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Graham et al.

Linking Microbes to Ecosystem Processes

Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our
rapidly increasing ability to explore complex environmental microbial communities, the
relationship between microbial community structure and ecosystem processes remains
poorly understood. Here, we address a fundamental and unanswered question in
microbial ecology: ‘When do we need to understand microbial community structure
to accurately predict function?” We present a statistical analysis investigating the
value of environmental data and microbial community structure independently and
in combination for explaining rates of carbon and nitrogen cycling processes within
82 global datasets. Environmental variables were the strongest predictors of process
rates but left 44% of variation unexplained on average, suggesting the potential for
microbial data to increase model accuracy. Although only 29% of our datasets were
significantly improved by adding information on microbial community structure, we
observed improvement in models of processes mediated by narrow phylogenetic
guilds via functional gene data, and conversely, improvement in models of facultative
microbial processes via community diversity metrics. Our results also suggest that
microbial diversity can strengthen predictions of respiration rates beyond microbial
biomass parameters, as 53% of models were improved by incorporating both sets of
predictors compared to 35% by microbial biomass alone. Our analysis represents the
first comprehensive analysis of research examining links between microbial community
structure and ecosystem function. Taken together, our results indicate that a greater
understanding of microbial communities informed by ecological principles may enhance
our ability to predict ecosystem process rates relative to assessments based on
environmental variables and microbial physiology.

Keywords: microbial diversity, functional gene, statistical modeling, microbial ecology, ecosystem processes,

respiration, nitrification, denitrification

INTRODUCTION

The links between complex environmental microbial
communities and ecosystem processes remain unclear (Carney
and Matson, 2005; Prosser et al., 2007; van der Heijden et al,,
2008; Petersen et al., 2012; Wallenstein and Hall, 2012; Graham
et al, 2014; Martiny et al, 2015), and an emerging field of
research has begun to investigate the utility of microbial data
for improving predictions of carbon (C) and nitrogen (N)
cycling beyond estimates based solely on environmental data
(Todd-Brown et al., 2012; Wieder et al, 2013; Reed et al.,
2014; Powell et al., 2015). While researchers have attempted to
enhance ecosystem process models by parameterizing microbial
physiological properties such as drought tolerance (Manzoni
et al., 2014), growth efficiency (Hagerty et al., 2014), dormancy
(Wang et al., 2015), and turnover rates (Wieder et al., 2013),
these models often fail to consider variation in microbial
community structure that may regulate ecosystem process rates
(Bouskill et al., 2012; Kaiser et al., 2014). As such, we still lack an
integrated understanding of the interactions between microbial
communities and ecosystem function, and a central question
in ecosystem science remains: ‘Under what circumstances does
information on microbial communities add to our predictive
power of ecosystem processes?’ Addressing this question is
essential not only for improving knowledge on how critical

biogeochemical cycles may respond to current and impending
environmental change, but also for allowing us to identify factors
that determine microbial community structure and activity in
space and time.

The specific conditions in which microbial community
structure — broadly defined here as information on diversity
and/or abundance of taxa within a community - may improve
predictions of ecosystem process rates beyond models based
on environmental and physiological attributes varies with a
myriad of biotic and abiotic factors (Knelman and Nemergut,
2014; Nemergut et al, 2014). Research has demonstrated
global patterns in microbial communities that correlate with
environmental factors such as salinity (Lozupone and Knight,
2007; Auguet et al, 2010), pH (Lauber et al, 2009), and
habitat type (Dinsdale et al., 2008; Nemergut et al, 2011;
Fierer et al, 2012), and links between microbial community
and ecosystem processes have been observed within numerous
individual studies (van der Heijden et al, 1998; Torsvik and
Qvreds, 2002; Bardgett and van der Putten, 2014; Wagg et al,,
2014). However, these relationships and the underlying ecological
principles that generate them may vary among environments,
relevant microbial traits, and processes of interest (Wallenstein
and Hall, 2012; Nemergut et al., 2014). For example, stochastic
assembly processes (Hubbell, 2001; Rosindell et al., 2011; Stegen
et al, 2012; Nemergut et al, 2013), phenotypic plasticity

Frontiers in Microbiology | www.frontiersin.org

February 2016 | Volume 7 | Article 214


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Graham et al.

