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The advent of next generation sequencing (NGS) has enabled investigations of the

gut microbiome with unprecedented resolution and throughput. This has stimulated

the development of sophisticated bioinformatics tools to analyze the massive amounts

of data generated. Researchers therefore need a clear understanding of the key

concepts required for the design, execution and interpretation of NGS experiments on

microbiomes. We conducted a literature review and used our own data to determine

which approaches work best. The two main approaches for analyzing the microbiome,

16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics, are illustrated

with analyses of libraries designed to highlight their strengths and weaknesses. Several

methods for taxonomic classification of bacterial sequences are discussed. We present

simulations to assess the number of sequences that are required to perform reliable

appraisals of bacterial community structure. To the extent that fluctuations in the diversity

of gut bacterial populations correlate with health and disease, we emphasize various

techniques for the analysis of bacterial communities within samples (α-diversity) and

between samples (β-diversity). Finally, we demonstrate techniques to infer the metabolic

capabilities of a bacteria community from these 16S and shotgun data.

Keywords: gut microbiome, 16S rRNA gene sequencing, shotgun metagenomics, bioinformatics, taxonomic

classification, diversity analysis, functional profiling

INTRODUCTION

High-throughput comparative metagenomics enabled by development of next-generation
sequencing (NGS) platforms (Mardis, 2008; Novais and Thorstenson, 2011) has led to an outburst
of research endeavors that have rapidly advanced our understanding of the composition and
function of bacterial populations in very diverse environments (Ley et al., 2006; Garrett et al.,
2010; Caporaso et al., 2011; Bolhuis et al., 2014; Huttenhower et al., 2014a; Norman et al., 2014;
Yoon et al., 2015). In the clinical context, the human gut microbiome has been the subject of
intense investigation, which has revealed a sophisticated interplay between the microbiome and the
host immune system and metabolism (Garrett et al., 2010; Brown et al., 2013; Huttenhower et al.,
2014a; Martín et al., 2014; Broderick, 2015). For instance, it is well known that bacteria aid in many
importantmetabolic pathways, including synthesis of essential compounds like secondary bile acids
and short-chain fatty acids (Flint et al., 2012; Nicholson et al., 2012). Moreover, reduced diversity
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and/or imbalances in the gut microbiome have been associated
with a variety of phenotypes, including obesity (Turnbaugh
et al., 2009; Turnbaugh and Gordon, 2009), inflammatory
bowel diseases (IBD) (Knights et al., 2013; Huttenhower et al.,
2014b; Kostic et al., 2014; Norman et al., 2015), type II
diabetes (T2D) (Qin et al., 2012; Hartstra et al., 2015), fatty
liver disease (Arslan, 2014), and numerous additional disorders
(Bhattacharjee and Lukiw, 2013; Dinan et al., 2014; Bajaj et al.,
2015; Dash et al., 2015). The mechanisms whereby bacteria
affect the host physiology are also well appreciated from a
gene content/functional perspective. For example, both IBD
and obesity are associated with enrichment of enzymes in the
nitrate reductase pathway, the metabolism of choline and p-
cresol, as well as the phosphotransferase system, required for
assimilation of dietary carbohydrates (Greenblum et al., 2012;
Levy and Borenstein, 2014). Bacteria able to synthesize short
chain fatty acids, including acetate, butyrate, and propionate,
have been found to be critical for colonocyte homeostasis, and
their imbalance has been documented in diseases such like IBD
and T2D (Qin et al., 2012; Brestoff and Artis, 2013; Kostic
et al., 2014; Vital et al., 2014). For the most part, microbiome
studies have focussed primarily on the structure and function
of bacterial communities, fungi and viruses have received
less attention thus far, but are starting to gain momentum
(Reyes et al., 2010; Norman et al., 2014, 2015; Wang et al.,
2015). There is also renewed interest in better understanding
gaseous products from the gut microbiome, including carbon
dioxide, hydrogen, methane and hydrogen sulfide (Pimentel
et al., 2013). Importantly, methanogenesis from Archaea, mainly
Metanobrevibacter smithii, is an important source of energy. It
therefore influences metabolism and is associated with obesity,
diabetes mellitus and other metabolic disorders (Pimentel et al.,
2013; Barlow et al., 2015).

Most of the studies to understand bacterial population
dynamics have been conducted with metagenomic approaches
that are simple and cost-effective, although metatranscriptomic,
proteomic, and metabolomic approaches are becoming popular
too (Franzosa et al., 2014, 2015; Morgan and Huttenhower,
2014; Heinken and Thiele, 2015; Schaubeck et al., 2015; Yen
et al., 2015). Together, these studies promise to provide a high-
resolution picture of bacteria-host interactions that may lead
to disease (Franzosa et al., 2015). Whole-metagenome shotgun
analyses are accomplished by unrestricted sequencing of the
genome of all microorganisms present in a sample (hereafter
referred to as shotgun libraries); alternatively, inferences can
be made by sequencing PCR amplicons from the ribosomal
16S RNA gene (hereafter referred to as 16S libraries), whose
domain is restricted to bacteria and archaea (Janda and
Abbott, 2007). Data generated by each of these approaches
requires sophisticated computational methods and extensive
hardware resources for their analysis (Gevers et al., 2012). This
poses a significant challenge for microbiologists and clinical
researchers interested in diverse aspects of the microbiota.
Fortunately, the open-source software community has been
diligent in developing user-friendly bioinformatics tools required
for the analyses of bacterial NGS datasets. This article provides
a compendium of good practices for the analysis of NGS

