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The current scenario in renewable energy is focused on development of alternate and

sustainable energy sources, amongst which microalgae stands as one of the promising

feedstock for biofuel production. It is well known that microalgae generate much larger

amounts of biofuels in a shorter time than other sources based on plant seeds. However,

the greatest challenge in a transition to algae-based biofuel production is the various other

complications involved in microalgal cultivation, its harvesting, concentration, drying and

lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols

(TAGs), which are main precursors in the production of lipid. The various aspects on

metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii

have elucidated some novel metabolically important genes and this enhances the lipid

production in this microalgae. Adding to it, various other aspects in metabolic engineering

using OptFlux and effectual bioprocess design also gives an interactive snapshot of

enhancing lipid production which ultimately improvises the oil yield. This article reviews

the current status of microalgal based technologies for biofuel production, bioreactor

process design, flux analysis and it also provides various strategies to increase lipids

accumulation via metabolic engineering.
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INTRODUCTION

In recent times, microalgae have gained attention due to the depletion of non-renewable fossil
fuel. Biofuel produced from microalgae has benefit to reduce 78% emission of carbon dioxide,
98% decline in sulfur emissions and 50% decline of particulate matter after combustion (Brown
and Zeiler, 1993). Microalgae are now realized excellent source for biofuel compared to other
traditional sources of energy viz., hydro, wind, or from other biomass such as plants, household
and industrial waste. Microalgae are having an extra advantage to be used as alternate source i.e.,
fixation of large amount of CO2(100 tons of microalgal biomass fixes 183 tons of CO2 Chisti, 2008).
Biomass produced from microalgae has excellent prospects to convert into biofuel due to the low
emission of CO2 compared to other biomass sources. Bioconversion methods which comprises
(i) fermentation of the microalgae biomass to produce ethanol and hydrogen; (ii) extraction of
oils from the microalgae for biodiesel production (Skjanes et al., 2007) which is a biodegradable,
renewable, eco-friendly fuel.
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Microalgae based biofuel can be obtained after
transesterification reaction. In transesterification reaction
acid/alkali catalyst was used (Fukuda et al., 2001) and lipids were
converted using methanol or ethanol into ethyl/methyl esters
of fatty acids (Xuan et al., 2009). Completion of reaction two
phases were generated the heavy phase (crude glycerine+ excess
alcohol + water+ impurities). Light phase was centrifuged
and dehumidified, which results in biodiesel that should have
characteristics which matched the ASTM standards (Maa and
Hanna, 1999). Worldwide microalgae base biofuel has been
gaining interest to be blend in CI engines (Sgroi et al., 2005).

Metabolic engineering approach coinciding with other
strategies like genetic engineering, flux balance, identifying target
pathway and its enzymes are the key factors toward the achieving
the target of producing fuel frommicroalgae. In order to produce
biofuel frommicroalgae, an effective biochemical pathway should
be constructed with a proper selection of host and other
prerequisite parameters like pathway targeting and it’s modeling
toward desired product formation. As the metabolic pathway
are very complex in nature, the difficulties lies in marking an
appropriate pathway capable of producing biofuels.

The interest has been driven due to the genome sequences
are available of more than 30 microalgae but metabolic pathway
is still in the initial stage. Identification of genes involved
in enzyme and integrating with complex metabolism is really
difficult without base/model system. This difficulty has led to
development of Chlamydomonas reinhardtii as a model system
in eukaryotic microalgae. Genome Scale Metabolism Model
(GSMM), Flux Balance Analysis (FBA) can be integrated with
transcriptomics, proteomic data which is further constructed and
analyzed after establishment of a base system.

The commercially viable biofuel recovery from microalgae
is not realistic due to the (i) little biomass recovery (ii) cost
of downstream processing and validation. Furthermore, the
viability of microalgae based biofuel can be achieved only by the
(i) designing advanced photobioreactors (ii) developing low cost
technologies for biomass harvesting, drying, and oil extraction
(iii) development of biorefinery approach.