Linking Microbes to Ecosystem Processes

(DeWitt et al., 1998), and priority effects (Fukami, 2004; Fukami
et al., 2010) can decouple microbial community structure from
environmental conditions, and under such conditions, microbial
community structure should be central to explaining ecosystem
process rates. A unifying perspective that accounts for the
dynamic relationships between microbial community structure
and ecosystem function is vital for improving predictions of
ecosystem process rates, yet recent work has been largely unable
to decipher coherent trends in such relationships across studies
(Rocca et al., 2014; Bier et al., 2015).

Thus, to assess the importance of microorganisms in
explaining ecosystem processes, we used statistical modeling
to evaluate the value of environmental variables and microbial
community structure both alone and in conjunction for
explaining rates of C and N cycling processes within global
datasets. Although the literature reporting environmental
variables, microbial community data, and biogeochemical
processes in a single study is sparse (Rocca et al, 2014), we
collected and re-analyzed 82 datasets spanning a multitude
of diverse environments. We hypothesized that while the
environment is a strong driver of most ecosystem processes,
microbial community structure adds to our understanding of
processes under certain circumstances, and we discuss patterns
across ecological, biogeochemical, and phylogenetic subsets of
data. Our analysis generates new insights about the relationship
between microbial community structure and a variety of
ecosystem processes.

MATERIALS AND METHODS

for studies
community

We completed an exhaustive literature review
measuring environmental variables, microbial
structure, and biogeochemical processes across a range of
ecosystems (Supplementary Table S1). We then constructed
statistical models for three predictor sets and their additive
combinations — environmental data, microbial community data,
and microbial biomass measurements (Supplementary Figure
S1). Because the measurement of microbial biomass (defined as
microbial C and/or N content) was not a criterion for dataset
selection, only 28 datasets included biomass measurements. To
incorporate differences in microbial community structure into
our models, we used ordination-based techniques to condense
multivariate community data into vectors that we included
as predictors in our models (Supplementary Methods). The
Shannon diversity index of each sample was also included as
a measure of alpha diversity. In total, these taxonomic metrics
are referred to as ‘community diversity’ when applied to 16S
rRNA genes or PLFAs and ‘functional diversity’ when applied to
functional genes. Functional gene abundances were included as
measures of total gene abundance per gram of soil when possible
(n = 17), although five datasets only listed gene abundances as
normalized relative to 16S rRNA gene abundance.

Within each type of data, methodology to collect
environmental, microbial, and process data, as well as variables
collected, inevitably varied. To minimize potential error
introduced by these differences, we re-analyzed data within each

dataset using a multimodel inference approach with the ‘MuMIn’
package (Barton, 2011) in R software (R Core Team, 2014) and
subsequently compared results from our analyses. Multimodel
inference is a broad regression-based, model-averaging statistical
approach designed to reduce errors in model selection, and this
method has the advantage of standardizing our approach across
studies while accounting for a lack of a priori system-specific
knowledge (Burnham and Anderson, 2002). This statistical
approach has been used in other small scale studies with similar
objectives (Powell et al, 2015). We validated the accuracy
of MuMIn in our dataset by comparing models for several
datasets with expert-built regression models, which yielded
comparable results (more details available in Supplementary
Methods).