microbiome libraries sequenced with the MiSeq platform but, for
the most part, our suggestions are applicable to data generated
with other NGS platforms. Using gut microbiome datasets
specially designed to illustrate the strengths and weaknesses
of 16S or shotgun libraries, we describe several methods for
performing taxonomical classification of bacterial sequences,
assessment of bacterial diversity within and between samples,
and inference of the metabolic capabilities associated with the
bacterial microbiome.

PRE-PROCESSING TO ELIMINATE
UNINFORMATIVE DATA

Removal of adapters, PCR primers and low quality bases is
essential for effective analyses of NGS libraries, and a variety
of user-friendly tools have been developed for this purpose.
The current Illumina platforms output quality scores “Q” that
fit into a 0–41 scale (Q10 corresponds to 1 expected error
for every 10 sequenced bases; Q20 = 1 error for every 100
bases, and so on). Setting a quality threshold remains at the
researcher’s discretion; however, it is good practice to use
only those sequences with the highest possible quality. In our
experience, sacrificing sequences with low quality scores often
improves the accuracy of the analyses by a significant margin.
The gain in precision by trimming data is more significant for
16S data than it is for shotgun data, as clustering algorithms have
been designed to detect minor differences along the sequence
of the 16S rRNA gene. Most sequencing platforms are capable
of performing paired-end sequencing. This means that both
ends (end1 and end2) of the library insert are sequenced
separately. End1 and end2 may or may not overlap and together
are referred to as a “read.” With Illumina chemistry, bases at
the front (5′ end) of each sequence generally exhibit higher
quality than those at the back (3′ end) (Supplemental Figure 1);
however, in the case of 16S libraries, the primers used for
amplification can also generate regions of low quality at the
front of each sequence. For shotgun data it is recommended to
use trimming software that remove low-quality bases from both
termini of each sequence, like cutadapt (Martin), sickle (Joshi
and Fass, 2011), or fastqMcf (Aronesty, 2011). For 16S rRNA
gene sequences, it is advisable to trim sequences along the entire
length, starting from the 5′ end and using a quality threshold as
high as possible, while leaving sufficient sequences to perform
the analyses. Assembly of overlapping paired end sequences is
advisable as long as the quality of overlapping regions is high
enough to generate a consensus sequence with high quality
scores.

TAXONOMICAL CLASSIFICATION OF
BACTERIAL SEQUENCES

Precise taxonomy assignments based on sequence alignments
remain a computational challenge for both 16S and shotgun
libraries, because of the short NGS read lengths. Prior to
taxonomic classification, gene marker amplicon sequences, like
regions of the bacterial 16S rRNA gene, are clustered by
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two main approaches (Sun et al., 2012; Chen et al., 2013).
First, sequences can be clustered into phylotypes according
to their similarity to previously annotated sequences in a
reference database (Liu et al., 2008). Second, operational
taxonomic units (OTUs) can be constructed by clustering
sequences de novo, purely based on their similarity (Schloss
and Westcott, 2011; Sun et al., 2012), which is computationally
much more intensive. A hybrid method that combines both
approaches is therefore recommended. In all cases, an arbitrary
similarity threshold is used to differentiate clusters. The
99% similarity threshold is generally accepted as a good
proxy for species (Stackebrandt and Ebers, 2006). However,
this threshold is often insufficient to discriminate between
closely related species, such as different members of the
Enterobacteriaceae, Clostridiaceae, and Peptostreptococcaceae
families. Importantly, higher resolution analytical tools have been
published that overcome some of the limitations associated with
clustering algorithms (Eren et al., 2013, 2014; Tikhonov et al.,
2015).

Comprehensive reference databases have been compiled
for annotation of sequenced bacteria metagenomes. For 16S
rRNA genes, this includes the Greengenes database (DeSantis
et al., 2006), the Ribosomal Database Project (RDP) (Cole
et al., 2014), and SILVA (Quast et al., 2013). In addition
to their extensive catalogs of curated 16S rRNA sequences,
available for downloading, each of those portals also offers a
series of bioinformatics tools for analysis of NGS sequences.
Comprehensive analysis servers like MG-RAST are also
publicly available, which already contain updated databases for
annotation purposes (Meyer et al., 2008). More specifically, the
human microbiome project (HMP) keeps a curated collection of
sequences of microorganisms associated with the human body,
including eukaryotes, bacteria, archaea and viruses, from both
shotgun and 16S sequencing projects (C. Human Microbiome
Project, 2012a,b). One of the approaches to increasing the
resolution of taxonomical classification of sequences is to
compile databases containing only the sequences likely to exist
in the environment under study. For example, specialized
databases comprising only members of the human intestinal
microbiota (Ritari et al., 2015; Forster et al., 2016) have been
created.