The overall production of such biofuel from microalgae can
be enhanced by the genetic engineering approaches and adopting
metabolic pathways engineering for augmented lipid production.
Besides above techniques for improvement in the possibility to
harnessing microalgae for biofuel a new emerging technologies
i.e., biotic or algal-bacterial interactions for enhancement of
microalgae growth and lipid production are also explored
(Costa and Morais, 2011). Researchers have been focused
on the development of high lipid content microalgae using
metabolic engineering approach and cultivated in large scale
open pond for biofuel production, and also capture carbon
dioxide from coal-fired power plants as biological emission
control process (Brennan and Owende, 2010). Now-a-days
consumption of microorganisms and their metabolic products
by human beings are one of the most significant fields, and
possible due to the development the field of biochemical
engineering.

Present review focuses mainly on the challenges encountered
in the commercial production of microalgae based biofuels and

the application of metabolic engineering approaches to overcome
these difficulties.

LIPID BIOCHEMISTRY IN ALGAE

Lipid biochemistry processes are very important in extracting
fuel from microalgae. Identification and target to increase fatty
acid content in microalgae different enzymes involves in rate
limiting steps of pathways. Though the study related to fatty acid
content is a forward step but still much more clarity is required.
Therefore, biochemistry of lipid droplets is an important factor
to be studied for enhancement of biofuel production.

Lipid biogenesis can be improved by identifying the important
node and internode in its pathway. Importing single glucose
transporter gene can divert the basic metabolism by replacing
glucose in place of light (Zaslavskaia et al., 2001). Identifying
tricky pathway through different flux analysis model and
enzymes are important aspect and well-reviewed (Banerjee
et al., 2016) viz. overexpressing DGAT gene in Chalmydomonas
reinhardtii doesn’t lead to increase its lipid content (La Russa
et al., 2012) but again overexpressing the same gene in
Phaeodactylum tricornutum resulted in increased lipid droplets
by 35% (Niu et al., 2013).

Two different key conserved enzymes namely, type-II fatty
acid synthase (FAS) and Acetyl CoA Carboxylase (ACCase) are
found to be linked with fatty acid synthesis pathway. These
enzymes are present in chloroplast and ACCase is a rate limiting
pathway for fatty acid biosynthesis. ACCase, carboxylate Acetyl
CoA to form malonyl CoA and FAS elongate the fatty acid chain
by two units (Post-Beittenmiller et al., 1991, 1992). The acetyl
CoA pools will be fulfilled from glycolysis or from TCA Cycle.
Diagrammatic representation of compartmentalization of fatty
acid biosynthesis is represented in Figure 1.

TAG synthesis mainly occurs from two different routes:

Kennedy Pathway
Glycerol-3-phosphate is acylated followed by acylation of
lysophosphatidic acid resulting in formation of phosphatidic
acid. Phosphatidic acid gets dephosphorylated to produce
diacylglycerol by diacylglycerol acyl transferase (DGAT) and then
finally to triacylglycerol (TAG).

Acyl CoA Independent Pathway
In this pathway acyl group is transferred from phospholipids
by phospholipid:diacylglycerol acyltransferase (Hildebrand et al.,
2013).

In Chlamydomonas sp. genes for DGAT was found more
when compared to Arabidopsis which further compounds the
complexity in microalgae. In plants, plastid becomes the house
for fatty acid synthesis. The plant lipid (TAG) production is
not restricted to specialized cells but in microalgae it can be
triggered by stress. (a) specific lipid like betaine lipid which was
not reported in plants (Mongrand et al., 1998; Klug and Benning,
2001).

