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As soon as researchers uncovered microorganisms’ abilities to communicate, efforts began to
control the conversation. Among other cellular functions, quorum-sensing is implicated in biofilm
formation, a problematic phenomena in a variety of settings such as persistence of infections
(Costerton et al., 1999; Rutherford and Bassler, 2012) and biofouling of water- and wastewater-
treatment membranes (Flemming, 1997; Ramesh et al., 2007; Yeon et al., 2008; Shrout and
Nerenberg, 2012). Cell-to-cell communication has also been documented in biofilm dispersal
leading to further propagation of biofilms within these systems (Solano et al., 2014).

Many efforts to interrupt and quench quorum-sensing have exploited the knowledge of signaling
systems using specific model organisms, most notably Pseudomona aeruginosa, Staphylococcus
aureus, and Vibrio fischeri (Stevens and Greenberg, 1997; Miller and Bassler, 2001; Schuster
and Greenberg, 2006; Novick and Geisinger, 2008). However, specific approaches have been
developed to target and block gene-regulation or to inactivate receptor proteins, however, these
approaches may have limited effects in mixed-community biofilms. Non-specific quenching of
quorum-sensing molecules may have broader impact. Microbially-generated enzymes such as
lactonases and acylases can hydrolyse N-acyl-L-homoserine lactones (HSLs), and interfere with
communication (Park et al., 2006; Uroz et al., 2008; Romero et al., 2011). Both naturally-derived-,
such as rosamaric acid and vanillin (Walker et al., 2004; Choo et al., 2006; Ponnusamy et al., 2009),
and synthetic-chemicals, including brominated furanones, have been shown to effectively inhibit
biofilm formation. The delivery of effective and non-toxic quorum-sensing inhibitors however,
remains a challenge in managing biofilms. In a recent Frontiers in Microbiology article, Miller
et al. (2015) introduce a different and unique approach that exploited the slightly-hydrophobic
core of a beta-cyclodextrin (β-CD) to non-specifically bindHSLs, and quench the signaling between
V. fischeri cells. What makes Miller et al.’s approach stand apart is they immobilized the β-CD on
the surface of silicon dioxide nanoparticles1(Si-NPs).

Like quorum-inhibition and quenching approaches, NPs, on their own, offer opportunities
for biofilm control. NPs are being explored to inhibit or prevent biofilm formation on surfaces
(Kalishwaralal et al., 2010; Tran and Webster, 2011) as well as increase biofilm vulnerability to
antibiotics (Applerot et al., 2012; Radzig et al., 2013). Miller et al. have demonstrated a proof-
of-concept approach, using NPs for quorum-quenching. However, NP penetration into biofilms

1Generally speaking, nanomaterials are often defined as a material that consists of particles with one or more dimensions in

the size range 1–100 nm. It is important to note that a ‘one size fits all’ definition may fail to capture what is important. The

change in reactivity at the nanoscale depends critically on the particular material and the context.
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should be carefully considered. Diffusion is reported as a function
of NP size, surface charge, biofilm density and thickness. Self-
diffusion of NPs is reported to decrease exponentially with square
of the NP radius and negatively-charged NPs is reduced further
(Peulen and Wilkinson, 2011).

One of the interesting findings by Miller et al. is that
the state of β-CD (i.e., unbound vs. immobilized on 15 or
50 nm Si-NPs) greatly affects its ability to impact QS. It
is important to recognize that surface-immobilized organics
possess very different properties than unbound ligands. For
example, the apparent acid dissociation constant (pKa) of 11-
mercaptoundecanoic acid (MUA) lies between ∼4.8 (when the
free molecules are in solution) to ∼10 (when immobilized on a
flat surface). When MUA is immobilized on a relatively small NP
(surface with a high curvature), a mere change of NP diameter
from 4 to 7 nm could result in a change of pKa by as much
as one pH unit.(Wang et al., 2011) On a non-spherical NP
surface (e.g., nanorod or nano-dumbbell), organic molecules
tethered onto regions of different geometric curvature would
experience different degrees of confinement, which ultimately
translate into location-specific chemical properties (Walker et al.,
2013).

NP ligand properties (e.g., size, density, type, and
orientation) have been shown to greatly impact drug delivery
(Bandyopadhyay et al., 2011; Wang et al., 2014; Amin et al.,
2015). Depending on the sizes and shapes of NPs, ligand density
could affect in-vitro cellular internalization and/or in-vivo
biodistribution (Reuter et al., 2015). β-CD, being used as a
scaffold for ligands, is capable of regulating ligand properties.
The primary hydroxyl group located on the narrower ring of

β-CD can be selectively modified by various biomolecules (e.g.,
peptides, ssDNA). For example, the average and localized lysine
density on β-CD can be tuned to regulate the adsorption of
proteins (Shi et al., 2015).

Distinct control of ligand density is an important design
parameter for NPs to be a more effective sponge of QS signaling
molecules. An optimal non-saturating ligand density has been
found to exist (across different sizes of NPs and targeted
receptors) and that identifying this density is crucial for various
applications of nanomedicines (Poon et al., 2010; Elias et al.,
2013). Increasing the average number of ligands per NP will
greatly reduce the inter-ligand spacing. An overcrowding of
ligands on NP surface could potentially (1) create a competitive
sorption environment for multiple ligands to bind to a single
receptor and (2) prevent ligands from obtaining the necessary
conformation for binding (Elias et al., 2013).

Overall, future improvements in NP design to facilitate
quorum quenching lies in: (1) the careful selection of NPs with
appropriate sizes and shapes and (2) the development of novel
bioconjugation strategies (e.g., click chemistry) to maintain the
functional properties of ligands. These advances should propel
NPs into a prominent position in the toolbox for stopping the
microbial chatter.
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