Robust bioinformatics approaches have also been developed
for analysis of shotgun data (Riesenfeld et al., 2004; Schloss
and Handelsman, 2008; Wu and Eisen, 2008; Huson et al.,
2011; Boisvert et al., 2012; Gevers et al., 2012; Kultima
et al., 2012; Namiki et al., 2012; Segata et al., 2012).
Unique clade-specific marker genes (Mende et al., 2013)
and lowest common ancestor (LCA) positioning approaches
are among the most popular. For the former, a gene
marker catalog is pre-computed from previously sequenced
bacterial genomes and sequences are taxonomically classified
by querying the catalog. For the LCA approach, pre-aligned
sequences are hierarchically classified on a taxonomy tree
using a placement algorithm (Aho et al., 1973; Huson
et al., 2011). Sequences that surpass a dissimilarity threshold
(bit-score) are progressively placed on higher taxonomy
levels.

VALIDATION OF BIOINFORMATICS
APPROACHES IN BACTERIAL
COMMUNITIES

To demonstrate some of the most common approaches and
pipelines used for taxonomy assignments in 16S and shotgun
libraries, we created an artificial bacterial population using DNA
from Salmonella enterica, Streptococcus pyogenes, Escherichia coli,
Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus
plantarum, Clostridium sordelli, Bacteroides thetaiotaomicron,
Bacteroides vulgatus, Bifidobacterium breve, and Bifidobacterium
animalis. We then constructed 16S and shotgun libraries in
parallel using the NEXTflex 16S V4 Amplicon-Seq (BioO
Scientific) and the Nextera XT (Illumina) kits, respectively. The
raw data of all libraries generated during this study is publicly
available at the Sequence Read Archive (SRA) portal of NCBI
under accession number SRP059928.

For the analysis of 16S amplicon libraries, we evaluated
QIIME (Caporaso et al., 2010; Navas-Molina et al., 2013) and
mothur (Schloss et al., 2009), the most widely adopted pipelines,
and the MiSeq Reporter v2.5 (MRS; the software developed by
Illumina and accompanying the MiSeq instrument) pipeline,
all with default parameters. At the genus level, all pipelines
produced similar results, but the Pearson correlation coefficient
between the expected (input) and obtained relative abundance
was somewhat higher for QIIME (Figure 1A). We therefore
selected QIIME for our subsequent analyses; however, we do not
discourage the use of mothur, which is also a reliable pipeline.
None of the 16S pipelines performed satisfactorily at the species
level.

We conducted taxonomy assignments using end1, end2, or

both paired ends. When using Illumina chemistry, end1 typically

exhibits higher quality than end2 (Supplemental Figure 1);
accordingly, end1 provided a somewhat more accurate

classification than end2 or paired ends (Supplemental Figure 2).

However, the V4 variable region of the 16S rRNA gene is
relatively short and in most cases will be covered by any one

of the two ends (250 nt in this case); as such, these results may
only reflect the higher quality of end1. For single ends, the

best results were obtained with the pick_open_otus.py script

from QIIME to cluster sequences (Supplemental Figure 2).
Chimeric sequences can be artifactually generated when PCR

amplification of the 16S region of interest is incomplete and the

resultant partial sequences serve as primers that recombine with
heterologous molecules containing a similar 3′ moiety. Several

bioinformatics approaches have been developed for detection

and removal of chimeric sequences. We used the USEARCH
tool (Edgar, 2010) to remove chimeras. However, a desirable

approach is to prevent formation of such chimeras in vitro,

using high fidelity amplification protocols like LEA-Seq (Faith
et al., 2013). Sequences were initially clustered into phylotypes

using the Greengenes database of 16S rRNA sequences (DeSantis

et al., 2006) as reference, while more dissimilar sequences were
clustered de novo into OTUs. Taxonomy was then assigned

using the RDP classifier, using the UCLUST method (Wang
et al., 2007). RTAX (Soergel et al., 2012), a method embedded
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FIGURE 1 | Comparison of taxonomic analyses of a low complexity artificial microbial population using 16S amplicon or shotgun metagenomic

approaches. Eleven bacterial species (representing 7 genera) were cultured under standard laboratory conditions. DNA was extracted using the FastDNA spin kit for

feces (MPBio). 16S amplicon and shotgun metagenomics libraries were constructed using the NEXTflex 16S V4 Amplicon-Seq (BioO Scientific) and the Nextera XT

(Illumina) kits, respectively. Libraries were paired-end sequenced on a MiSeq sequencer using a 500-cycle kit. For 16S libraries, sequences were trimmed with the

“split_fastq_libraries.py” script from QIIME. Default parameters were used, with the exception that the quality threshold for trimming was raised to 30. PCR primer

sequences were trimmed with in-house Perl scripts. Shotgun metagenomics libraries were trimmed with the fastqMcf tool, and a quality threshold of 15. The relative

abundance of each species was determined with the software indicated at the bottom of the bar graph, using default parameters, at the genus (A) or species (B)

levels. The Pearson correlation coefficient between the expected (Input) relative abundance and the classification performed by each program is indicated on top of

the bar graph.

