modulates the
production of IL-10 (Chang et al., 2012) that induces Th
cell differentiation into a Th2-type. In this manner, Th2
cells regulate the host’s humoral immune response by
releasing anti-inflammatory cytokines, such as IL-4, IL-5,
IL-9, and IL-13, that are involved in allergic reactions and
the elimination of extracellular pathogens (Mosmann et al.,
2009). Furthermore, IL-10 can also act as a negative regulator
of inflammation to prevent tissue damage (Haddad et al., 2003;
Romagnani, 2006; Guilliams et al., 2009; Bosschaerts et al.,
2010).
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FIGURE 1 | Simplified MAPK signaling pathways. (A) ERK1/2 pathway. (B) p38 α, β, δ, and γ pathways. (C) JNK 1, 2, and 3 pathways. See text for details.

HOST IMMUNE RESPONSE
SUBVERSION BY PROTOZOAN
PARASITES
Protozoan parasites use many varied tactics to avoid and/or
subvert the host’s immune response, with the adoption of an
intracellular lifestyle one the first mechanisms (Sacks and Sher,
2002). Other successful strategies employed by such pathogens
to circumvent the immune system include: the expression of
specific parasite antigens on the surface of infected cells to
prevent recognition by immune cells (Sacks and Sher, 2002),
the subversion of T cell responses by interfering with cytokine
production (Engwerda et al., 2014), and the avoidance of
direct killing by the complement system (Ouaissi and Ouaissi,
2005).

To protect an organism against protozoan intracellular
infection, its immune system needs to identify and eliminate
the parasite, but, at the same time, also needs to be balanced
in order to minimize or avoid self-inflicted tissue damage
(Dent, 2002). Phagocytosis is the primary mechanism used by
the immune system in its response to intracellular parasites.
This mechanism, mainly promoted by macrophages, depends
on parasite recognition and is enhanced by opsonization and
the complement system (Stafford et al., 2002). Leishmania
spp. and T. cruzi escape from the host’s complement system
using different strategies. T. cruzi produces glycoproteins
that inhibit C3b/C4b (gp160), factor B (gp58) and molecules
that accelerate the decay of the C3 pathway. In contrast,
Leishmania spp. adapt their membrane to prevent the

insertion of C5b-C9. This species also produces a surface
metalloproteinase, gp63, and a lipophosphoglycan (LPG) that
cleave C3b, abrogating complement-mediated lysis (Sacks
and Sher, 2002; Ouaissi and Ouaissi, 2005). Leishmania gp63
can also activate the complement system, leading to parasite
opsonization and increased uptake by host macrophages in
a highly advantageous mechanism that allows both forms of
this parasite (promastigote and amastigote) to replicate inside
host macrophages (Stafford et al., 2002; Gómez and Olivier,
2010).

Although phagocytosis is the first mechanism activated in
immune protection, the induction of a Th1-type response is
the most effective reaction against intracellular protozoans. The
promotion of such an inflammatory response leads to the
successful elimination of these parasites due to the release and
intense activity of pro-inflammatory cytokines and mediators
(Jankovic et al., 2001; Stafford et al., 2002; Guilliams et al.,
2009; Bosschaerts et al., 2010; Beiting, 2014; Engwerda et al.,
2014). As outlined previously, the generation of Th1 and Th2
responses is regulated by IL-12 and IL-10 cytokines, respectively,
which are modulated by the host’s intracellular MAPK signaling
pathways (Dong et al., 2002; Arthur and Ley, 2013). So, by
acting on the MAPK signaling pathway, intracellular protozoan
parasites can switch the production of regulatory cytokines from
IL-12 to IL-10 to prevent the formation of an inflammatory
response (Jankovic et al., 2001; Stafford et al., 2002; Zambrano-
Villa et al., 2002; Guilliams et al., 2009). In this way, T. cruzi
and Leishmania spp. impair the development of a Th1 response
to favor a Th2-type response. The mechanisms used by these
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parasites to deregulate the immune response will be briefly
reviewed below.

