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Tuberculosis control and elimination remains a challenge for public health even in low-
burden countries. New technology and novel approaches to case-finding, diagnosis,
and treatment are causes for optimism but they need to be used cost-effectively.
This in turn requires improved understanding of the epidemiology of TB and analysis
of the effectiveness and cost-effectiveness of different interventions. We describe the
contribution that mathematical modeling can make to understanding epidemiology
and control of TB in different groups, guiding improved approaches to public health
interventions. We emphasize that modeling is not a substitute for collecting data but
rather is complementary to empirical research, helping determine what are the key
questions to address to maximize the public-health impact of research, helping to plan
studies, and making maximal use of available data, particularly from surveillance, and
observational studies. We provide examples of how modeling and related empirical
research inform policy and discuss how a combination of these approaches can
be used to address current questions of key importance, including use of whole-
genome sequencing, screening and treatment for latent infection, and combating drug
resistance.

Keywords: MDR-TB, transmission, latent TB infection, screening, migrants, health systems, health economics,
cost-effectiveness

INTRODUCTION

Tuberculosis remains a public health challenge, even in low-burden countries, such as the USA
(Hill et al., 2012) and European countries (Abubakar et al., 2012a; Lönnroth et al., 2015). TB
epidemiology is complicated, with multiple interacting risk factors determining the burden of
disease in different population groups (de Vries et al., 2014). Generally, most cases of disease in
many low-burden countries arise from imported latent TB infection (LTBI), but homeless and
other deprived groups can have transmission rates as high as some high-burden countries (e.g.,
White et al., 2011). With limited budgets and competing health priorities there are important
questions regarding the best tools and practical approaches, tailored to patients’ needs, for diagnosis
and treatment of latent and active TB (Table 1).
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Modeling provided insights into TB natural history,
epidemiology, and control for decades (White and Garnett,
2010 extensively reviews modeling of natural history; here we
focus on other uses). Whilst models can be used to examine “what
if ” scenarios (Abu-Raddad et al., 2009; Garnett et al., 2011; Hill
et al., 2012), calculating the expected impact of interventions that
have not (yet) been implemented, modeling is not a substitute
for empirical study but rather a tool to analyze empirical data.
Indeed, modeling is used to synthesize evidence from multiple
sources (Drobniewski et al., 2015 reports multiple studies,
including modeling). Complementary analytical approaches
include trials; observational studies (Jit et al., 2011; Pareek et al.,
2011a, 2013); mapping of clinical pathways (Drobniewski et al.,
2015; Green et al., in preparation) and surveys of clinical practice
(Pareek et al., 2011b); analysis of aggregate data from surveillance
(Drobniewski et al., 2015) and screening programs (Aldridge
et al., 2016); analysis of patient records, including database
linkage to link laboratory and surveillance data, and to link risk
factors to outcomes (Baussano et al., 2006; Anderson et al., 2014;
Stagg et al., 2015, 2016; Aldridge et al., 2016; Aldridge et al., in
preparation); and systematic reviews (Tiemersma et al., 2011;
Aldridge et al., 2014; Stagg et al., 2014).

In this paper we concentrate on modeling of TB to inform
public health in high-income, low-burden countries.

INFECTIOUS-DISEASE TRANSMISSION
DYNAMICS AND COST-EFFECTIVENESS
CALCULATION

Infectious diseases are transmitted from one host to another,
and control requires interrupting this process, which involves
interaction between individual-level and population-level
processes, known as transmission dynamics (Abubakar, 2016;
Cohen and White, 2016; White, in press). The incidence of
infection – the rate new infections arise in the population per
unit time – depends on the prevalence of infectious individuals
in the population (the proportion of the population that is
infectious) at the time. Of course, prevalence depends upon
the rate new infections have been arising (and rates of recovery
and death), so prevalence depends upon incidence. Therefore
for infectious diseases there is a dynamic feedback loop, with
incidence depending upon prevalence and prevalence depending
upon incidence.

Transmission dynamics have important consequences for
intervention effectiveness and cost-effectiveness [hereafter
“(cost-)effectiveness”], because interventions such as vaccination
and treatment of infection can benefit not just individuals
receiving the intervention but can also benefit the population
by averting transmission, improving health and reducing the
number of infections needing to be treated, saving money (Cohen
and White, 2016; Jit and White, 2016). Indeed, population-level
benefits can be the major benefit of intervention and can even
result in interventions being cost-saving. If a vaccine with
sufficient efficacy and duration of protection is available then
very large reductions in disease burden can be achieved, if

population coverage is sufficient to achieve ‘herd immunity’;
indeed, for some infections elimination is possible.