in QIIME, and UPARSE (Edgar, 2013) are algorithms especially
designed to take advantage of mate pairs information. For paired-
end analysis, the UPARSE pipeline (Edgar, 2013) produced more
satisfactory results than the RTAX method (Soergel et al.,
2012; Supplemental Figure 2). Irrespective of the method used
for clustering, we found a consistent over-representation of
sequences in the Clostridium and Lactobacillus genera. These two
genera contain sequences that are perfectly complementary to
the primers used for amplification, while at least one mismatch is
found in the rest of genera included in our experimental (mock)
bacterial population. This demonstrates how subtle differences
in primer binding sites within the 16S rRNA gene sequences
lead to biased estimates of relative abundance. Other primers
have been reported to present biases, for instance the primer
pair 27F/338R results in underrepresentation of Bifidobacterium
(Martínez et al., 2009; Kuczynski et al., 2010). In our study,
the detection of some Clostridium, Escherichia and Salmonella
sequences was only possible after computational extraction of

representative sequences of OTUs and blasting them against
both the nr/nt and the 16S ribosomal RNA databases from
NCBI. In general, sequences in the Enterobacteriaceae family
and the Clostridiales order were poorly resolved using the 16S
V4 or V3-V4 regions (Figure 2A), and this seems to be the case
with Enterobacteriaceae for other 16S variable regions as well
(Chakravorty et al., 2007).

For shotgun libraries, we compared BLAST top hits,
the MEtaGenome ANalyzer MEGAN5, and Metagenomic
Phylogenetic Analysis (MetaPhlAn) approaches; however, we
do acknowledge that many other excellent tools have also
been developed, including PhymmBL (Brady and Salzberg,
2009, 2011), PhyloSift (Darling et al., 2014), MOCAT (Kultima
et al., 2012), Kraken (Wood and Salzberg, 2014), CLARK
(Ounit et al., 2015), and kallisto (Schaeffer et al., 2015).
BLAST top hits corresponded to the correct genus in all
instances (Figure 1A), but there were inaccuracies at finer
resolutions. For example, some C. sordelli sequences were
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FIGURE 2 | Precision of taxonomy assignments is affected by highly similar sequences in different taxa. (A) For the 16S libraries described in Figure 1,

sequences were clustered into operational taxonomic units (OTUs) using a 97% similarity threshold and taxonomy assignments were performed with the RDP

classifier. Sequences from OTUs classified as Bifidobacterium (n = 3), Agrobacterium (n = 3), Streptococcus (n = 3), Lactobacillus (n = 3), Bacteroides (n = 3),

Peptostreptococcaceae (n = 4), or Enterobacteriaceae (n = 9) were randomly extracted and aligned to the Greengenes database to extract the closest relative (best

hit). In addition, we included Greengenes 16S rRNA gene sequences (in green) from Clostridium difficile and C. botulinum as reference for Peptostreptococcaceae

and Citrobacter freundii and Enterobacter cloacae as reference for Enterobacteriaceae. The V4 region of the 16S rRNA gene was cropped from the Greengenes

sequences to construct a phylogenetic tree with MEGA-6, using UPGMA hierarchical clustering and 10,000 bootstraps. (B) Sequences from our bacterial populations

in Figure 1 were aligned against the NCBI nt and human microbiome project (HMP) databases to identify the most similar reference genome. For each bacterium, a

simulated library was created by segmenting the reference genome sequence into 500 nt stretches (250 nt paired ends in a head-to-tail orientation), iterating the

process to generate ∼1.5 million sequences. This simulated library was aligned back to the reference genome and the taxonomy resolved with MEGAN5. As

examples, we show the reads classification of Bifidobacterium breve, Bacteroides thetaiotamicron, and Escherichia coli, which accumulated a large proportion of

reads that could be resolved at the species, genus or family levels, respectively. Color-matched bars on the right show the proportion of reads accumulated at each

level for these particular examples. S, species; G, genus; F, family; O, order; C, class; P, phylum.

erroneously assigned to C. difficile or C. botulinum because
no reference genome was available at the time we conducted
the alignments. MEGAN5 (Huson et al., 2011) hierarchically
classifies pre-aligned sequences on a taxonomy tree using an
LCA algorithm. As BLAST can be prohibitively slow, the
LAST aligner was used in comparison for the same analysis
(Kielbasa et al., 2011). LAST alignments were several orders
of magnitude faster than BLAST, with comparable sensitivity
(Supplemental Figure 3). The LAST-aligned sequences were
fed to MEGAN5 for taxonomic assignments (Huson et al.,
2011). Classification with LAST/MEGAN5 was as accurate as

BLAST top hits at the genus level (Figure 1A). Lastly, we used
MetaPhlAn, which infers taxonomy based on unique clade-
specific marker genes. MetaPhlAn classification at the genus
level was as accurate as the one performed by the other two
tools (Figure 1A). The three tools correctly classified all species
included in our mock populations and also provided a good
approximation to their expected relative abundance (Figure 1B),
but MetaPhlAn outperformed the other two tools in terms of
precision and speed. Furthermore, utilization and installation of
MetaPhlAn is much simpler than BLAST or MEGAN5 and it
requires less computational processing.
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SEQUENCES WITH LOW RESOLUTION
CANNOT BE CLASSIFIED AT THE SPECIES
LEVEL

