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Microorganisms and their biomineralization processes are widespread in almost every

environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant

lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used

to investigate its potential biomineralization to allow a better understanding of bacterial

contributions to carbonate mineralization in nature. The ammonium carbonate free-drift

method was used with mycelium pellets, culture supernatant, and spent culture of the

strain. Mineralogical analyses showed that hexagonal prism calcite was only observed

in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by

microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly

because of the effects of soluble microbial products (SMP) during mineralization. When

using the culture supernatant, doughnut-like vaterite was favored by actinobacterial

mycelia, which has not yet been captured in previous studies. Our analyses suggested

that the effects of mycelium pellets as a molecular template almost gained an advantage

over SMP both in crystal nucleation and growth, having nothing to do with biological

activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS

C014, owing to its advantageous genetic metabolism and filamentous structure, showed

good biomineralization abilities, maybe it would have geoactive potential for biogenic

carbonate in local microenvironments.

Keywords: lithophilous actinobacteria, Streptomyces luteogriseus DHS C014, biomineralization, hexagonal prism

calcite, doughnut-like vaterite

INTRODUCTION

Biomineralization refers to the processes by which living organisms form minerals (Dhami et al.,
2013), which happened in the geological record as soon as the prokaryotes appeared about 3.5 Ga
ago (Weiner and Dove, 2003). Since then, minerals at the Earth’s surface have begun to co-evolve
withmicrobial life (Hazen et al., 2008). As life evolved and diversified, especially with the emergence
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of the eukaryotes, the diversity of mineral-forming organisms
and biominerals rose accordingly. To date, more than 60
biominerals have been identified (Weiner and Dove, 2003). Of
these, one of the most significant groups, both in terms of
quantity and distribution, is the carbonate minerals. This is not
surprising: virtually all living organisms, in one way or another,
affect the formation environment of carbonate minerals by either
taking up, or giving off, CO2, or bicarbonate, and thereby
affect the carbonate equilibrium (Lowenstam and Weiner,
1989). Within this group, there are eight calcium carbonate
polymorphs, seven of which are crystalline. Of these, three—
calcite, aragonite and vaterite—are pure calcium carbonate, and
two are monohydrocalcite. Amorphous calcium carbonate, on a
per mole basis, contains one mole of water (Addadi et al., 2003).

The term “sub-aerial biofilm” (SAB) is used to describe
microbial communities that usually develop on mineral surfaces
exposed to the atmosphere (Gorbushina, 2007). Attributed to
their diversities in physiology and metabolism, microbes are
widely considered to play an important role in the formation
of carbonate biominerals (Lian et al., 2010; Xiao et al.,
2015). Numerous reports exist in the literature of carbonate
precipitation mediated by different taxa, including bacteria
(Braissant et al., 2003; Lian et al., 2006; Al-Thawadi et al.,
2012; Torres et al., 2013; Lee et al., 2014; Srivastava et al.,
2015), cyanobacteria (Obst et al., 2009a,b; Couradeau et al.,
2012; Kang and Roh, 2013; Uma et al., 2014), fungi (Ahmad
et al., 2004; Burford et al., 2006; Hou et al., 2011; Wei
et al., 2013), and algae (Hammes and Verstraete, 2002;
Holtz et al., 2013; Saghaï et al., 2015). However, the precise
principle underpinning biomineralization, as mediated by these
microorganisms, remained largely elusive (Dupraz et al., 2009;
Couradeau et al., 2012; Ionescu et al., 2014). As a result, compared
to carbonate mineral formation in large animals, the extent
of biological biomineralization induced by microbes remains
a subject of investigation. The roles of living microorganisms
generally consist of three different, yet related, routes. Ordered
organic molecules on the cell surfaces, such as polysaccharide
or lipopolysaccharide, may serve as nucleation sites and help to
decrease the activation energy required for initiation of crystal
growth. Many organics have negatively charged residues and
absorb divalent cations including Ca2+ (Schultze-Lam et al.,
1996; Rivadeneyra et al., 1998; Kenward et al., 2013), increasing
their local concentration. Second, rapid heterotrophic activity
releases CO2 as a by-product, raising local CO

2−
3 concentrations

(Lian et al., 2006). Third and last, the uptake of CO2 and
bicarbonate by photosynthetic organisms can increase the local
pH (Dupraz et al., 2009). As a result of such activities, the
saturation index of carbonate can be significantly different from
that of the bulk environment, leading to local precipitation of
calcium carbonate on the growing organisms.

