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Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are
are common contaminants in poultry meat and may cause urinary tract infections after
colonization of the gastrointestinal tract and transfer of contaminated feces to the
urethra. Three non-thermal processing technologies used to improve the safety and
shelf-life of both human and pet foods include high pressure processing (HPP), ionizing
(gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were
inoculated into ground chicken which was then treated with HPP (4◦C, 0–25 min) at
300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log
of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When
the UPEC was inoculated into ground chicken and gamma irradiated (4 and −20◦C)
the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken
suspended in exudate and placed on stainless steel and plastic food contact surfaces
ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken
breast meat. These results indicate that existing non-thermal processing technologies
such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or
exudate and provide safer poultry products for at-risk consumers.

Keywords: UPEC, high pressure processing, gamma radiation, ultraviolet light, chicken

INTRODUCTION

Escherichia coli are classified as commensal (natural microflora), or variants that cause disease
such as intestinal pathogenic E. coli (iPEC) or extraintestinal (ExPEC) types. Groups of ExPEC
include Neonatal Meningococcal E. coli (NMEC), Avian Pathogenic E. coli, (APEC), Sepsis-
associated Pathogenic E. coli (SEPEC) and Uropathogenic E. coli (UPEC) (Mitchell et al.,
2015). E. coli such as ExPEC (UPEC) are responsible for 75–95% of urinary tract infections
(UTI) and uncomplicated cystitis and pyelonephritis (Nordstom et al., 2013). Fifty percent
of women will contract one UTI in their lifetime, and 25% will have a recurrent UTI
(Minardi et al., 2011; Bao et al., 2014). The number of UTI in the US is ca. 6–8 million
annually, with ca. 100, 000 hospitalizations, ca. 23,000 deaths, and a health care burden
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of ca. $3.5 billion (Nordstom et al., 2013). The mechanism for
contraction of a UTI is transfer of contaminated feces from the
gastrointestinal tract to the urethra, and isolates associated with
UTI invariably match the individual’s fecal microflora (Moreno
et al., 2008).

The idea that extraintestinal foodborne pathogens such as the
ExPEC might be responsible for UTI in humans is relatively new,
and it has long been suspected they may be associated with illness
outbreaks (Markland et al., 2015). The presence of ExPEC in
poultry meat has been firmly established (Johnson et al., 2005;
Mitchell et al., 2015). Studies have compared ExPEC isolates from
food animals, food, and those from women with UTI and the
incidence of ExPEC in poultry meat and have demonstrated both
genetic similarity and identity between ExPEC from animals and
food with those from humans with UTI (Cortes et al., 2010;
Jakobsen et al., 2010a,b, 2012; Vincent et al., 2010; Bergeron
et al., 2012; Mora et al., 2013). More importantly ExPEC isolated
from animals and food can cause UTI in mouse model systems
(Jakobsen et al., 2012).

Three non-thermal intervention technologies of interest to
the meat and poultry processing industry, which are used
commercially to improve food safety and extend shelf life,
include high pressure processing (HPP), ionizing (gamma)
radiation (GR) and ultraviolet light (UV-C) (Salvage, 2014).
HPP subjects food to an elevated pressure of 100–1000 MPa
typically at temperatures below 60◦C. The mechanism by which
HPP inactivates foodborne pathogens includes cell membrane
and structure damage, ribosome dissociation, dissociation of
DNA, and enzyme inactivation (Campus, 2010; Simonin et al.,
2012). GR inactivates microorganisms by damaging their DNA
indirectly through radiolysis of water and induction of oxidative
damage or direct damage through breakage of the phosphodiester
backbone in addition to oxidative damage to proteins and
cell membranes (Taub et al., 1979; Diehl, 1995). UV-C kills
microorganisms through induction of cyclobutane pyrimidine
dimmers and 6-4 photoproducts in addition to protein damage
(Krisko and Radman, 2010; Rastogi et al., 2010).

The purpose of this study was to determine the HPP and
GR inactivation kinetics for ExPEC (UPEC) inoculated in
ground chicken as well as the UV-C inactivation kinetics on
poultry meat surfaces and in chicken purge on food contact
surfaces. To the authors knowledge this is the first study
to examine the inactivation kinetics of ExPEC in a food
system.

MATERIALS AND METHODS

Chicken
Ground chicken (92% lean) was freshly prepared and purchased
at a local wholesaler (Lansdale, PA, USA) and evenly portioned
into 90 g aliquots in polynylon pouches (Uline, Inc., Philadelphia,
PA, USA), vacuum sealed to 50 millibars using a Multi-Vac
A300 packager (Multi-Vac Inc., Kansas City, MO, USA) and then
frozen (−70◦C). The ground chicken was tested for presence
of E. coli as described below and it was <1 CFU/g. Multiple
chicken lots were tested and one with low E. coli levels was

selected. Boneless skinless chicken breast and chicken skin was
obtained fresh from a local butcher. Chicken purge was obtained
from a local poultry processor and frozen (−70◦C) until ready
for use.