Resolving the taxonomy of 16S rRNA gene sequences can be
problematic based on a limited segment of the 16S rRNA gene,
such as the V4 region. In many cases, the sequence to be
classified is nearly identical to several other bacterial sequences
in the reference database. Similarly, for shotgun metagenomic
analyses, when only parts of the bacterial genome are recovered,
the classification at a taxonomic level will depend on the
degree of conservation of the available sequences. Thus, the
taxonomy of species that contain highly similar sequences will
be more difficult to resolve, and the analyses will accrue a larger
proportion of reads at the higher levels of the taxonomy tree.

For instance, the phylogenetic tree depicted in Figure 2A was
built using the V4 region of few representative sequences in the
Greengenes database (DeSantis et al., 2006; see Figure 2 caption
for details). It can be seen that sequences in some genera form
discrete branches on the tree, such as Lactobacillus, Streptococcus,
Bifidobacterium, and Bacteroides. Other more closely related
bacteria intertwine and cannot be delineated solely on the basis
of their differences along the V4 region, such as those within
the Enterobacteriaceae and Peptostreptococcaceae family. It has
been reported that for ∼42% of bacterial genera there will be
pairs of sequences within genus that cannot be easily separated
because their 16S rRNA gene sequences are more than 97%
similar (Vetrovsky and Baldrian, 2013).

In a taxonomy tree, the lowest common ancestor of two
taxa, a and b, is the immediate upper node that includes a
and b as descendants. When a sequence aligns equally well
to nodes a and b, that sequence will be annotated with the
taxonomy corresponding to the lowest common ancestor, which
is less accurate but more certain. Using the LCA approach,
the lack of resolution of bacterial sequences in certain parts
of the genome will also affect the taxonomic classification of
shotgun libraries. For example, in bacteria with highly divergent
genomes like Bifidobacterium breve, a large proportion of the
genome can be resolved at the species level (Figure 2B, green
outer circle), whereas in other genomes like those of Bacteroides
thetaiotamicron and Escherichia coli, the majority of their
sequences can only be resolved at the genus (Figure 2B, orange
ring) and family (Figure 2B, purple ring) levels, respectively.
MetaPhlAn does not suffer from this problem, as marker genes
are chosen based on their uniqueness, with the caveat that
sufficient sequences are needed to warrant their representation
in shotgun libraries.

In general, classification of whole metagenome sequences
improves when more dissimilar regions of the genomes, with
greater discriminatory power, are included in the sequenced pool.
When relatively large amounts of sequences are available, it is
convenient to assemble individual reads into larger fragments,
technically known as contigs, which are more amenable for
taxonomic classifications. A series of software to assemble
metagenomics data have been developed including Ray Meta
(Boisvert et al., 2012), MetaVelvet (Namiki et al., 2012),
MetaQUAST (Mikheenko et al., 2015), andMetAMOS (Treangen

et al., 2013), among others. To increase efficiency, it is also
possible to combine different samples in a single assembly
procedure, while maintaining the ability to trace the origin of
each assembled read.

ASSESSMENT OF REQUIRED
SEQUENCING DEPTH

For illustration purposes, we prepared a series of samples of
progressively greater complexity. At the low-end, we sequenced
the metagenome associated with grains of Kefir, a form
of fermented milk with probiotic properties (Nielsen et al.,
2014; Supplemental Figure 4). The higher complexity libraries
included stool samples from subjects affected by Crohn’s disease,
C. difficile infection, and a healthy individual. For comparison,
we cultured three experimental (mock) bacteria communities
containing 19 species from 12 genera (Mix7-9). All libraries were
sequenced at an average depth of ∼ 8.5 × 105 paired-end reads
(minimum 1.57× 105; maximum 1.67× 106).

To investigate the minimal sequencing depth sufficient
for accurately profiling bacterial community composition, we
randomly sampled our libraries at depths of 500, 1000, 5000,
10,000, 50,000, and 100,000 reads. At each depth, sampling
and analyses were repeated 20 times. As an example, we show
that the taxonomic classification for each type of library at
sequencing depths of 1000 and 50,000 was surprisingly consistent
(Figures 3A,B). It is expected that taxonomic classification
performed with each method will be to some extent divergent, as
the resolution of the sequences used for taxonomic assignments
is distinct and variable depending on which region of the genome
is captured in shotgun surveys, which variable region of the
16S rRNA gene is used, and which composition of species is
present in the community under analysis. However, the general
pattern of relative abundance of taxa was often observed to be
similar although the concordance of 16s vs. shotgun methods
was higher for simpler bacterial communities, as seen with the
Kefir’s community (Figures 3A,B). In the sample from the CD
patient, the most abundant genus (Lactobacillus) was detected
by both methods (gray bar), but the second was identified
as Klebsiella in 16S and Citrobacter in the shotgun libraries
(Figures 3A,B). This ambiguity likely occurs because the 16S
rRNA gene sequences of these two genera share> 96% similarity.
Many other taxa, like Bifidobacterium (Figures 3A,B) were
consistently identified because they are phylogenetically more
distant from the other taxa present. For the mock populations, all
genera (n = 12) were found in shotgun libraries at both depths,
but 16S libraries did not allow detection of the Akkermansia
or Clostridium genera, even though they were ∼5% of Mix-
9. As expected, increasing sampling depth led to increased
detection of taxa; with 1000 sequences 48 and 58 taxa were
detected in 16S or shotgun libraries, respectively, and with
50,000 sequences this increased to 72 and 128. Based on our
experimental bacterial mock populations, it is clear that some
of the assignments are spurious and increasing sequencing
depth augments the artifact. Of note, Propionibacterium was
not included in our experimental mixes but was found in both