In 2012, our team had already studied the phylogenetic
diversities of endolithic bacterial communities on limestone
rocks using a restriction fragment length polymorphism (RFLP)
method, which demonstrated that large percentages of bacterial
clones were related to the Actinobacteria, Alphaproteobacteria,
and Cyanobacteria (Tang et al., 2012). Actinobacteria is a
morphologically diverse phylum of Gram-positive bacteria

(Cockell et al., 2013), and plays a crucial role in matter cycling
as a decomposer. It is thought to be one of the primary
phyla to colonize terrestrial surfaces for its evolution some
2.7 Ga or so (Battistuzzi et al., 2004; Battistuzzi and Hedges,
2009; Gorbushina and Broughton, 2009). Yet little is known
about the role of Actinobacteria in carbonate mineral formation
(Rautaray et al., 2004; Cockell et al., 2013). Here, 25 pure
cultures of actinobacteria were isolated from limestone rocks
using selective isolation media according to protocols described
in the International Streptomyces Project (Shirling and Gottlieb,
1966). Of these, some rare actinobacteria are novel species (Cao
et al., 2015), while strain DHS C014 frequently appeared on all
media as a dominant actinobacterial species and was therefore
used to evaluate its carbonate biomineralization potential. In
this study, it showed dramatic differences in morphology and
polymorphism of biomineral precipitation.

MATERIALS AND METHODS

Sample Site and Actinobacteria
Limestone samples used for microbial isolation were collected
at the Puding Karst Ecosystem Research Station (PKERS) of
the Chinese Academy of Sciences in Guizhou Province, China
(26◦09′–26◦31′N, 105◦27′–105◦58′E; Figure 1A). X-ray powder
diffraction data (XRD Bruker D8-ADVANCE) showed that
calcite was the dominant mineral phase of these limestone
samples (Figure 1B). As shown in Figure 1C, limestone rocks
were almost completely covered with microbial mats. In detail,
many filamentous microorganisms living on the limestone were
observed using scanning electron microscopy (SEM, Hitachi S-
3400N; Figures 1D–F). X-ray fluorescence spectroscopy (XRF
Bruker S8-TIGER equipped with 4 kW, Rh anode X-ray tube)
showed that CaO,MgO, SiO2, Fe2O3, Al2O3, and CO2 accounted
for 51.40, 3.99, 1.02, 0.23, 0.22, and 42.03% of the limestone by
mass, respectively (data were expressed as oxides).

The morphological properties of strain DHS C014 were
examined by SEM using cultures grown on ISP 2 medium at
28◦C for 21 days. Extraction of genomic DNA and 16S rRNA
gene amplification were carried out according to the procedures
described by Qin et al. (2009). The almost complete 16S rRNA
gene sequence of the strain was subjected to BLAST sequence
similarity search from the GenBank and EzTaxon-e databases
(Kim et al., 2012). Phylogenetic trees between the isolated, and
closely-related, strains were inferred using a neighbor-joining
tree algorithm (MEGA software, Version 5.0) with bootstrap
values based on 1000 repeats (Felsenstein, 1985; Saitou and Nei,
1987).

The strain was inoculated in 500mL Erlenmeyer flasks
containing 100mL malt extract-glucose-yeast extract-peptone
(MGYP) medium that consisted of: malt extract 0.3%, glucose
1%, yeast extract 0.3%, and peptone 0.5% (Rautaray et al., 2004).
After adjusting the pH of the medium to 7.2 (6.9 after autoclave
treatment), the cultures were incubated under continuous
shaking on a rotary shaker (180 rpm) at 28◦C for about
120 h, until microbial cells reached their late exponential phase.
Mycelium pellets were harvested by centrifugation at 2000 rpm
for 15min at 4◦C. Biological additives used in this study included:
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FIGURE 1 | Map of Puding Karst Ecosystem Research Station (PKERS) and geochemical analyses of the mineral samples by XRD and SEM. Panel (A)

Showing the sampling site; (B) showing X-ray powder diffraction patterns of the mineral samples [Numbers in the parentheses indicate the Miller indices, whereas C

and D denote calcite and dolomite, respectively]; (C) showing the microbial mats on limestone rocks; (D–F) showing filamentous microorganisms on limestone rocks.