Isoprenoid molecules are the key components for
measuring biofuel from diatoms due to the prevalence
of two different biosynthetic pathways for isoprene viz.
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FIGURE 1 | Fundamental representation for TAG synthesis and accumulation pathway in C reinhardtii. DAG, diacylglycerol; DGAT,diacylglycerol acyl

transferase; G-3-P, glycerol-3-phosphate;. ACCase, acetyl-CoA carboxylase; ACP, acyl carrier protein; FFA, free fatty acid; DHAP, dihydroxyacetone phosphate; MAT,

malonyl-CoA:ACPtransacylase; PAT, lysophosphatidic acid acyltransferase; LPA,lysophosphatidic acid; PA, phosphatidic acid; PAP, phosphatidic acidphosphatase;

TAG, triacylglycerol.

methylerythritolphosphate (MEP) and mevalonate (MVA)
pathway (Lohr et al., 2012).

METABOLIC ENGINEERING OF LIPID
CATABOLISM IN MICROALGAE

Lipid engineering inmicroalgae can be achieved by conventional,
genetic engineering and metabolic engineering approaches.

Conventional Methods
Includes nutrient deprivation, physical stress like temperature,
salt stress, and heavy metal stresses etc. which are thought
to increase the activity of several enzymes. Among different
types of stress especially nitrogen stress are being highly
reported to trigger the TAG accumulation in different class of
microalgae. Nitrogen, phosphorus stresses are being responsible
for activating acyltransferase’s and variation in phosphorus
transporter system respectively, which again triggers TAG
accumulation in microalgae (Khozin-Goldberg and Cohen, 2006;
Dubey et al., 2015).

Though, temperature will vary depending on microalgae
(Tamiya, 1957) but normally it has optimal growth rate at 15–
26◦C (Hu et al., 1998). Thus, in day time higher photosynthetic
activity results in high growth rate and vice versa in night.
Similarly in case of pH some can resist high pH owing to
their higher adaptability. Higher CO2 means higher biomass
but this will also decrease the pH (Kumar et al., 2010). The

actual reason for increasing lipid in other stresses like pH, heavy
metal is still unknown. Besides the reporting of high cell density
culture, some recent biopolymeric harvesting approach has also
been reported (Banerjee et al., 2012, 2013, 2014). Stresses can
become the constructive strategy for increasing the lipid droplets
due to the inherent advantages like ease in handling method,
requirement of no skilled labor. On other side it also lowers
down photosynthetic activity resulting in lower growth rate (Li
et al., 2008). Nutrient limitation is a key player to increase lipid
droplets and is widely reported. It is one of the expensive and
easy scheme where redirecting of metabolic flow occurs toward
lipid (TAG) formation. In this facet the major disadvantage are
slow growth rate and low photosynthetic activity. Since lipid
productivity is directly proportional to cell number therefore two
stage cultivation approach may be employed to circumvent the
above stated problem but photosynthetic one still remains.

Different approaches for increasing lipid biogenesis in
microalgae have been represented in Table 1.

Metabolic Approach
Metabolic engineering strategy is defined as tuning of metabolic
pathways in a cell to trigger the target metabolite production.
Achieving such targets various strategies can be adopted which
are listed below:

• Flux balance analysis
• Improving photosynthetic efficiency (Increasing light

penetration/ Decreasing cell shading)
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TABLE 1 | Different approaches for increasing lipid biogenesis in microalgae.

Algae used Method applied Nutrient conditioning Outcome References

CONVENTIONAL TECHNIQUES

Nannochloropsis oceanica IMET1 Steady state continues culture high light intensity and

nitrogen replete

Higher neutral lipid and biomass;

11% trehalose of Dry cell weight

(DCW)

Xiao et al., 2015

Chlorella sorokiniana Normal culture condition Nitrogen was replete and/or

depleted

Dynamic carbon partitioning

between starch and lipid which

lead to produce one of the

compound in replete/deplete

condition respectively

Li et al., 2015

chlorella vulgaris var L3 Normal culture condition Nitrogen starvation Fatty acid synthesis gene and

Carbohydrate metabolism genes

are unregulated resulting in

increased lipid (TAG) content (2.7

times)