E. coli Isolates
The E. coli isolates were obtained from the American Type
Culture Collection (Manassas, VA, USA). These include 700414,
700415, 700416, 700417, 700336, and BAA-1161 (http://www.
atcc.org), which were isolated from women with UTI. Multi-
isolate cocktails of the pathogens were used as recommended for
appropriate validation of non-thermal processing technologies
(National Advisory Committee on Microbiological Criteria for
Food [Nacmcf], 2006). The individual isolates were prescreened
for resistance to HPP, GR and UV prior to use, and the D10 were
consistent with results for our previous studies with iPEC (Sheen
et al., 2015; Sommers et al., 2015; Sommers et al., unpublished
data).

E. coli Growth and Inoculation
The E. coli were cultured independently in 20 ml Tryptic Soy
Broth (TSB) without dextrose to avoid development of acid
resistance (BD-Difco, Sparks, MD, USA) using 50 ml sterile tubes
at 37◦C (150 rpm) for 18–24 h using a New Brunswick Model
G34 Environmental Shaker (New Brunswick, Edison, NJ, USA).
The bacteria were then sedimented by centrifugation (1,200 × g,
Hermle Model Z206A, Hermle Labortechnik, Germany) and
resuspended as a cocktail in 20 ml sterile 0.1% peptone water
(SPW, BD-Difco).

Thawed ground chicken (10 g) was aliquoted into 2 oz. Nasco
(Ft. Atkinson, WI, USA) Whirl-Pak bags, inoculated with 0.1 ml
of UPEC, mixed manually for 1 min, and then sealed using the
Multi-Vac A300 Packager. The final concentration of UPEC in
the ground chicken was ca. 8–9 log CFU/g. The sample bags were
then sealed in a second bag and stored at 4◦C until HPP treatment
or gamma radiation (ca. 2 h).

High Pressure Processing Treatment
High pressure processing was performed using a laboratory
scale pressure unit (Mini Food lab FPG5620, Stansted Fluid
Power Ltd., Essex, UK), comprised of a double-jacketed
thick-wall stainless steel cylinder (approximate volume of
0.3 L) having an internal stainless steel sample holder of
25.4 mm × 254 mm (diameter × length). The thick-wall
cylinder was maintained at a set-point temperature in which
heat transfer fluid continuously circulated from a refrigerated
liquid chiller (Proline RP 855, Lauda, Germany). The pressure
come-up rate was 100 MPa per 15 s (or 6.7 MPa/s) and the
release rate was 100 MPa per 9 s (or 11.1 MPa/s). Samples
were pressure-treated at 500, 400, and 300 MPa (4◦C) at
5 min intervals for up to 25 min. The initial temperature
in the processing chamber was ca. 4◦C and did not exceed
a maximum of 35◦C during the HPP treatment. Keeping
the chamber temperature low (ca. 4◦C) prevents compression
heating induced thermal effects from interfering with HPP
inactivation kinetic determination (Sheen et al., 2015). The
chamber temperature was monitored by the built-in sensor (a
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T-type thermal couple device). The thermal sensor was immersed
in the working chamber near food samples filled with the
recirculation fluid.

Gamma Radiation
A Lockheed Georgia Company (Marietta, GA, USA) self-
contained 137Cs irradiator, with a dose rate of 0.065 kGy/min,
was used for all exposures. The radiation source consisted of
23 individually sealed source pencils in an annular array. The
22.9 cm × 63.5 cm cylindrical sample chamber was located
central to the array when placed in the operating position.
Inoculated samples were placed vertically and centrally in the
sample chamber, using a 4 mm thick polypropylene bucket, to
ensure a good dose uniformity (DUR < 1.1:1.0). The temperature
during irradiation (4◦C) was monitored by thermocouple and
maintained (4 or −20◦C) by introduction of the gas phase from
a liquid nitrogen source directly into the top of the sample
chamber. The radiation doses were at 0.3 and 0.6 kGy increments
at 4 or −20◦C, respectively. The absorbed dose was verified
using temperature tempered 5 mm alanine pellets that were then
measured using a Bruker eScan EPR Analyzer (Bruker, Billerica,
MA, USA).