Economic analysis of infectious-disease interventions
requires specialized transmission-dynamic mathematical models,
integrating transmission dynamics, and health economics
(Cohen and White, 2016; Jit and White, 2016; White, in press).
Standard (“static”) health-economic models (e.g., decision trees,
Markov models), developed for non-infectious diseases, are
simpler because treating or vaccinating a patient does not affect
incidence of disease in others (Jit and White, 2016). Whilst it
can sometimes be acceptable to use static models for infectious
diseases, e.g., in settings where transmission is rare (Jit and
Brisson, 2011) or where an intervention is cost-effective without
considering transmission-dynamic benefits it is preferable not to
do so. Even in low-burden countries, where most TB cases are
due to imported infection, transmission is still a concern.

USES OF MATHEMATICAL MODELING
TO ADDRESS ISSUES IN
TUBERCULOSIS PUBLIC HEALTH

Extrapolating Long-Term Outcomes
Using Proxy Measures from Trials
In trials, there is usually not time to follow patients to their
ultimate end-point: the individual benefit of being cured of
active tuberculosis is typically years or even decades of life
gained by those patients who would otherwise have died,
and reduced morbidity in all patients. Therefore, determining
the full health benefit requires modeling to calculate life-
years gained in a treated patient cohort, accounting for their
life expectancy if treatment averts death from TB. In health-
economic analysis life-years gained are usually used to calculate
Quality-Adjusted Life-Years (QALYs) gained, which incorporate
reducing morbidity – increasing quality of life – as well as
by reducing mortality, increasing duration of life (Jit and
White, 2016). [Disability-Adjusted Life-Years (DALYs) are an
alternative, measuring health detriment rather than gain].
Modeling of LTBI treatment (White and Jit, 2015), taking
evidence of treatment efficacy from trials and calculating QALYs
gained by the use of different regimens in different age-groups,
informed guidance from England’s National Institute for Health
and Care Excellence (NICE) (Hoppe et al., 2016).

Transmission-dynamic effects mean benefits of interventions
can continue – and indeed increase – in to the future and even
beyond the lifetimes of the individuals receiving the intervention
and their contemporaries in the wider population (Jit and White,
2016). This is particularly true for TB, with its long incubation
period, making it important to consider the long term, as costs
of interventions are typically greater in the early stages with the
benefits accruing over time (Figure 1; White et al., 2011).

Analyzing Data from Observational
Studies When a Trial Is Not Feasible
Often trials are not feasible, so observational data have to
be analyzed to assess intervention effectiveness without having
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TABLE 1 | Current key questions for research in to TB control in low-burden countries.

Natural history of infection and transmission patterns in low-burden countries

• How does the natural history of TB, including rates of progression from LTBI to active disease, vary amongst population groups and with different risk factors?

• How much TB disease in migrants from high-burden countries is due to LTBI at the time of migration, acquisition whilst in the low-burden country, and
acquisition whilst visiting the country of origin or receiving visitors from that country? (This informs on how much disease is potentially preventable by
reducing transmission in the low-burden country.)

• How much transmission occurs in households, workplaces, etc?

• What is the impact and cost-effectiveness of whole-genome sequencing on identifying drug resistance patterns (for individual patient care) and transmission
clusters (to inform public health responses)?

• What is the impact of LTBI testing and treatment on disease and transmission in different groups?

• What is the (cost-)effectiveness of contact investigation in different groups?

MDR-TB

• What are the transmission patterns of MDR-TB?

• What are the most effective therapeutic options for MDR-TB, including optimizing the trade-off of providing access to new drugs whilst protecting those drugs
from emergence of resistance?

Provision of care

• What is the cost-effectiveness of LTBI screening of different migrant groups, delivered in different ways?

• What are the costs of diagnosis and treatment for LTBI and active TB provided to different patient groups in different health care settings and what are the
most cost-effective ways of providing diagnosis and care?

• What are the most (cost-) effective packages of care for different patient groups?

• What is the (cost-) effectiveness of combining active case finding for TB with screening for other infections (e.g., HCV, HIV) in particular risk groups, such as
homeless persons and prisoners?

• What is the effectiveness and cost-effectiveness of different approaches to case-management to promote adherence?

Vaccination

• What is the (cost-)effectiveness of BCG vaccination in different groups?