Ikaran et al., 2015

Chlamydomonas reinhardtii Mixotrophic condition Low light conditions 5–27% higher dry cell weight than

Wild type(WT)

Zhou et al., 2015

Chlorella zofingiensis Photoautotrophically grown N-starvation Lipid increases to 24.5% of dry

weight

Zhu et al., 2014

Neochloris oleoabundans Normal culture condition Low light, high pH and

nitrogen starvation

Santos et al., 2014

Chlorella minutissima UTEX 2341 Normal culture condition NaCl, Fe3+ and nitrogen

starvation

lipid content increase to 2.5 times Cao et al., 2014

Algae used Gene/platform involved Nutrient conditioning Outcome References

GENOME EDITING TOOLS

Nannochloropsis oceanica overexpressing NoD12 under

the control of the stress

inducible promoter

Nitrogen starvation Increased long-chain

polyunsaturated fatty acids and

TAG production;

Kaye et al., 2015

Synechocystis sp. PCC6803 bicA Atmospheric CO2 Grew almost twice growth rate

and biomass with respect to wild

type

Kamennaya et al., 2015

Chlorella sp. Quadruple codon optimized

gene construct for Kennedy

pathway by electroporation

Normal culture medium 6% (wt) of TAG and 60% (wt) of

total lipid content

Chien et al., 2015

Phaeodactylum tricornutum PtME overexpressing Nitrogen deprivation Neutral lipid increases to 2.5-fold Xue et al., 2015

Nannochloropsis oceanica Overexpressing NoD12 under

the control of the

stress-inducible promoter

nitrogen starvation substantial increase in TAG

(LC-PUFA)

Kaye et al., 2015

Phaeodactylum tricornutum co-expressing otelo5 and

otd6pt with biolistic approach

NA Accumulation of high value

omega-3 long fatty acid

Hamilton et al., 2014

Algae used Software/algorithm used Flux involved Pathway Outcome References

MODELING/PLATFORMS FOR METABOLIC ENGINEERING

Chlorella protothecoides Integrated flux balance Calvin-Benson Cycle,

glycolysis, PP pathway, the

TCA cycle and the

biosynthetic pathways leading

to biomass

Detailed quarrying of metabolic

functionality Optimizing Carbon

fluxes in autotrophic and

heterotrophic growth leading to

lipid production

Wu et al., 2015

Tisochrysis lutea Dynamic Reduction of

Unbalanced Metabolism

(DRUM)

Photosynthesis, Lipids,

biomass synthesis

Lipids and carbohydrates

accumulation and consumption

Baroukh et al., 2015

Chlamydomonas reinhardtii metabolic flux analysis Algal biomass enhancement Modeling of C. reinhardtii growth

and metabolism.

Kliphuis et al., 2012

Synechocystis sp. PCC 6803 Flux Balance Analysis TCA cycle, an alleged

glyoxylate shunt, and the role

of photorespiration

Integration of TCA, Glyoxylate and

respiration and reconstructing of

metabolism (alternating diurnal

light/dark) cycles

Knoop et al., 2013

Phaeodactylum tricornutum Remodeling of metabolism

through FBA

TCA cycle and Urea cycle Uncovering the fluxes involve of

carbon to lipids formation under

nitrogen stress

Levitan et al., 2015

Chlamydomonas reinhardtii FBA Detailed biomass equation in

all growth regimes

Primary metabolism which

includes intracellular flux values for

lucid engineering of C. reinhardtii.

Boyle and Morgan, 2009
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• Engineering different enzymes toward lipid biogenesis
• Identifying rate limiting enzymes/committed step
• Carbon partitioning/capture
• Mathematical modeling
• Over expression of a gene/multiple gene
• Transcription factor engineering

The following are the major favorable points toward production
of lipid droplets in microalgae. Lipid biogenesis is governed by
three steps namely Acetyl CoA carboxylation, Chain elongation
followed by TAG formation. Furthermore, synthetic biology
aspect requires preliminary information about the organism
(microalgae). Whole genome sequencing of model as well
non model microalgae is required in order to reconstruct
the metabolism. Reconstruction of metabolic fluxes using
stoichiometric model i.e., S.v = 0; Where v is a vector of fluxes
and S ismatrix, andmatrix is constructed by balancing themasses
in each of the cell compartment of Chlamydomonas reinhardtii
(Boyle and Morgan, 2009).