Exposure to Ultraviolet Light
A custom built UV-C apparatus (2 mW/cm2) (Sommers et al.,
2010) was used to treat chicken purge inoculated with UPEC
on stainless steel (304 L), High Density Polypropylene (HDPP)
and High Density Polyethylene (HDPE) coupons (5 × 10 cm),
and the foods themselves. Chicken purge was thawed in a
refrigerator overnight and 0.5 ml of UPEC cocktail inoculated
into 4.5 ml chicken exudates was then mixed by vortexing for
30 s. One hundred microliter of inoculated purge was placed on
the coupons which were then spread to a 4 cm× 4 cm area using
an inoculating loop. The coupons were placed in a refrigerator
for 30 min and then placed on a cold pack (4◦C) for UV-C
exposure. The UV-C intensity exposure times were 0, 10, 20,
30, 40, 50, and 60 s for UV-C doses of 20, 40, 60, 80, 100, and
120 mJ/cm2.

For chicken meat and skin 4× 4 cm sections (ca. 1 mm thick)
of boneless skinless chicken breast were placed in sterile petri
dishes and inoculated with 0.1 ml of chicken purge which was
then spread onto the surface (4 cm × 4 cm) using an inoculating
loop, and then incubated for 30 min in a refrigerator (4◦C) prior
to treatment with UV-C. The samples were placed on cold packs
prior to UV-C treatment. The UV-C intensity exposure times
were 0, 10, 20, 30, 40, 50, and 60 s for UV-C doses of 20, 40, 60,
80, 100, and 120 mJ/cm2.

UV-C intensity was monitored using a calibrated UVX
Radiometer (UVP Inc., Upland, CA, USA). The temperature of
the room was approximately 20◦C during the exposure to UV-
C, and the food temperature did not increase to more than
30◦C at the end of the process as measured using an infrared
thermometer.

Recovery of the Surviving E. coli
The individual ground chicken samples were added to 90 ml of
0.1% PW and then stomached for 2 min (Model Bag Mixer 100W,

Inter science Co., France). The coupons with 0.1 ml exudate were
placed in stomacher bags with 9.9 ml SPW and hand massaged
for 1 min. For recovery of UPEC 1.0 mL, after proper decimal
dilutions, was placed on duplicate E. coli/coliform PetrifilmTM

(3M Microbiology Products Co., St. Paul, MN, USA). The films
were maintained at room temperature for 4 h to allow the injured
cells to recover (Hsu et al., 2014) and then incubated at 37◦C
for 24 h. Colonies (CFU) were enumerated for determination
of log reduction and D10. Incubation for longer periods did not
result in changes to the colony counts, an indicator of injured cell
recovery.

Statistical Analysis
The mean plate counts of the treated samples (N) were divided
by the average control plate counts (No) to give a survivor
ratio (N/No). The log10 (N/No) of the ratios was then used
for determination of D10-values and other statistical analyses.
D10-values were determined by the reciprocal of the slope
following linear regression as determined by least squares
analysis (Diehl, 1995). Each experiment (D10 determination)
was conducted independently three times. A minimum of five
time points were used for determination of D10. Statistical
analysis functions of MS Excel (Microsoft Corp., Redmond, WA,
USA) were used for routine calculations (D10 determination),
descriptive statistics, analysis of variance (ANOVA, 95%
confidence).

RESULTS AND DISCUSSION

High Pressure Processing
The HPP inactivation kinetics for the UPEC multi-isolate cocktail
is shown in Table 1 and Figure 1. As we have found previously for
STEC the inactivation kinetics was first order in nature. The HPP
D10 of the UPEC in refrigerated (4◦C) ground chicken was ca.
30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively.
HPP treatment using 300 MPa was ineffective as a treatment as
ca. 1 log was inactivated at that pressure. When we compare the
results of this study with those from previous HPP studies for

TABLE 1 | D10 values for uropathogenic Escherichia coli in ground chicken
and chicken purge.

Technology Parameter D10 (SEM)

High pressure processing 300 MPa 30.6 (±0.12) min

400 MPa 8.37 (±1.06) min

500 MPa 4.4 (±0.1.2) min

Gamma radiation 4◦C 0.28 (±0.01) kGy

−20◦C 0.36 (±0.01) kGy

Ultraviolet light (chicken purge) Stainless steel 11.9 (±0.49) mJ/cm2

HDPP 11.4 (±0.47) mJ/cm2

HDPE 12.9 (±0.59) mJ/cm2

D10 for HPP, GR, and ultraviolet light are shown with the standard error of the
mean in parenthesis. Each experiment was conducted independently three times
(n = 3). Each HPP D10 was significantly different than the others, as were the GR
D10 (ANOVA, p < 0.05). There was no difference (p > 0.05) between the UV-C D10
for food contact surfaces.
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FIGURE 1 | Inactivation of uropathogenic Escherichia coli on chicken meat and chicken purge by non-thermal processing technologies. HPP 300 (•),
400 (◦) and 500 (H) MPa are shown as well as gamma radiation at 4 (•) and −20 (◦) ◦C. For UV-C inactivation of UPEC on chicken breast meat (•), and chicken
exudates on SS (◦), HDPE (H) and HDPP (1) are shown. Each experiment was conducted independently three times (n = 3). The standard error of the mean is
shown as error bars. The linear regressions are shown as solid lines.