(i) Fresh medium (FM, as controls); (ii) Mycelium pellets
(MP, mycelium pellets harvested by centrifugation were washed
and re-suspended with sterile distilled water); (iii) Culture
supernatant (CS, without mycelium pellets but including small
mycelium fragments and other residues); (iv) Spent medium
(SM, the culture supernatant was further filtered with a 0.22µm
sterilized membrane to eliminate mycelium fragments and other
residues). The general procedure is shown in Figure 2.

Biomineralization Experiments
Biomineralization experiments were conducted with the
ammonia free-drift method described by Lian et al. (2006). The
experiments were performed in Petri dishes which were enclosed
in a large desiccator (Figure 2). The Petri dishes contained 25mL
salt solution prepared by mixing equal volumes of reagent grade
NaHCO3 (2mM) and Ca(NO3)2·4H2O (2mM) in deionized
distilled water: the pH of salt solution was adjusted to ∼3 using
HCl (approx. 2 M) to ensure that no deposit appeared. About 10
g of (NH4)2CO3 powder was placed in bottom of the desiccator.
Chemical reactions are as follows:

(NH4)2CO3 → 2NH3 ↑ + CO2 ↑ +H2O (1)

NH3 +H2O ↔ NH+
4 +OH− (2)

Ca2+ +HCO−
3 ↔ CaCO3 ↓ +H+ (3)

The NH3 gas from the chemical decomposition of (NH4)2CO3,
rapidly dissolved into the mineralization solution with a resultant

pH increase. These reactions create carbonate alkalinity, which
is one of the two factors affecting the Saturation Index (SI)
defined as:

SI = log(IAP/KSP)

Where IAP denotes the ion activity product, that is {Ca2+} ×
{CO2−

3 }, and KSP, the solubility product of the corresponding
mineral (Dupraz et al., 2009).

Petri dishes were inoculated with 1.5mL of biological
additives. Each treatment was run in triplicate, at 28◦C for
7 days. When biomineralization was completed, minerals and
glass cover-slips in the Petri dishes were collected and washed
twice with double-distilled water. These air-dried samples were
prepared for morphological, and polymorphic, analyses.

Polymorphism Analyses
XRD patterns were registered using a Bruker D8 Advance
diffractometer with a Cu target Kα radiation source (accelerating
voltage of 40 kV) at a scan speed of 0.1 s/step and a step scan of
0.02◦ (10≤ 2θ≤ 90◦). Fourier transform infrared scanning (FTIR
Thermo iS10) is another useful tool for identification of CaCO3

polymorphs. FTIR spectra were collected at room temperature
with KBr discs in the 400–2000 cm−1 region.
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FIGURE 2 | Schematic diagram of the experimental procedure.

Biomineral Morphology
After gold coating to a thickness of ∼15 nm (Hitachi E-
1010), the glass cover-slips were examined by SEM, using
a secondary electron detector with a 5–15 kV accelerating
voltage. Compositional analyses were performed using
energy dispersive spectroscopy (EDS, Horiba EMAX 7021-
H) at a 10mm working distance and a 15 kV accelerating
voltage.

RESULTS AND DISCUSSION

Identification of Strain DHS C014
After incubation on ISP 2 agar at 28◦C for 21 days, aerial mycelia
usually crimped into spiral spore chains, and some of them
began to fragment into short rod-shape spores with smooth
surfaces (Figure 3). The almost complete 16S rRNA gene (1475
bp) of the strain was sequenced and deposited in GenBank
with accession number KP986577. The strain shared its highest
levels of 16S rRNA gene sequence similarity with the closest
type strain Streptomyces luteogriseus NBRC 13402T (99.9%),
and for other species of the genus the similarities were below
99.5%. The phylogenetic tree, based on the neighbor-joining
algorithm (Figure 4), showed that strain DHS C014 formed a
distinct sub-branch with the closest types strain, S. luteogriseus
NBRC 13402T, supported by a bootstrap value of 76%. Based
on the morphological and genotypical properties, the strain was
identified as S. luteogriseus DHS C014.

Polymorphic Analyses
S. luteogriseus DHS C014 showed special CaCO3

biomineralization in vitro. After incubation for 7 days, the
pH of all treatments increased from 3.2–3.5 to 8.7–9.2. Calcite
contents were determined in all experiments, which showed
characteristic peaks in their XRD profiles, including Miller
indices (012), (104), (006), (110), (113), (202), (018), and (116;
Figure 5A). This indicated that the chemical cause of calcite
generation was the increase in pH during mineralization.