Kyoto Encyclopedia of Genes and Genomes (KEGG; Ogata
et al., 1999) and MetaCyc (Caspi et al., 2005) are the major key
resource to trace themetabolic pathways. Gene expression dataset
or differentially expressed genes can also be put into the picture
to draw metabolic construction using pathExpress (Goffard
and Weiller, 2007). Recently, fluxome study of Pseudomonas
fluorescens (Lien et al., 2015) regarding fructose metabolism
in EMP, EDP, PPP, TCA cycle has also been performed.

Nutrient limitation is a key player to increase lipid droplets
and is widely reported. It is one of the expensive and easy
scheme where redirecting of metabolic flow occurs toward lipid
(TAG) formation. In this facet the major disadvantage are
slow growth rate and low photosynthetic activity. Since lipid
productivity is directly proportional to cell number therefore
two stage cultivation approach may be employed to circumvent
the above stated problem but photosynthetic one still remains.
Metabolic flux analysis using GC-MS and LC-MS/MS under
photoautotrophic growth in Synechocystis sp. PCC6803 has also
been depicted to locate the carbon distribution using INST-MFA
algorithms with high accuracy (Roesler et al., 1997; Young et al.,
2011).

Cytosolic Acc ase was transferred to Brassica napus from
Arabidopsis in order to increase the fatty acid content (Gu
et al., 2011). Nevertheless, after transformation the fatty acid
content increases to 6% which led to identification of some other
limiting steps. Acc ase is present as a multi domain enzyme in
most eukaryote and the heteromeric four different subunit from
Jatropha curcas was characterized using g 5 RACE technique
and was found maintain the conserved domain. A strain
of Escherichia coli that yields anteiso-branched fatty acids to
decrease the freezing point and escalate the fluidity (Haushalter
et al., 2014). Analysis by qPCR was also done to evaluate the
differential gene expression pattern which is directed toward
Pyruvate and acetyl-coA synthesis under nitrogen depriving
condition (Li et al., 2012). Similarly, metabolic engineering for
Fatty acid synthase is also a challenging target due to its multi
subunit structure and have a multipoint controls.

Current progress in whole genome sequencing and its
annotation will definitely pave the way toward lipid biogenesis.

Recent genetic tools like Multi gene approach, transcription
factor like CRISPR/TALEN, reverse genetics are well reported.
Manipulating genetic code will show amanipulation inmetabolic
pathway and its flux toward the target/desired compound.
Though knockdown technology (RNAi), genome editing through
modern tools have been described and is established in
Chlamydomonas reinhardtii (Kim and Cerutti, 2009), Dunaliella
salina (Jia et al., 2009). But still we are unable to establish a
base line system where every microalgae can be manipulated.
Recently, robust and nuclear expression of xylanase1 in C
reinhardtii with viral 2A peptide has been achieved. This
technology involves less number of transformation steps.
High quality transcriptomic reads to the tune of 45% were
assembled and identified in case of D. tertiolecta for ascertaining
lipid genesis and carbohydrate metabolism network (Rismani-
Yazdi et al., 2011). Knock down gene expression by two
microRNAs in C reinhardtii for RBCS1/2 and MAA7 gene
was also reported (Zhao et al., 2009). Similarly overexpression
of CrDGTT4 (type-2 diacylglycerol acyl-CoA acyltransferase)
from C. reinhardtii with SQD2 (sulfoquinovosyldiacylglycerol
synthase 2) as a promoter will also increase TAG accumulation
under phosphorus starvation (Iwai et al., 2015).