• What is the minimum effectiveness of novel vaccines required for their use to be cost-effective?

patients recruited to a control arm for comparison. Modeling
can calculate a counterfactual – i.e., what would have occurred
in the absence of the intervention – to compare with what
was observed (Garnett et al., 2011). This approach assessed the
cost-effectiveness of the London TB Find and Treat service,
which used a mobile X-ray unit to screen homeless persons and
prisoners for active TB and provided case-management support
(Jit et al., 2011), with a synthetic control group constructed from
surveillance records of individuals who had received standard
case-finding and care. This analysis did not use a transmission-
dynamic model, due to time constraints, with urgent analysis
required to inform policy: as the intervention was cost-
effective without considering benefits of averting transmission
one could be certain it was even more cost-effective than
calculated.

Screening of immigrants to low-burden countries from
higher-burden countries (Pareek et al., 2011b; Aldridge et al.,
2014) provides an example of modeling answering “what-if ”
questions by examining a range of scenarios not feasible to test
in a trial – specifically, the cost-effectiveness of screening and
which countries should be included in the program. Recently,
Aldridge et al. (2014) reviewed reported yields of active TB
from pre-entry screening programs, and analyzed UK data
in detail (Aldridge et al., 2016); these studies can be used
to inform health-economic modeling. Pareek et al. (2011a)
measured LTBI prevalence in immigrants entering the UK from a
range of countries and modeled the cost-effectiveness of different
“screening thresholds” using WHO-estimated TB burden in
countries of origin. Not screening migrants from the Indian

sub-continent, following guidance at the time, was missing
70% of imported LTBI. Further analysis (Pareek et al., 2013)
compared different screening strategies, with and without chest
X-ray and tuberculin skin test (TST) and two interferon-gamma
release assays (IGRAs), and found that single-step screening
with the QuantiFERON Gold in-Tube IGRA was most cost-
effective.

Recent analysis informing NICE guidance on LTBI treatment
examined the cost-effectiveness of different regimens and treating
different age-groups: whilst older individuals will have fewer
years at risk of progression to active TB, and fewer years of life
lost if they develop active TB and die of it, and are at greater
risk of adverse events from LTBI treatment, they also have a
greater risk of dying from active TB if they develop it, and
modeling is required to determine the overall outcome of this
combination of factors (White and Jit, 2015). A key parameter
is the risk of progression to active disease; recent analysis of
migrants to the UK provides updated estimates (Aldridge et al.,
in preparation).

Assessing Interventions at Full Scale
An important consequence of transmission dynamics is that
the scale of intervention affects its effectiveness: a major
benefit of a successful intervention is averting infections,
but small-scale trials are unlikely to reduce transmission at
the population level even if the intervention is successful.
Large-scale cluster randomized control trials (cRCTs) are
more likely to reduce incidence detectably but any reduction
is still likely to be proportionately less than a full-scale
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intervention and it is usually not feasible to conduct cRCTs at
a scale that can measure full benefits. When a public health
intervention has been implemented at scale then modeling
can be used to calculate a counterfactual to compare with
observational data from surveillance systems (Hallett et al.,
2007).

Hill et al. (2012) used modeling to assess whether the USA is
likely to eliminate TB by 2100 with then-current approaches and
concluded it was unlikely, and Davidow et al. (2015) concluded
that expanding LTBI testing and treatment of migrants would
be required, along with improving TB control internationally.
Dye et al. (2013) modeled elimination in South Africa, India,
China, and the USA, and concluded that implementation of
the WHO Stop TB Strategy, is required, along with new
technology “including biomarkers of TB risk, diagnostics, drugs,
and vaccines”.

Examining Combinations of
Interventions and Accounting for
Epidemiological Context
When different combinations of interventions are to be
evaluated, it is usually not feasible to conduct trials measuring
directly the effectiveness of each combination in comparison
with all the other combinations (factorial designs are usually
only practicable for two interventions, with four combinations).
This is particularly the case for public health interventions
where epidemiological context matters (e.g., heterogeneous
disease burden in different locations or population groups),
and the combinations of interventions and contexts need
to be considered (e.g., targeting different interventions to
different groups/locations). For example, the cost-effectiveness
of screening homeless persons and prisoners for active TB
using a mobile X-ray unit depends upon the prevalence of
infection in the population and the frequency of screening
(Figure 1; White et al., 2011). Combining interventions, there
can be synergy or redundancy – the combination having
greater or lesser impact than the sum of the individual
interventions, respectively (Dodd et al., 2010). Synergy is
most likely when the interventions target different aspects of
the pathogen’s transmission process and life cycle and when
the interventions are individually only moderately effective
at most; combining such interventions could result in a
‘package’ that is effective and cost-effective. Dye et al. (2013)
reported that targeting latent TB and active TB together can be
synergistic.