Using the ‘dredge’ command in the ‘MuMIn’ package to fit
and evaluate the explanatory power of all possible combinations
of variables within a predictor set on a process rate, we selected
a set of best fit models for each predictor set consisting of all
models with a delta AICc value no more than four greater than
the model with the lowest AICc value (Burnham and Anderson,
2004). We generated an averaged final model from this model
set using Akaike’s weights, implemented with the ‘model.avg’
command in R (Supplementary Methods). Final models from
different predictor sets were compared for statistically significant
differences at a delta AICc value of four to provide conservative
estimates of model improvements (Burnham and Anderson,
2004). Models were also evaluated for ecologically relevant
improvement, defined by an increase in adjusted R? value greater
than 10% of the environmental model adjusted R? value. This
criterion was implemented to remove artifacts from datasets
in which statistically different models, based on AICc values,
yielded similar adjusted R*> values. Only models that showed
both statistical and ecological improvement were considered to
be improved.

Finally, model results were synthesized across studies within
ecologically relevant subsets of data. We examined results
within the full dataset and within biogeochemical process [C
mineralization (referred to here as ‘respiration’), nitrification,
denitrification, N mineralization], microbial data (PLFA,
tRFLP, ARISA, DGGE, qPCR, next generation sequencing)
and environment types (natural soil, sediment, agricultural
soil) with sufficient replication (n > 12). We report the mean
adjusted R? of models and the increase in adjusted R? value as
measures of effect size as well as the percent of models statistically
improved by the addition of microbial data relative to models
constructed with only environmental parameters. Differences
among the explanatory power of models with environmental,
microbial, or both environmental and microbial data were
assessed by comparing the distribution of model adjusted R?
values within each predictor set using unpaired one-sided Mann-
Whitney U-tests for non-parametric data. We also examined
correlations between predictor sets to determine the extent to
which environmental variables explained variation in microbial
community structure and biomass and to which biomass
explained variation in microbial community structure. We
analyzed these relationships with redundancy analysis (RDA),
utilizing the ‘ordistep’ function in the ‘vegan’ package (Oksanen
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et al.,, 2013) in R to automate forward model selection, and we
report the average R? values of correlations between predictor
sets as a measure of effect size (Supplementary Methods).

RESULTS

Overall, models based on environmental variables explained
significantly more variation in processes than models based on
microbial community structure (n = 82, average adjusted R? 0.56
vs. 0.31, Mann-Whitney U, p < 0.0001, Figure 1). On average,
models with both environmental and microbial predictors
explained more variation in processes than environmental
models (n = 82, average adjusted R*> 0.65 vs. 0.56, Mann-
Whitney U, p = 0.046); however, only 29% of datasets were
significantly improved by adding information on microbial
community structure, by an average of 0.08 increase in adjusted
R? within all models. Data on microbial community structure
from ARISA, tRFLP, qPCR, and next generation technology did
not differ in their explanatory power of process rates, but DGGE
and PLFA had significantly lower explanatory power than other
metrics (Supplementary Figure S2A). All microbial data types
showed weak correlations to environmental variables but gene
abundance data displayed a trend for higher correlation (n = 22,
average adjusted R*> 0.36) than community (n = 55, average
adjusted R? 0.20) or functional diversity (n = 5, average adjusted
R? 0.21) metrics (Supplementary Figure S2B).

We also examined each process individually for those
functions for which we had the most data: nitrification (n = 14),

1.00

0.75

0.50

0.25 =

Avg. Explanatory Power (Adj. R2)

0.00

Envir+Microbial~
Process

Microbial~
Process

Environment~
Process

FIGURE 1 | Within the full dataset (n = 82), environmental variables
explained more variation in ecosystem process rates than microbial
community structure. Microbial predictors alone had low explanatory power
on processes but improved model explanatory power on average. Error bars
denote standard errors, and letters represent significantly different groups
(Mann-Whitney U, p < 0.05).