Leishmania spp. SUBVERT THE MAPK
PATHWAY BY ACTIVATING ERK1/2 TO
INCREASE IL-10 AND DOWN-REGULATE
IL-12

Leishmania spp. parasites use several strategies to survive
inside host cells after infection. The methods employed by
these parasites to subvert the host’s immune defense systems
include: (i) an intracellular stage in their life cycle, allowing
them protection against humoral anti-leishmanicidal products;
(ii) the suppression of the synthesis of reactive oxygen
intermediates (ROI) or reactive nitrogen intermediates (RNI);
(iii) the inhibition of antigen presentation by repressing the gene
expression of major histocompatibility complex (MHC) class II,
interfering with antigen loading, or by sequestering/highjacking
the MHC II molecule or antigen; (iv) the subversion of host
cellular signaling pathways such as STAT, PI3K/AKT, and
MAPK; and (v) the modulation of host cytokines to avoid
T cell differentiation and thus prevent the formation of a
Th1-type immune response (Bogdan and Röllinghoff, 1998;
Olivier et al., 2005; Liese et al., 2008; Martinez and Petersen,
2014).

To undermine the production of regulatory inflammatory
cytokines and prevent the formation of a Th1-type immune
response, Leishmania parasites target the MAPK signaling
pathway, which is responsible for regulating the production of
IL-12 (p38) and IL-10 (ERK 1/2) in macrophages and dendritic
cells. By this means, Leishmania spp. promote switching from IL-
12 to IL-10 production, consequently altering the formation of a
Th1 response to Th2, and leading to parasite prevalence in the
host (Ghalib et al., 1995; Olivier et al., 2005; Bhardwaj et al., 2010;
Shadab and Ali, 2011).

Rub et al. (2009) have shown that Leishmania spp. often
act upon the CD40/MAPK pathway. Expressed mainly on
macrophages and dendritic cells, CD40 is an important co-
stimulatory molecule involved in the differentiation of Th cells
to a Th1-type, reflecting how CD40 induces the production
of IL-12 (O’Sullivan and Thomas, 2003) by the activation of
MAPK pathway members (Bhardwaj et al., 2010). In their
study, Rub et al. (2009) showed that L. major triggered
cholesterol depletion, and, in doing so, prevented CD40
reallocation to skew the CD40 signaling pathway from p38
and IL-12 to ERK1/2 and IL-10 production. As a consequence,
this event led to an increased IL-10 production. Taken
together, these events favored a parasite burden and confirmed
that the CD40/MAPK pathway was important for L. major
subversion of the host’s immune response. However, the
specific mechanism surrounding augmented IL-10 production
remained unknown until Srivastava et al. (2011) and Khan
et al. (2014) noted the participation of phosphatases in
this process. Srivastava et al. (2011) demonstrated that in
L. major infection, the phosphatases, MKP-1 and MKP-3, were

differentially expressed. L. major induced the upregulation of
MKP-1 (p38 high affinity phosphatase) and downregulation
of MKP-3 (ERK1/2 high affinity phosphatase) to skew CD40
signaling toward the ERK1/2 pathway, favoring infection.
Khan et al. (2014) demonstrated that the phosphotyrosine
phosphatase, SHP-1, functioned in a similar manner and
acted on Syk and Lyn (ERK1/2 and p38 MAPK activators,
respectively). In a CD40 dose-dependent manner, SHP-1
modulates CD40-induced phosphorylation of p38 MAPK and
ERK1/2 to favor ERK1/2-dependent IL-10 expression and
parasite survival (Figure 2). Xin et al. (2008) and Boggiatto
et al. (2009, 2014) also demonstrated the importance of the
CD40/MAPK signaling pathway in L. amazonensis infection.
L. amazonensis upregulated ERK1/2 in dendritic cells, increased
IL-10 production and prevented the expression of CD40 and
IL-12p40 (one of the subunits of IL-12), leading to the
limited activation of dendritic cells and a deficient Th1-type
response.

Extracellular-signal-regulated kinase 1/2 activation by
Leishmania spp., associated with parasite persistence and IL-
12 down-regulation, was also seen for L. amazonensis (Xin
et al., 2008; Martinez and Petersen, 2014) and for L. donovani.
Infection by L. donovani also led to the suppression of p38
MAPK and increased IL-10 production (Chandra and Naik,
2008; Shadab and Ali, 2011). Interestingly, treatment of
L. donovani-infected macrophages with an immunoprophylactic
glycolipid, arabinosylated lipoarabinomannan (Ara-
LAM) isolated from Mycobacterium smegmatis, activated
p38 MAPK with a concomitant abrogation of ERK1/2
phosphorylation. Furthermore, the production of IL-12
(Bhattacharya et al., 2011) and IFNγ responsiveness were
restored (Chowdhury et al., 2015). Exploitation of host
phosphatases can also be seen in L. donovani infection: Nandan
and Reiner (2005) showed that L. donovani activates the
phosphotyrosine phosphatase, SHP-1 that correlates with
parasite survival.