Frontiers in Microbiology | www.frontiersin.org 6 April 2016 | Volume 7 | Article 459

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Jovel et al. Analysis of Gut Microbiome Data

FIGURE 3 | Number of sequences required for taxonomic classification of samples with varying diversity. A series of samples were chosen to assess the

effect of library complexity on the accuracy of taxonomy assignments and estimation of diversity of bacterial populations. Kefir represents the lowest point in the

bacterial diversity spectrum, followed by a patient affected by Crohn’s disease (CD), another one recovered from C. difficile infection (C. diff), a healthy individual

(Hthy1) and three artificial mixes of bacteria (Mix7-9). (A,B) Libraries were randomly sampled at depths of 500, 1000, 5000, 10,000, 50,000 and 100,000 reads. End1

16S rRNA gene sequences were classified with QIIME using the closed reference method to cluster OTUs and a similarity threshold of 97%. Paired-end shotgun

metagenomics sequences were aligned with LAST and taxonomically classified with MEGAN5. Each random sampling was repeated 20 times. As an example, the

relative abundance of taxa for one of these samplings at a depth of 1000 or 50,000 sequences is presented for 16S and shotgun metagenomics libraries. A white

asterisk indicates a group of bacterial sequences identified as Citrobacter in the shotgun panel and Klebsiella in the 16S panel. Bifidobacterium is indicated with a

white plus sign. Propionibacterium is indicated with a white circle. (C,D) For each taxa detected and for each random sample, the proportion error was calculated as

the difference between the proportion that each taxon represented in the whole library (i.e., with the maximum number of reads) and in the random sample. This

difference was weighted by the proportion that each taxon represented in the whole library. We present the arithmetic mean of all weighted differences for each of the

20 random samples.

types of libraries, indicative of contamination (Figures 3A,B).
Indeed, environmental contamination poses a serious challenge
for construction of NGS libraries (Laurence et al., 2014; Salter
et al., 2014; Strong et al., 2014; Weiss et al., 2014).

Increasing the number of sequences results in more consistent
estimations of bacteria relative abundance. To illustrate this
point, we sampled reads from each library at various depths
(500–100,000) and compared the proportion of each taxon to
the full library for the Kefir, CD, C. diff., and healthy samples
(Figures 3C,D). For each depth, we repeated sampling 20 times.

We report the weighted arithmetic mean of the differences in
proportion between the sampling and the full library. In general,
the proportion error and its variance decrease with increasing
sampling depth (Figures 3C,D). The number of sequences
required per library will ultimately depend on the goals of the
study and the type of analysis to be conducted (Ni et al., 2013).

In bacterial ecology, alpha (α) diversity refers to the
species composition in sampling units, usually at a local scale
(Whittaker, 1972; Lozupone and Knight, 2008). While the local
scale concept is somewhat diffuse in population ecology, the
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compartmentalized nature of the human (or mouse) body creates
well definedmicrobial communities (i.e., GI tract, mouth, etc.) on
which α-diversity can be estimated for comparison purposes. We
used the Shannon diversity and equitability indices (Shannon,
1948) as estimators of α-diversity for each of the random
samples extracted from our libraries (Supplemental Figure 5).
The Shannon diversity index is a sum of the proportion of each
species relative to the total number of species in the community
under analysis and therefore accounts for both abundance and
evenness (Shannon, 1948). It was nearly identical at 1000 and
50000 reads with only a small variance over multiple repetitions
for both 16S and shotgun libraries. The trend was the same
for both methods: increasing Shannon diversity values were
found from the Kefir sample, followed by the CD, C. difficile,
and the sample from the healthy subject. As noted above, the
Kefir microbiota only includes few species of bacteria and yeast
(Supplemental Figure 4), and both CD and C. difficile infection
have been reported associated with reduction of faecal bacterial
diversity in the patients’ stools (Chang et al., 2008; Antharam
et al., 2013; Vincent et al., 2013; Kostic et al., 2014; Norman et al.,
2015). This was well recapitulated by the Shannon diversity index
(Supplemental Figure 5). The equitability index compares the
actual diversity of a sample with the maximal possible diversity:
the situationwhere all species are equally represented (Monte and
Ghelardi, 1964). We found that the equitability decreased slightly
with increasing sampling depth from 1000 to 50,000 reflecting the
fact that previously unnoticed taxa were identified with increases
in sampling depth.