denitrification (n = 17), N mineralization (n = 12), and
respiration (n = 26). Overall, variation in N mineralization and
denitrification rates was less well-explained than other processes
by any predictor set (Figure 2). Only 17% of datasets examining
N mineralization were improved by microbial community data —
an average increase in adjusted R? of 0.008 within all N
mineralization datasets — and the average explanatory power
of microbial community structure alone on N mineralization
rates was 0.21, compared to 0.31 in the full dataset. Within N
mineralization studies that assayed microbial biomass, we found
that microbial biomass correlated with environmental variables
(n = 5, average adjusted R*> 0.58) but not with process rates;
none of the N mineralization models were improved with the
addition of data on biomass. No denitrification studies examined
microbial biomass or PLFAs. However, despite low replication, it
is notable that in three of four studies, models of denitrification
were improved with the addition of 16S rRNA gene diversity data
(0.13 average increase in adjusted R?), while only three of eleven
models were improved with data on functional gene abundance
(0.04 average increase in adjusted R?).

Rates of nitrification were well-explained by all predictor sets
(Figure 2). Nitrification models based on microbial data yielded
the highest average adjusted R? of any process (0.38 across all data
types and 0.50 if PLFA data are removed) with gene abundance
(n = 4) data showing higher adjusted R?> than community
diversity data (n = 8; 0.61 vs. 0.21, Mann-Whitney U, p = 0.008).
Moreover, 50% of environmental models of nitrification were
improved with data on functional gene abundance or functional
diversity (n = 6), while only 30% of models were improved with
data on 16S rRNA gene diversity (n = 6), and PLFA data only
improved 20% of models (n = 2). As with N mineralization,
biomass was correlated with environmental variables (n = 3,
average adjusted R? 0.62) and did not add explanatory power to
nitrification rates.

Respiration rates were well-explained by the environment,
with an average adjusted R® of 0.66 (Figure 3). Similar to
the full dataset, microbial-only respiration models showed an
average adjusted R?> of 0.29 and only 23% of respiration
models were improved with the addition of 16S rRNA gene
diversity or PLFA data (no functional gene abundance datasets
existed), by an average increase in 0.06 in adjusted R* across
all respiration datasets. Interestingly, microbial biomass, when
measured, improved 35% of models of respiration rates (n = 17,
0.09 average increase in adjusted R?), while 53% of models were
improved with data on biomass and community structure in
combination (0.15 average increase in adjusted R?). Microbial
biomass was correlated to environmental variables with an
average adjusted R?> of 0.56 but not to microbial community
structure (average adjusted R? 0.11).

Although most of our datasets were from natural soil studies
(n = 47), we had sufficient replication of sediment (n = 12)
and agricultural soil (n = 12) datasets to examine these
independently; other environments (n < 12) were excluded
from this analysis. While statistically significant differences
were not found, possibly due to the large variation in our
datasets, we observed some notable trends across environments.
Datasets from sediment samples were less well-explained
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FIGURE 2 | Average explanatory power varied by process and microbial data type, and we present the explanatory power of functional genes
(abundance and diversity) and community diversity for each N cycling process. Environmental model bars slightly differ within each figure as they represent
only the environmental models for each data type, and functional genes are not depicted for N mineralization due to low sample size (n = 2). Error bars represent
standard errors. (A) N mineralization (1 = 12) and (B) denitrification (1 = 17) models had relatively low explanatory by all predictor sets. However, community diversity
metrics (n = 4) provided more added value for denitrification rates than for other processes. (C) By contrast, rates of nitrification (n = 14) were well-explained by both
environmental and functional gene predictor sets (n = 6) and were more likely to be improved by functional data.

by environmental or microbial predictor sets than other
datasets (Figure 4). Relationships between community diversity
and environmental conditions were also weak in sediment
systems (n = 8, average adjusted R?> 0.17), and community
diversity metrics provided more added value (0.12 average
increase in adjusted R?) in sediments than other systems.
Agricultural systems had high explanatory power of process by
both environmental (average adjusted R* 0.59) and microbial
predictors (average adjusted R? 0.38) relative to other systems,
and metrics of community diversity were more strongly
correlated with the environment (1 = 7, average adjusted R? 0.24)
and had lower added value (average adjusted R? 0.06) than in
other ecosystem types.