Health-Systems Modeling
With the advent of improved TB diagnostics, an important
use of modeling is assessing the impact of incorporating them
into the health system (Cobelens et al., 2012; Lin et al., 2012).
Modeling has been used to assess the cost-effectiveness of
introducing molecular testing in high-burden countries (Menzies
et al., 2012) but assessments are also required for low-burden
countries. Molecular tests for active TB and drug-resistance
have lower sensitivity and/or specificity than microbiological
culture, so have more-frequent false-negative and false-positive

results, but are much faster than culture, so there are trade-
offs to consider (Drobniewski et al., 2015). False-negative results
delay treating some infections and increase the opportunity
for transmission – although if molecular testing is used in
addition to culture rather than replacing it then ultimately
the infection would still be diagnosed as previously. False-
positive results cause inappropriate treatment for TB (if the
patient does not have the infection) and/or for Multidrug-
Resistant TB (MDR-TB) (if the patient has TB but it is not
MDR or does not have TB at all), incurring costs and health
detriment (due to side-effects). These downsides need to be
weighed against faster diagnosis and appropriate treatment where
the test results are correct, resulting in improved prognosis,
and reduced time that smear-positive patients may spend in
isolation awaiting drug-susceptibility testing. Important factors
are the proportion of patients tested who have TB and MDR-TB
(which can vary amongst demographic groups); the sensitivity,
specificity and cost of the molecular test; and the cost of
patient isolation. In the UK, it is likely that adding molecular
testing to diagnostic pathways would be beneficial to health
and potentially cost-saving (Drobniewski et al., 2015). However,
information on the details of health-system costs (e.g., durations
of hospital stays; healthcare provided in general practice; staff
time required for diagnostic testing, sample analysis, and patient
care) is often limited (Drobniewski et al., 2015), and detailed
studies of pathways is required (Green et al., in preparation).
Additionally, there can be wide variation locally in clinical
practice, as Pareek et al. (2011b) found for LTBI screening of
immigrants, with activity generally inversely related to disease
burden.

Multidrug-Resistant TB
Controlling MDR-TB is a key concern in Europe, even in low-
MDR-burden countries (Abubakar et al., 2012b; Drobniewski
et al., 2015). Surveillance and modeling have important roles
to play (Wells et al., 2013). However, whilst modeling has
provided valuable insights (Cohen et al., 2009), it has been largely
limited to examination of scenarios, due to a lack of detailed
data making it difficult even to determine trends (Cohen et al.,
2014).

Studying MDR-TB treatment, evolution, transmission, and
control in low-MDR-burden countries is challenging due to
relatively small numbers of cases (Drobniewski et al., 2015),
although we do know that (e.g.) transmission is currently limited
in England and tends to be concentrated in high-risk groups
(Anderson et al., 2014). Studies in countries with higher MDR-TB
burdens are therefore valuable, with central and eastern Europe
being most relevant to lower-burden western Europe, considering
the social context and health system structure (Stagg et al., 2015,
2016).

UNCERTAINTY

Modeling offers important insight into uncertainty, including
quantifying how much arises from different causes (Cohen
and White, 2016; Jit and White, 2016), which helps identify
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FIGURE 1 | Results of an economic analysis of screening homeless persons and prisoners for active TB using a mobile X-ray unit, using the model in
White et al. (2011). (A) Health benefits (in terms of Quality-Adjusted Life Years, QALYs) gained in each year, with discounting at 3.5% per annum, with different
colors representing different frequencies of screening (dark blue: lowest rate; light blue: highest rate). Notice how the health benefits increase over time, as
reductions over time in prevalence of infectious individuals reduce rates of new infections occurring. (B) Annual net costs: initially, there are costs incurred in
purchasing equipment and increased treatment costs, due to infections being found earlier than otherwise, including some individuals being found and treated who
would otherwise have died of tuberculosis. In later years the net cost is negative, meaning that the intervention saves money, because the cost of the intervention is
less than the money saved due to the reduction in cases occurring and requiring treatment. Note that the different temporal patterns in health benefits and costs
means that the time-horizon considered has a major impact on the calculated cost-effectiveness: in the first 2–3 years there is a net cost to the intervention and the
health benefits are relatively modest, but over a longer period the intervention becomes cost-saving and the health benefits are large. (C,D) Examination of how the
cost-effectiveness of screening (C) homeless persons and (D) prisoners for active TB using a mobile X-ray unit depends upon the prevalence of disease and the
frequency of screening. On the horizontal axis is the prevalence prior to the introduction of screening; note that the range of values for homeless persons is greater
than for prisoners (reflecting empirical observations); the dashed vertical line on the graph for the homeless indicates the extent of the range considered for prisoners.
On the vertical axis is the screening frequency, with the value 1 corresponding to the ‘middle’ frequency (A,B). At high prevalence screening is cost-saving as well as
beneficial to health (green area), due to a high yield of screening and a large number of infections averted due to a high transmission rate in the absence of
intervention, which means that averted treatment costs exceed the cost of the intervention. At intermediate prevalence, screening is not cost-saving but is still
cost-effective (there is a net cost to the intervention but the health benefits are sufficient for the cost per QALY gained to be below the cost-effectiveness threshold),
whereas at lower prevalence, screening is not cost-effective (the health benefits are in sufficient for the intervention to the considered worth the cost). Note that there
is an optimal frequency of screening. Due to the curved boundary of the area corresponding to screening being cost-saving, for some intermediate values of
prevalence screening at a low frequency is cost-effective but increasing the screening frequency makes the intervention cost-saving – due to a greater reduction in
transmission – whilst increasing to even higher frequency makes screening no longer cost-saving, and potentially not cost-effective: this is due to “diminishing
returns” if the screening frequency is increased to excessively high levels.