Gp63 and LPG can also modulate the host MAPK signaling
pathway and the production of cytokines. Gp63 acts on
both p38 and the phosphotyrosine phosphatase SHP-1. To
subvert MAPK signaling, gp63 of L. major promastigotes
leads to a p38 inhibition in fibroblasts by mediating the
proteolysis of TAK-1-binding protein-1 (TAB1), a p38
regulator (Halle et al., 2009). Gp63 of both L. major and
L. mexicana amastigotes and promastigotes activates SHP-1
in macrophages in a cleavage-dependent manner leading to
p38 down-regulation (Gomez et al., 2009; Abu-Dayyeh et al.,
2010). Gp63-mediated inactivation of p38 could consequently
inhibit IL-12 production. Conversely, the LPG of L. braziliensis
and L. infantum also activates ERK1/2, but abrogates not only
IL-12 production, but also that of IL-10 (Ibraim et al., 2013).
Further studies are needed to understand the mechanisms
by which LPG modulates MAPK and IL-12 production in
an IL-10-independent manner. L. mexicana LPG can also
manipulate the MAPK pathway and inhibit IL-12 but this seems
to be due to the impairment of NFκB translocation caused
by LPG (Cameron et al., 2004; Argueta-Donohué et al., 2008;
Table 1A).
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FIGURE 2 | Leishmania spp. model of immune modulation targeting the p38/ERK1/2 MAPK pathway. (A) CD40/ERK1/2 pathway. (B) CD40/p38 MAPK
pathway. Leishmania spp. skew the CD40/MAPK signaling pathway, from p38 to ERK1/2, to favor IL-10 production.

Trypanosoma cruzi TRIGGERS
MOLECULES TO REGULATE THE MAPK
PATHWAY AND CYTOKINE
PRODUCTION
The mechanisms by which T. cruzi evades the host’s immune
response by acting on the MAPK pathway have been poorly
studied and are therefore incompletely understood. However, it is
well established that upon cell invasion, T. cruzi begins to subvert
signaling pathways and to use host molecules to favor its entry
and survival inside host cells. For instance, T. cruzi extracellular
amastigotes (EAs) recruit both host protein kinase D1 (PKD1)
and cortactin to induce PKD1 autophosphorylation and cortactin
activation by ERK, leading to the recruitment of host actin that
allows parasite entry into HeLa cells (Bonfim-Melo et al., 2015).
T. cruzi, as well as Leishmania spp., is able to induce: (i) ERK1/2,
but not p38MAPK, activation in macrophages and dendritic cells
(Mukherjee et al., 2004); and (ii) increased IL-10 and decreased
IL-12 production (Poncini et al., 2008). These effects impair the
formation of an efficient Th1 inflammatory response (Alba Soto
et al., 2003, 2010) to allow parasite evasion of the host immune
response.

Some T. cruzi molecules are released and activate Toll-like
receptors (TLRs), such as TLR2, TLR4, or TLR9, in dendritic
cells and macrophages (Tarleton, 2007). This leads to the

activation of p38 MAPK and the production of IL-12, favoring
an inflammatory response (Ropert et al., 2001; Terrazas et al.,
2011). This model is supported by the observations of Terrazas
et al. (2011) who showed that dendritic cells exposed to T. cruzi
antigens (TcAgs) and TLR ligands induced p38 phosphorylation
that was dependent on TcAg-macrophage migration inhibitory
factor (MIF) synergism. This led to the enhancement of IL-12
production, thus promoting a Th1-type response (Terrazas et al.,
2011).

However, despite the activation of a pro-inflammatory
immune response by some parasite molecules, it is well known
that several other molecules of such pathogens act against the
host’s infected cells and signaling pathways, subverting the host’s
immune response against the parasite (Ouaissi et al., 1995;
Hovsepian et al., 2011; Castillo et al., 2013; Ruiz Díaz et al., 2015).