DISCUSSION

Despite the vast amount of variation in our datasets, our
results indicate that data on microbial community structure may
strengthen predictions of C and N cycling rates. Within our full
dataset, environmental variables alone had greater explanatory
power than either metrics of microbial community structure
or microbial biomass but left 44% of variation in process rates
unexplained on average (Figure 1). While we acknowledge that
factors such as unmeasured variables, macroinvertebrates (Ferris
et al, 2004), fungi (Talbot et al., 2008), plant communities
(Hanson et al, 2000), and non-linearity could reduce the
explanatory power of our models, a number of ecological
dynamics can disassociate environmental conditions from

microbial communities mediating C and N cycle processes and
alter the relative value of environmental and microbial data for
explaining rates of ecosystem processes (Knelman and Nemergut,
2014; Nemergut et al., 2014). When such factors strongly impact
microbial communities, data on microbial community structure
should enhance our predictions of ecosystem processes beyond
those based solely on environmental data.

We observed stronger trends in the explanatory power
of microbial predictors on ecosystem process rates when
we reduced noise by examining subsets of data containing
a single process or environment type. However, the lack of
consistent trends within the full dataset is not surprising
due to a variety of ecological and methodological factors.
For instance, microorganisms can enter a state of lowered
activity or dormancy in response to unfavorable environmental
conditions (Jones and Lennon, 2010; Lennon and Jones,
2011), and research suggests that the percent of soil microbial
communities catalyzing chemical reactions in soils at a given
point in time can vary widely with resource history and
disturbances (Blagodatskaya and Kuzyakov, 2013). These factors
also induce spatially and temporally variable relationships
between microbial communities and ecosystem processes,
and the same microbial community may display different
relationships to ecosystem function when sampled through
time. Moreover, the extent to which functional traits are
phylogenetically conserved varies with the trait of interest
(Martiny et al., 2013), and thus, some processes may exhibit
inherently stronger correlations with taxonomic metrics
than others. Although, rapidly improving transcriptomic and
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FIGURE 3 | Rates of respiration (n = 26) were well-explained by all
predictor sets relative to the full dataset. In this figure, we present
microbial biomass in addition to microbial community structure, with standard
errors represented as error bars. Microbial community structure and biomass
independently had low explanatory power compared to environmental
variables; however, they were largely uncorrelated with each other and
provided greater model improvement when added to environmental variables
in conjunction than when added independently.

proteomic sequencing technology may enhance predictions
of ecosystem processes by identifying active segments of
microbial communities (Abram, 2015), too few datasets
presently exist to conduct a robust analysis with these data.
Studies investigating the extent to which these dynamics are
masked within observations of microbial community structure
and function are imperative to deciphering and improving the
current ability of microbial data to predict ecosystem process
rates.

As well, discrepancies in methodology may also confound the
relationship we observed in the full dataset between microbial
communities and biogeochemical processes (Sinsabaugh et al.,
2015). Microbial DNA is typically extracted from a fraction
of gram of soil at a single time point and methods detect
both dormant and active organisms, while corresponding
process data are measured in several grams of soil over
longer timeframes. Further, process rate measures are either
collected as net measurements that aggregate multiple chemical
reactions, potential rates that represent microbial response to
substrate addition, or gross rates that trace individual chemical
transformations (Bier et al., 2015). These approaches inevitably
introduce data aggregation issues (Clark et al., 2011) and rely
on assumptions that microbial and biogeochemical data are
spatially and temporally representative. Recently, studies have
attempted to reduce uncertainty associated with scalar differences
by pairing spatially and temporally explicit field studies with
ecological modeling approaches that interpolate data across

Oi
) %eéiment
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0.50 =

Avg. Explanatory Power (Adj. RZ)
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0.00 -~