priorities for empirical research (Cohen et al., 2009). Modeling
can identify important sources of uncertainty that may otherwise
be overlooked, e.g., contact patterns that are important for rates
of transmission of infection amongst and between population
groups (Mossong et al., 2008).

There is uncertainty in TB’s natural history, not just in terms of
values of parameters (“parametric uncertainty”, e.g., proportions
of incident infections that are smear-negative vs. smear-positive,
progression rates from latent infection to active disease, etc.) but
also in terms of infection states which occur and which processes
affect transitions between those states (“structural uncertainty”).
Different formulations of mathematical models indicates the
uncertainty in how TB natural history is best represented

(White and Garnett, 2010), e.g., whether incident infections
should bifurcate into slow- and fast-progressing infections or
whether all infections should pass through a state when the
risk of progression is high and then those who have not yet
progressed enter a state where progression rates are lower, and
whether exogenous reinfection promotes progression to active
disease.

Whether uncertainty in parameter values (or model structure)
leads to uncertainty for decision-making depends upon
whether the probability density is concentrated on one side
of the cost-effectiveness threshold or whether there are
important proportions of the density on either side of the
threshold.

Frontiers in Microbiology | www.frontiersin.org 5 May 2016 | Volume 7 | Article 394

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-00394 April 30, 2016 Time: 13:2 # 6

White and Abubakar Mathematical Modeling of TB Control

CONCLUSION

In low-burden countries TB control needs to be targeted
appropriately for different patient groups. Targeting requires
resources, so it needs to be efficient in finding and diagnosing
at-risk persons. Assessing intervention cost-effectiveness requires
transmission-dynamic modeling to determine numbers of
infections averted, informed by data from empirical studies, e.g.,
of diagnostic tests in different settings (Drobniewski et al., 2015),
and BCG vaccination (Abubakar et al., 2013).

There are important questions regarding TB’s natural history
and epidemiology, which will affect the impact of interventions,
including use of novel technologies such as new vaccines
(Table 1). Whilst modeling can be used to gain insight into the
underlying causal mechanisms giving rise to observed patterns,
which can then inform control strategies, it is necessary to
determine in detail what the patterns are, requiring detailed
empirical study, particularly for MDR-TB strains.

Many interacting factors affect transmission in populations,
including demographic and other risk factors, patterns of
contact within and between groups having different work
places, socializing in different venues, living in different settings
(including homeless hostels), differing in their access to health
services for diagnosis, and having different needs in being
adherent to treatment. Migrants also differ in their risks
of having acquired infection overseas vs acquiring it in a
low-burden country post-migration. These different factors
need to be quantified, to enable modeling ‘translate’ findings
from the setting where a study was performed to other
settings. Improved quantification of risk factors and rates
of transmission is now possible, using improved laboratory
methods, including whole-genome sequencing (e.g., Roetzer
et al., 2013; Anderson et al., 2014; Walker et al., 2014),
combined with high-quality epidemiological data – including
contact tracing, and detailed documentation of risk factors
and history of exposure – and mathematical modeling offers

the prospect of important insights (Comas and Gagneux,
2009, 2011; Bryant et al., 2013; Roetzer et al., 2013; Croucher
and Didelot, 2015; Theron et al., 2015). Population-based
prevalence surveys (e.g., Miramontes et al., 2015) are also
valuable.

Modeling has important roles in synthesizing data from
multiple sources, setting research priorities by determining the
key knowledge gaps causing uncertainty, designing and analyzing
research studies and evaluating interventions using surveillance
data. Finally, we emphasize that effective modeling requires
multidisciplinary teams to ensure data are interpreted correctly
and models are designed to address key questions of public health
importance.
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