BIOCHEMICAL ENGINEERING IN
MICROALGAL BIOFUEL (LIPID
PRODUCTION ENHANCEMENT)

Advantages of microalgae for biofuel application over the other
fuel crops have been thoroughly reviewed (Schenk et al., 2008)
which includes short life cycles (1–10 days) than plants, possess
higher light conversion rates, small area is needed for the
production of the same amount of biomass as compared with
traditional biofuel crops (Schenk et al., 2008; Greenwell et al.,
2010).

Microalgae could be grow in pools, tanks and bioreactors
which can be placed on waste land, deserts and areas which
are not suitable for food production (Greenwell et al., 2010);
eventhough it can also be grown in wastewater (Yun et al., 1997).

In recent days biochemical engineering has gaining interest to
the industries and researchers is the cultivation, and harvesting
of microalgae in continuous mode. The fatty acids produced
throughmicroalgae can be extracted and converted into biodiesel
(Brown and Zeiler, 1993). Among microalgae species, oil
contents can reach up to 80%, and levels of 20–50% are quite
common (Powell and Hill, 2009). The microalga Chlorella has
up to 50% lipids and Botryococcus has 80%. The commercial
production of lipids from microalgae for biofuel production is
based on open tanks and tubular bioreactor (Jimenez et al., 2003)
which is common in Israel, Japan, Taiwan, Indonesia, United
States and China.

IN SILICO METABOLIC ENGINEERING

Another approach of metabolic engineering could be generated
by designing the large-scale models which use various in
silico tools to decipher the role of different metabolites, genes,
transcripts and crucial enzymes responsible for metabolic fluxes

Frontiers in Microbiology | www.frontiersin.org 5 March 2016 | Volume 7 | Article 432

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Banerjee et al. Metabolic Engineering for Biofuel

(Patil et al., 2004; Schmidt et al., 2010). There are enough reports
which establish the role of different computational techniques
which prove to be significant for understanding key components
of lipid regulation and can be very crucial for researchers working
in the area of biofuel.

However various other reports also summarizes various
metabolic network modeling and flux balance analysis which
plays a vital role while designing some novel pathways
or establishing an idea about enhanced recovery of lipids
from microalgae (Schuhmann et al., 2012).As a whole, the
availability of metabolic models and in silico tactics on
identifying key residues of lipid metabolism can be the role
establishing characteristics and give quite sufficient information.
Additionally, the improvement of the available models on
transcriptomics, proteomics and metabolomics based data will
facilitate to obtain key components toward good quality biofuel.
Certainly, such information generated through in silicometabolic
engineering on microalgal lipid metabolism has to be appraised
by wet lab experiments.

CHALLENGES AND CONCLUSIONS

The metabolic engineering of microalgae is an significant area of
research due to enormous interest on generating efficient biofuel.
As algae has shown the highest divergence (67.7% distinct) so
these findings regarding genes divergence will through a light
toward a positive hope for lipid bio-genesis. A survey of literature
above has established the idea that research has been carried out
only in model microalgae (C. reinhardtii), so more focus has to be
put on genome sequencing, and rigorous genome scale metabolic

flux based analysis is required toward TAG accumulation in
different lineages of microalgae. In our opinion, first we should
target the key genes responsible for lipid biosynthesis. As we had
genome sequenced for plant as well for algae the methods that are
belong employed in plant can easily be replicated in microalgae
also.

Certainly, the various type of stress responses on microalgae
is a key tool for increasing the lipid droplets. Moreover, the
accessibility of nutrients during stress condition will have a
definite role in lipid productivity. It is well documented now
that during stress conditions the microalgal metabolism will shift
toward the storage of energy rich essential molecules in form of
triacylglycerol are which could be efficient source of lipid. But
definitely, writing these aspects in research article and to get it
done practically is not impossible but it’s tough in case of complex
lipid biogenesis pathway.
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