inactivation of STEC the results are similar. Sheen et al. (2015)
found the mean HPP D10 (350 MPa) of 39 STEC isolates from
illness outbreaks to be ca. 9.25 min while those from animals
and environmental sources was ca. 10.4 min when suspended
in 80% lean ground beef (350 MPa, 4◦C). Hsu et al. (2014)
found that 450 MPa (15 min, 4◦C) inactivated 5.5–6.9 log of
STEC in 77% lean ground beef while 350 MPa inactivated ca.
3.2–4.7 log. Jiang et al. (2015) was able to inactivate 3–4 log
of STEC with HPP using multiple 1 min cycles at 400 MPa.
Our results obtained using the UPEC were similar to those we
have and others have obtained in the STEC suspended in ground
beef.

Gamma Radiation
When the UPEC cocktail was suspended in ground chicken and
treated with gamma radiation the GR D10 was ca 0.28 kGy at
refrigeration (4◦C) temperature (Figure 1, Table 1). These results
are similar to those obtained by Sommers et al. (2015) which
found the GR D10 of STEC associated with illness outbreaks
to be ca. 0.27 kGy when suspended in refrigerated 80% lean
ground beef. Sommers and Fan (2012) reviewed the studies for
inactivation of E. coli O157:H7 in refrigerated ground beef in
which the GR D10 ranged from 0.013 to 0.37 kGy. GR D10 for
microorganisms irradiated in frozen foods are typically higher
than that in refrigerated foods due to the limitation of indirect
DNA damage through immobility of hydroxyl radicals produced
by the radiolysis of water in the frozen state (Bruns and Maxcy,
1979; Taub et al., 1979). Lopez-Gonzalez et al. (1999) found
the D10 for E. coli O157:H7 suspended in frozen beef (−15◦C)
beef to be 0.62 kGy. Thayer and Boyd (2001) found the GR
D10 of E. coli O157:H7 in frozen ground beef (−20◦C) to be
0.98 kGy. Black and Jaczynski (2006) obtained D10 of 0.33 and
0.35 kGy for E. coli O157:H7 in frozen (−20◦C) ground beef
and chicken, respectively. It appears the radiation doses needed
to inactivate STEC in refrigerated and frozen meat and poultry
products should also control the UPEC.

Ultraviolet Light
In this study our objective was to calculate a UV-C D10 value
for the UPEC suspended in chicken exudate on SS, HDPP, and
HDPE surfaces. The UV-C D10 for UPEC is shown in Table 1
and Figure 1. The D10 was calculated from the linear portion
of the survival curve (0–60 mJ/cm2) and ranged from 11.4 to
12.9 mJ, cm2 (p > 0.05, ANOVA). As with previous studies
complete inactivation of microorganisms with UV-C is difficult
because of shadowing by particulates in purge. The D10 for
UPEC in purge obtained were very similar to those obtained
with STEC suspended in veal purge (Sommers et al., unpublished
data), as well as other foodborne pathogens (Sommers et al.,
2012; Sommers and Sheen, 2015). A relatively low UV-C dose
of 100 mJ/cm2 should be able to inactivate ≥5 log of UPEC in
chicken purge on food contact surfaces.

When we inoculated the UPEC onto skinless chicken meat
we obtained ca. 0.6 (±0.19), respectively, which was significantly
reduced from the untreated controls (p < 0.05) which is
consistent with previous results from our group as well as other
researchers (Stermer et al., 1987; Sumner et al., 1996; Sommers
et al., 2010). When the UPEC were inoculated onto chicken
skin we did not obtain a significant reduction, which is again
consistent with results we have obtained using other foodborne
pathogens on chicken skin (Stermer et al., 1987; Sumner et al.,
1996; Sommers et al., 2010). The reduced inactivation of the
UPEC on skin and meat surfaces is expected due to the surface
topology and shielding of the UPEC from UV-C (Gardner and
Shama, 2000).

CONCLUSION

Our results indicate the HPP, GR, and UV-C inactivation kinetics
of the UPEC are similar to our historical results for the STEC in
meat and meat purge. The processing conditions used to control
STEC should have similar effects on the UPEC.
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