Envir+Mic~
Process

Microbial~
Process
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FIGURE 4 | We analyzed natural soil (n = 47), sediment (n = 12), and
agricultural soil (n = 12) environments separately. Bar height represents
the average explanatory power of each predictor set, with error bars denoting
standard errors. While predictor sets in natural soils nearly matched those
within the full dataset, environmental and microbial predictor sets had lower
explanatory power within sediments and higher explanatory power within
agricultural soils. Microbial community diversity was less tightly coupled to the
environment and provided more model improvement in sediments, with the
opposite relationship in agricultural soils.

scales (Lira-Noriega et al., 2013; Walker and Wardle, 2014).
Leveraging these approaches in conjunction requires substantial
resource investment but is increasingly feasible and presents
a promising avenue for maximizing the value of microbial
data.

Despite inherent limitations in microbial data, our data
analysis suggests that microbial data types differ in their
ability to explain processes that are phylogenetically broad
vs. narrow and that are products of facultative vs. obligate
metabolisms (Figure 2). Nitrification is the product of an
obligate chemolithotrophic metabolism, and functional markers
for this process are narrowly constrained within ammonia-
oxidizing bacteria and archaea that catalyze the rate-limiting
step in nitrification, putatively representing a likely dataset
for detecting relationships between microbial data and process
rates (Schimel, 1995; Schimel and Gulledge, 1998). While both
functional gene abundance and community diversity metrics
had similar average explanatory power within the full dataset
(an effect that also did not vary among microbial technologies,
Supplementary Figure S2A), models based on functional gene
abundances or functional diversity explained more variation
in process rates than community diversity within datasets
measuring rates of nitrification (Figure 2C). Although these
metrics were more strongly correlated with environmental
factors than community diversity, they also provided greater
explanatory power in combination with environmental variables
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than community diversity metrics, which include variation
in many microbial guilds external to nitrification. Notably,
models based on environmental variables alone also had higher
explanatory power for nitrification than for denitrification or
N mineralization, suggesting that the environment may also be
more strongly coupled to nitrification rates than other N cycle
processes. Taken together, these results suggest that despite a
relatively tight connection between the environment, microbial
community structure, and process data, the microbial guilds
driving nitrification rates are partially decoupled at a functional
level from environmental drivers of nitrification. Importantly,
although nitrification was the only narrow process in our
dataset with sufficient replication to examine independently, the
high explanatory power of functional genes, both alone and
in combination with environmental variables, for describing
nitrification rates relative to other processes also conveys the
potential for the inclusion of functional metrics in improving
predictions of ecosystem processes that are mediated by
phylogenetically narrow functional guilds.

By contrast, denitrification is a broad process, catalyzed by
diverse facultative anaerobic microorganisms, and community
diversity metrics provided more added value to denitrification
rates than functional gene diversity or abundances (Figure 2B).
While we acknowledge that genetic markers may not denote
all functional genes involved in a process (Jones et al,
2014; Verbaendert et al., 2014), we observed more added
value from community diversity metrics than functional genes
despite several studies assaying up to three genes to explain
denitrification rates, as opposed to one or two functional
markers measured for nitrification. For broad processes such
as denitrification, representations of niche complementarity or
resource availability reflected in diversity metrics (Cadotte et al.,
2011) rather than functional gene abundances that do not
account for interactions between individuals (Barberdn et al,,
2012; Gagic et al,, 2015) or functional redundancy (Allison and
Martiny, 2008), may be important for explaining process rates.
Thus, it is plausible that denitrifying communities are decoupled
from environmental variables when measured at a broad
taxonomic level and that such taxonomic metrics encompass
more variation in within community interactions affecting
denitrification rates than functional approaches. Although the
sample size of datasets measuring denitrification was small, our
analysis suggests that measurements of community diversity may
be more likely than functional metrics to improve predictions of
ecosystem processes that are catalyzed by facultative metabolisms
and/or phylogenetically broad suites of organisms.