COMPARING MICROBIOMES BY BETA
DIVERSITY

Beta (β) diversity considers the difference in bacterial community
composition for different environments (Whittaker, 1972;
Tuomisto, 2010). To illustrate some ideas and techniques related
to beta diversity, we sequenced a set of 16S libraries that
constitute three well-defined clusters of samples: three stool
samples from mice fed with Chow, high fat or low fat diet;
the three mock libraries described in Figure 1; and six ileum
samples from two patients affected by Crohn’s disease (CD).
Users should be aware that clustering of samples that are highly
disimilar would be more challenging than the illustrative set of
data presented here, andwill likely form less well-defined clusters.
The analyses shown here are equally applicable to shotgun
metagenomics data. Before any comparison can be made, the
read counts (reads mapped to each taxon) must be normalized
(Dillies et al., 2013; Paulson et al., 2013). In Figure 4A, we
illustrate two popular normalization procedures: the total sum
and upper quartile normalization. Respectively, for each sample,
the normalization factor is the sum of counts of all bacterial taxa
detected or the upper quartile value for each sample. In general,
normalization procedures attempt to minimize the technical
variability between samples, but also accounts for sample-specific
dispersion (Dillies et al., 2013). Despite numerous research
endeavors in this area, normalization remains a topic under

intense debate, without a consensus on which normalization
procedure is the most robust one (Paulson et al., 2013).

One commonly used method to detect discrete patterns
of bacterial abundance in a group of samples is hierarchical
clustering (Rokach and Maimon, 2005). Samples with similar
bacterial profiles are recursively grouped together in branches of
a dendrogram. Figure 4A presents the results of a hierarchical
clustering using the complete linkage method (Rokach and
Maimon, 2005). As expected, mice, experimental bacterial
populations (mock), and human samples formed three discrete
clusters (communities). Within the human samples, using
total sum normalization, samples were clustered according to
patient, and inside each patient ileal resections were separated
from biopsies taken 6 months after surgery, when both
patients presented with recurrent disease. With upper quartile
normalization, biopsies were separated from resected tissues.
Hierarchical clustering is a useful tool for visualizing co-
abundance patterns, but in the absence of additional statistical
tests, caution should be exercised as visual patterns can be
misleading (Caporaso et al., 2010).

There are two main approaches for quantifying β-diversity:
those that take into account the evolutionary differences
between communities, formally known as phylogenetic β-
diversity (Lozupone and Knight, 2005, 2008; Leprieur et al.,
2012; Lozupone et al., 2013; Wang et al., 2013), and those that
do not, formally known as taxon-based or non-phylogenetic
methods (Kuczynski et al., 2010). With phylogenetic methods,
differences in abundances that involve closely related species
are given lower weights, on the assumption that closely related
species have similar genetic capabilities. One example is UniFrac
(unique fraction), which has been reported to correlate well with
the biological properties of samples (Navas-Molina et al., 2013)
and measures the amount of “unique evolution” of a community
in comparison to others (Lozupone and Knight, 2005; Lozupone
et al., 2006). Phylogenetic metrics are reliant on the quality of
the constructed tree for the bacterial communities within the
samples, which can be problematic in some cases, contingent
on the taxa and the 16S rRNA gene variable region used. One
of the most popular non-phylogenetic approaches to quantify β-
diversity is the Bray-Curtis dissimilarity (Bray and Curtis, 1957;
Beals, 1984). It is robust to the presence of zeroes in a count table,
as often is the case for microbiome data (i.e., some bacterial taxa
will be present in some but not all samples). QIIME and mothur
offer the possibility to readily calculate many β-diversity metrics
(Schloss et al., 2009; Navas-Molina et al., 2013) and so does the R
package vegan (Oksanen et al., 2015).

Once distances/dissimilarities between samples (i.e.,
differences in bacteria abundance) have been computed,
they can be positioned (ordinated) in a low-dimensional space
(two or three orthogonal axes) to better appreciate how closely
related they are to each other. The main assumption in all
ordination methods is that there are a limited number of factors
that greatly influence distribution and relative abundance of
species. The two most commonly used ordination techniques
in bacterial ecology are non-metric multidimensional scaling
(NMDS) and principal coordinate analyses (PCoA), also known
as metric multidimensional scaling (Quinn and Keough, 2002;
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FIGURE 4 | Popular techniques for inspection and quantification of beta diversity. (A) Heatmap of normalized counts for the 50 most abundant taxa. On top

of the heatmap, group of samples are color-coded. Lilac (Mouse): mutant IL-10−/− mice that were fed with either high fat (HF), conventional chow (C) or low fat (LF)

diet. Yellow (Mock): the three mock bacteria populations described in Figure 1. Light green (Human): samples from two patients suffering Crohn’s disease (CD4 and

CD11), including resections samples from the terminal ileum at the time of surgery (run in duplicate [A,B]) and biopsies taken 6 months after surgery. (B) Non-metrical

multidimensional scaling (NMDS) and Principal Coordinates Analysis (PCoA). Upper panel: Bray-Curtis dissimilarities were ordinated and plotted by either NMDS (i) or