Vaterite was present in SM and CS treatments with
characteristic XRD peaks, e.g., (110), (112), (114), (205), (300),

FIGURE 3 | Scanning electron micrograph of strain DHS C014. It shows

aerial mycelia fragmenting into spiral spore chains after growth on ISP 2 agar

at 28◦C for 21 days. Bar, 10µm.

(304), (118), and (224). Consistent with XRD analyses, FTIR
spectra showed that the absorption bands of calcite at 708 and
873 cm−1 (υ4 and υ2, respectively), whereas 746 and 1083 cm−1

(υ4 and υ2, respectively) were characteristic of vaterite
(Figure 5B). Negatively charged organic molecules produced
by microorganisms were probably responsible for vaterite
precipitation. As described earlier, spheroidal vaterite formed in
the presence of soil bacterium Myxococcus xanthus (Rodriguez-
Navarro et al., 2007). In contrast, Tourney and Ngwenya
concluded that EPS extracted from Bacillus licheniformis could
inhibit vaterite formation during biomineralization, and only
calcite appeared in the end (Tourney and Ngwenya, 2009).

In these experiments, vaterite present in SM and CS
treatments was stable, and was not transformed to calcite
after at least 7 days. Electrostatic attraction between Ca2+ and
biomacromolecules (e.g., silk fibroin) probably contributes to the
stability of vaterite (Liu et al., 2015). So, it is safe to draw the
conclusion that this was also the case with strain DHS C014.
The presence of soluble microbial products (SMP) acts a template
and creates a local environment, which may favor the attraction
of Ca2+, and gradually reaching carbonate saturation (Tourney
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FIGURE 4 | Neighbor-joining tree based on 16S rRNA gene sequences. It shows the relationships between strain DHS C014 and partial species of the genus

Streptomyces. The sequence of Kitasatospora arboriphila HKI0189T (AY442267) was used as out-group. Numbers at branch nodes are bootstrap values (1000

re-samplings). Bar, 0.005 sequence variation.

and Ngwenya, 2014). Yet much remains to be revealed about
the mechanisms underpinning the ways in which acidic organic
molecules (such as polysaccharides, proteins, or amino acids)
affect biomineral composition, microstructure, shape, and size
(Kröger, 2015).

Mineral Morphology
Calcite crystals in FM treatments displayed a characteristic
rhombohedral morphology (Figure 6A). Sometimes, few contact
twins also appeared (Figure 6B). The crystals, ranging from
sizes of 10–35µm, have well-defined faces and edges with
perfect cleavages on their (104) faces. The asterisked site on
the (104) face shown in Figure 6A denoted the sampling
point for EDS analysis. The EDS profile showed that Ca,
C, and O were the major elements, and Au peak was due
to the ion sputtering used before SEM examination. In the
presence of biological additives, however, rhombohedral calcite
was occasionally observed, mainly because that chemical cause,
when used in the free-drift method, usually interfered with the
biological contribution to mineralization.

In MP treatments, calcite was prone to nucleate in the sub-
surfaces of mycelium pellets. At the end of mineralization, these

mycelium pellets (Figure 7A) observed using optical microscopy
(Leica DM500B) were covered with lots of rod-shaped crystals
(Figure 7B). These near-developed calcite crystals showed a
hexagonal prism shape as seen upon further observation by SEM:
these were significantly different from rhombohedral crystals in
FM treatments. It is a novel morphology of calcite mediated
by microbes, somewhat similar to the sodium salt of poly L-
isocyanoalanyl-D-alanine as a crystallization template for CaCO3

(Donners et al., 2002). Most of crystals were elongated along
the crystallographic c-axis with three end faces (018) expressed
on each side of the crystal (Figures 7C,D). The well-defined
(018) faces mostly showed sound edges, but the (100) faces
and their edges were not completely developed (Figure 7D).
Ca, C, and O were identified as the major elements in the
hexagonal prism crystals (Figure 7D) by EDS, which was the
same as that of rhombohedral calcite in FM. Sometimes, a
few crystals could develop into contact twins (Figure 7E) and
polycrystals (Figure 7F), presumably due to induction and steric
hindrance of complex template structures. The hexagonal prism
morphology of calcite was simulated using 3D Studio Max
software (Autodesk 2014), giving a front view (Figure 7G), and
top view (Figure 7H). The same crystals were also found in trial
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FIGURE 5 | Mineralogical analyses of biominerals collected from the four experimental treatments. (A) Showing XRD patterns of the biominerals (numbers

in parentheses indicate the Miller indices, whereas C and V denote calcite and vaterite, respectively); (B) showing FTIR spectra of the biominerals (FM: fresh medium,

MP: mycelium pellets, SM: spent medium, CS: culture supernatant).