Similarly, the ability to respire carbon is widely distributed
among microorganisms, and community diversity metrics
(no datasets measured functional markers) described rates of
respiration better than all other processes except denitrification
(Figure 3). In fact, environmental and microbial variables, both
alone and in combination, yielded higher average explanatory
power of respiration rates than all other processes we examined
independently with the exception of nitrification. Importantly,
while recent work has suggested that microbial biomass (Schimel
and Weintraub, 2003) or physiological properties such as drought
tolerance (Manzoni et al,, 2014) and growth efficiency (Wieder

et al,, 2013) can improve C cycling models, our results indicate
that information on microbial community structure may further
enhance our understanding of ecosystem C cycling. Microbial
community structure and biomass appeared to explain differing
portions of variation in process, as they exhibited extremely weak
correlations with each other and, together, provided additive
value for explaining rates of respiration. Thus, biomass and
structure may jointly contribute to explaining rates of respiration
as biomass may serve as a proxy for unmeasured environmental
variables that regulate activity, such as soil structure (Gupta
and Germida, 1988), while community structure may relate
to the genetic capability of a community to respire carbon.
Regardless, our results suggest that these data are at least
partially independent and that measurements of microbial
community structure could reduce uncertainty within Earth
Systems models.

Lastly, the relationship between microbial community
structure and ecosystem processes in our dataset varied by
environment type (Figure 4). Sediment systems had weaker
explanatory power of process rates by both environmental
variables and microbial community structure than natural or
agricultural soils. Sediment processes are influenced by both
sediment and porewater chemistry (Middelburg and Levin,
2009), and these datasets may be more likely to have unmeasured
variables or errors due to spatial discrepancies than other
systems. In particular, dissolved oxygen concentration is a strong
determinant of redox potential and ecosystem processes in
sediments (Abell et al., 2011) but was only measured in three
of 12 datasets. Despite the low explanatory power of sediment
processes by all predictor sets, microbial community diversity
added more value to explaining process rates and was more
decoupled from environmental variables in sediments than in
natural soil or agricultural systems, indicating that measurements
of microbial community structure may improve predictions of
sediment processes. Conversely, in agricultural soils, microbial
community structure explained more variation in ecosystem
processes but provided less improvement over environmental
variables than other systems. Environmental variables were also
better predictors of process in agricultural soils, and microbial
community diversity was more tightly correlated with the
environment than in sediments or natural soils. Agricultural
systems homogenize soil structure and decrease soil organic
matter (Dick, 1992; Chan and Heenan, 1996), reducing the
number and complexity of microbial niches in agricultural
soils. Thus, relatively coarse-scale measures of environmental
conditions may more directly correlate with both community
structure and ecosystem process rates than in more variable
systems. Overall, these results indicate that ecosystem-specific
dynamics may be crucial to understanding the value of microbial
community structure for explaining ecosystem processes
and emphasize the importance of future investigations into
understudied biomes in enhancing our understanding of global
relationships between microbial communities and ecosystem
processes.

Here, we present the first extensive investigation into
the relationship between environmental conditions, microbial
community structure, and ecosystem function by re-analyzing 82
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datasets collected from an international team of collaborators,
and we demonstrate that nuanced relationships between the
environment and microbial communities can influence the
importance of microbial community structure for explaining
ecosystem-level processes. Our analysis provides an empirical
basis for future hypothesis-testing on the roles of assembly,
dormancy, redundancy and phenotypic plasticity in microbial
community structure and function, and despite complexity in
our datasets, the trends we observed represent an encouraging
step for linking microbial community data to ecosystem
function. As a whole, our results indicate that a greater
understanding of microbial community structure informed by
ecological principles may further our ability to accurately
predict rates of ecosystem processes beyond environmental
variables and bulk physiological characterizations of microbial
communities.
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