One of the proteins released by T. cruzi that disrupts the host’s
immune response is Tc52. A protein of 52 kDa, Tc52 is composed
of two homologous domains sharing significant homology with
glutathione S-transferases (Schöneck et al., 1994), and exhibits
both immunomodulatory and virulence roles (Ouaissi et al.,
1995, 2002a). When localized in the cytoplasm, a 28 kDa
peptide fragment derived from the C-terminal portion of Tc52
(Borges et al., 2003) induces the Tc52-mediated suppression of
T cell proliferation, and exerts mitogen-dependent cytokine and
chemokine-like activities. Thus, this peptidemodulates genes that
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TABLE 1 | Trypanosomatids-released proteins and their action on MAPK pathway in macrophages and T cells.

(A) Leishmania spp. proteins

Protein MAPK Target on
macrophages

Mechanism Target on T cells Reference

gp63 p38 MAPK Cleavage-dependent activation of
SHP-1 leading to p38 inactivation and,
presumably, inhibition of IL-12

IL-12 Gomez et al., 2009;
Abu-Dayyeh et al., 2010

LPG ERK Activation of ERK abrogating both IL-10
and IL-12 production

IL-10 and IL-12 Feng et al., 1999; Ibraim et al.,
2013

(B) Trypanosoma cruzi proteins

Protein MAPK Target on
macrophages

Mechanism Target on T cells Reference

Tc52 p38 or ERK Mitogen-dependent modulation of
genes that encode IL-10 and IL-12
leading to increased IL-10 secretion
and inhibition of IL-12

IL-10 and IL-12 Ouaissi et al., 2002b; Borges
et al., 2003; Ouaissi and
Ouaissi, 2005

AgC10 p38 Inhibition of p38 and IL-12 IL-12 De Diego et al., 1997; Alcaide
and Fresno, 2004

GPIs and
GPI-anchored
mucins

ERK Activation of ERK1/2 upon treatment
with GPIs and GPI-anchored mucins
associated to IL-12 decrease

IL-12 Ropert et al., 2001

TS ERK TS activates ERK and stimulates IL-10
secretion

IL-10 Chuenkova and Pereira, 2001;
Ruiz Díaz et al., 2015

encode IL-10 and IL-12, leading to increased IL-10 secretion
and thereby inhibiting IL-12 (Ouaissi et al., 2002b; Ouaissi and
Ouaissi, 2005). Moreover, the events outlined above are probably
mediated by MAPKs.

Other proteins related to immune modulation in T. cruzi
infection are the glycosylphosphatidylinositol (GPI)-anchored
mucins and trans-sialidases (TS). AgC10, a GPI-anchored mucin
of 40–50 kDa, inhibits TNF and IL-12 secretion in a p38
MAPK inhibition-dependent manner, impairing the formation
of a Th1 response (De Diego et al., 1997; Alcaide and Fresno,
2004). Ropert et al. (2001) reported that ERK1/2 activation was
associated with a decrease in IL-12 in macrophages treated with
T. cruzi GPI and GPI-mucins, corroborating the participation
of these proteins in modulating the host’s immune response.
However, they also showed that GPIs and GPI-anchored mucins
could activate p38 MAPK later than ERK1/2, thus increasing IL-
12 synthesis and generating an opposing effect in the regulation
of the immune response by promoting a Th1 response (Ropert
et al., 2001). T. cruzi TS have been linked to ERK1/2 activation
(Chuenkova and Pereira, 2001). Recently, Ruiz Díaz et al. (2015)
confirmed the role of TS in IL-10-stimulated secretion, leading to
an imbalance of the Th1 cell response toward an Th2 phenotype
(Table 1B). However, despite current knowledge concerning
the strategies used by T. cruzi to subvert the host’s immune
response, the precise mechanisms by which this occurs remain
unknown.

CONCLUSION

The MAPK signaling pathway, responsible for regulating the
production of Th1-and Th2-type responses, is targeted by

trypanosomatids to modulate the host’s immune response in
order to favor parasite replication and survival. The mechanisms
whereby Leishmania spp. skew the MAPK signaling pathway
to subvert cytokine production and switch a Th1 to a Th2
response are well known compared to those for T. cruzi.
Leishmania parasites often target the CD40/MAPK pathway,
activating ERK1/2 to increase and decrease IL-10 and IL-12
production, respectively. In comparison, the strategy used by
T. cruzi is to trigger molecules to subvert MAPK ERK1/2
and p38 pathways and thus modulate cytokine production.
Further studies are required to increase our understanding of the
intriguing mechanisms by which T. cruzi manipulates the host’s
immune response.
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