FIGURE 6 | Morphologies of biominerals collected from FM treatments.

Panel (A) Showing rhombohedral calcite and EDS spectrum obtained from

asterisk site on (104) face (the Au peak was the result of the ion sputtering

used before SEM examination); (B) showing polyhedral calcite twins.

treatments for biomineralization in the presence of mycelium
pellets which were treated by autoclaving at 121◦C for 30min.
This demonstrated that the effect of the molecular template
associated with the microbial cell-walls played a conspicuous
role in crystal nucleation and growth, having nothing to do with
biological activity. In previous studies, different microbial cells
could induce rhombohedral calcite (Lian et al., 2006), vaterite
covering cells (Rodriguez-Navarro et al., 2007), spherical vaterite
(Tourney and Ngwenya, 2009), peanut-like vaterite (Chen et al.,
2008), respectively (Table 1).

In SM treatments, vaterite crystals were characteristically
hemispheroidal in the presence of spent medium (Figure 8A).
Several radial flaws appeared on the top of the hemispheroidal
crystal (Figure 8B). EDS data identified Ca, C, and O as major

elements in the spherical cone crystals (Figure 8B), in agreement
with XRD and FTIR data. On the other hand, the bottom of the
crystals developed into a fibro-radial structure with slight central
invagination (Figure 8C). Hemispheroidal vaterite crystals in SM
treatments were different from those seen in previous studies
in mesocrystals and their reorganization into larger crystals.
In the presence of a super-solution of Bacillus megaterium,
spherulitic vaterite with a hollow core seemed to be composed
of six identical cloves (Table 1b2; Lian et al., 2006). Vaterite
spherulites with smoother surfaces (Table 1d2) were induced
during the incubation of M. xanthus at 28◦C with constant
shaking (Rodriguez-Navarro et al., 2007). Whereas, vaterite
spheres with a hole on their surfaces (Table 1e2) were mediated
by Proteus mirabilis growing in a reaction solution (0.1 mol
L−1 CaCl2 and 0.2 mol L−1 urea) at 27◦C for 5 days (Chen
et al., 2008). During the reorganization process, small aggregated
20–30 nm nanoparticles resulted in rough mesocrystal surfaces
to develop. The crystal surfaces perhaps became covered with
holes due to specific protein binding, and subsequent inhibition
of crystal growth (Mann et al., 2007; Decho, 2010). Similarly,
Rodriguez-Navarro concluded that surfaces of these biominerals
were very rough in the presence of aggregates of nanometer-
sized building blocks (Rodriguez-Navarro et al., 2007, 2012).
These results pertinent to the morphology and polymorphism of
biominerals suggested that mineralization mediated by microbes,
to some extent, was strain-specific and associated with various
biomacromolecular templates.

In CS treatments, an interesting aspect was that a
rhombohedral calcite appeared in close contact with a
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TABLE 1 | Overview of Ca-carbonate precipitates mediated by different bacteria (part of the bacteria investigated in other researches).

Crystal precipitation

mediated by microbial cells

Crystal precipitation

mediated by SMP

Crystal precipitation

mediated by combination of

microbial cells and SMP

Bacteria and references

Calcite Vaterite Vaterite

S. luteogriseus DHS C014,

this study

Calcite Vaterite Calcite

Bacillus megaterium, (Lian et al.,

2006)

Vaterite and calcite (48 h) Calcite (48 h) Vaterite and calcite (48 h)

Bacillus licheniformis, (Tourney

and Ngwenya, 2009)

Calcified rod-shaped bacterial

cells with vaterite

No

Vaterite

Myxococcus xanthus,

(Rodriguez-Navarro et al.,

2007)

Vaterite

No

Vaterite

Proteus mirabilis, (Chen

et al., 2008)

Differences in morphology and polymorphism were related to microbial cells, SMP, and combinations of these two factors, respectively. See text for details.
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FIGURE 7 | Morphologies of biominerals in MP treatments. (A,B) Optical micrographs of mycelia pellets before/after mineralization, respectively; (C) showing

crystals with homogeneous morphology in full view; (D) showing the details of most crystals with hexagonal prism morphology and EDS spectrum obtained from the

asterisked site on the (018) face (the Au peak was the result of ion sputtering used before SEM examination); (E,F) showing calcite twins and polycrystals; (G,H)

showing a three-dimensional diagram simulating the hexagonal prism calcite with front and top views, respectively.

FIGURE 8 | Morphologies of biominerals in SM treatments. Panel (A) Showing vaterite with spherical cone morphology and EDS spectrum obtained from the

asterisked site (the Au peak was the result of ion sputtering used before SEM examination); (B) showing crystal details of the boxed area on Panel (A); (C) showing

bottom details of the biominerals.

hemispheroidal vaterite (Figure 9A). The following magnified
images show that mycelia spread over the crystal surfaces,
and were occasionally buried inside the crystal (arrows in
Figures 9B,C). In addition, the crystal displayed its angles
and edges of its (104) face with perfect cleavages. The vaterite
crystal was fully covered by a network of mycelium, and it was
hard to observe any details (Figure 9D). Furthermore, a good
many doughnut-like crystals (Figure 9E) frequently appeared
in this case. EDS data showed that Ca, C, and O were the
major elements in these two shapes of crystals (Figures 9D,F).
Na, K, and Cl, were introduced from the microbes. During

mineralization process, these crystals were twinned with mycelia
and braced firmly onto the mycelial mats. Thanks to this
mycelial assistance, crystals here could easily develop from
hemispheroid into spheroid form. However, the mycelia growing
on these crystals can also hinder further crystal growth, and
finally contributed to the doughnut-like crystals with their
axial invagination. Unicellular bacteria described earlier could
not contribute to the precipitation of doughnut-like crystals.
In this case, small mycelia fragments could survive and grow
slowly: this had less effects on the polymorphism than the
SMP in the solution. On the contrary, another experiment was
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FIGURE 9 | Morphologies of biominerals in CS treatments. Panel (A) Showing calcite with rhombohedral morphology and vaterite with hemispheroid

morphology; (B,C) showing crystal details of calcite areas enclosed by dashed boxes on Panel (A); (D) showing crystal details of vaterite area enclosed by a dashed

box on Panel (A) and EDS spectrum obtained from the asterisked site (the Au peak was the result of ion sputtering used before SEM examination); (E) showing

doughnut-like vaterite; (F) showing details of the boxed area on Panel (E) and EDS spectrum obtained from the asterisked site.

conducted that biomineralization occurred in the presence of
washed mycelium pellets and spent culture. The results were
consistent with MP treatments, indicating that mycelium pellets
as a molecular template gained an advantage over SMP both in
crystal nucleation and growth.

CONCLUSIONS

In this study, S. luteogriseus DHS C014, a dominant lithophilous
actinobacteria isolated from microbial mats on limestone rocks,
was used to investigate its potential biomineralization in vitro,
especially to evaluate the contribution of mycelia, SMP, and their
combined action to mineral morphologies and polymorphs.

The analysis suggested that mycelium pellets of S. luteogriseus
DHS C014, used as templates, could induce precipitation of
hexagonal-prism calcite, which is a novel morphology mediated
by microbes. The same crystals were also mediated by autoclaved
mycelium pellets, indicating that it had nothing to do with
biological activity, but was an effect arising from the templating.
Whereas, vaterite appeared in the presence of spent culture or
culture supernatant, mainly because of the action of SMP during
mineralization. Hemispheroidal vaterite crystals present in SM
treatments were different from those found in previous studies
in mesocrystals, and in their reorganization into larger crystals.
Especially in CS treatments, doughnut-like vaterite, favored by
actinobacterial mycelia, has not yet been recorded in previous
studies. When in the presence of mycelium pellets and spent
culture, mycelium pellets as a molecular template, almost gained
an advantage over SMP both in crystal nucleation and growth.

Based on the results in this study, it may be concluded
that S. luteogriseus DHS C014, owing to its advantages

both in genetic metabolism and its filamentous structure,
showed good biomineralization abilities, and maybe
had geoactive potential for biogenic carbonate in local
microenvironments.
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