PCoA (ii). Lower panel: Unweighted (iii) or weighted (iv) UniFrac distances were analyzed and plotted by PCoA. For unweighted distances, jackknife resampling was

performed and the spheres represent the average of such process while semitransparent ellipsoids represent the variance between repeats. Mix1-3 are described in

the legend for Figure 1; IL10−/−C: IL10 deficient mice fed with conventional chow diet; IL10−/−HF: as previous one, but fed with high fat diet; IL10−/−LF: as

previous one but fed with low fat diet; CD11TxA: Patient 11 affected with Crohn’s disease, tissue sample from ileocolic resection, repeat (A); CD11TxB: as previous

one, repeat (B). CD11Bx: Biopsy from patient 11 colon, 6 months after resection. CD4TxA: Patient 4 affected with Crohn’s disease, tissue sample from ileocolic

resection, repeat (A); CD4TxB: as previous one, repeat (B). CD4Bx: Biopsy from patient 4 colon, 6 months after resection.

Navas-Molina et al., 2013). The position of samples in the
NMDS ordination represents the rank order of inter-sample
distances, while in PCoA the ordination attempts to faithfully
match their original inter-sample distances, providing results
that are more readily interpretable (Ramette, 2007). In most
cases, both techniques will lead to similar conclusions and it is a

matter of debate which method is more appropriate (Ramette,
2007; Zur et al., 2007). For a more detailed discussion on
multidimensional scaling see (Ramette, 2007; Zur et al., 2007;
Buttigieg and Ramette, 2014). In Figure 4B, we illustrate both
NMDS and PCoA analyses. In the upper panels, Bray-Curtis
dissimilarities were calculated and are presented by (i) NMDS
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or (ii) PCoA. In the lower panels, we present UniFrac distances
and PCoA ordination, either (iii) unweighted or (iv) weighted.
Unweighted UniFrac considers presence/absence of OTUs and
therefore emphasizes rare species, while weighted also considers
the abundance of OTUs. The selection of each metric will depend
on the hypothesis being evaluated as some phenotypes are more
strongly influenced by relative abundance of taxa rather than
presence or absence of specific taxa (Navas-Molina et al., 2013).
As shown in Figure 4B(iii), it is possible to evaluate the stability
of the PCoA plot using a resampling procedure known as
jackknifing. For this procedure, calculations are reiterated after
omitting one observation (taxa, OTU, etc.) and then the average
is represented in a PCoA plot while the variance is depicted as
confidence ellipsoids (Efron and Stein, 1981; Navas-Molina et al.,
2013).

PROFILING THE METABOLIC CAPACITY
OF THE MICROBIOME

Determining the functional attributes of the microbiome is
essential for understanding their role on host metabolism and
disease (Joice et al., 2014). The metabolic capacity of the
microbiome can be inferred or cataloged from 16S and shotgun
metagenomics libraries, respectively. Gene marker approaches
like 16S rely on the correlation between phylogenetic trees
and clusters of genes shared between taxa (Langille et al.,
2013). Shotgun metagenomics, on the other hand, provides a
direct assessment of the functional attributes of the microbiome
(Riesenfeld et al., 2004; Knight et al., 2012), although the results
are dependent on sequencing depth.

The software PICRUSt (Langille et al., 2013) can be used to
infer metabolic capacity of the microbiome contained in 16S
libraries. PICRUSt functional inference is implemented in two
steps. First, a reference phylogenetic tree is constructed from the
Greengenes database (DeSantis et al., 2006) and gene contents are
assigned to nodes in such tree if sequenced genomes are available,
or otherwise predicted using ancestral state reconstruction
algorithms (Langille et al., 2013). Representative sequences from
OTUs derived from experimental data and associated with
Greengenes identifiers are normalized by 16S rRNA gene copy
number and then mapped to the corresponding Greengenes
identifiers in the reference tree. The final result is an annotated
table of gene counts per sample that can be linked to the
Kyoto encyclopedia of genes and genomes (KEGG) orthology
(KO) accession numbers (Kanehisa et al., 2004) or to any other
orthologous protein family catalog. Similarly, several robust
approaches have been developed to determine the functional
attributes in shotgun metagenomics data, including MG-RAST
(Meyer et al., 2008), MEGAN (Mitra et al., 2011), IMG/M
(Markowitz et al., 2008), HUMAnN (Abubucker et al., 2012), and
the R package ShotgunFunctionalizeR (Kristiansson et al., 2009).
Using software like MEGAN5, each sequence can be directly
mapped to KO representative sequences and the sum of KO
counts that belongs to the same pathway can be computed.
Alternatively, the SEED hierarchy (Overbeek et al., 2005) can be
used to map reads to functional roles which can be organized
into subsystems (Mitra et al., 2011). Thus, when normalized,

results from PICRUSt and MEGAN5 are comparable. Recently,
a new approach dubbed ShortBRED (Kaminski et al., 2015) was
developed, which is both highly accurate and computer efficient.
Essentially, it compiles a de novo database of marker peptides
derived from reference databases and sequenced data, and then
quantifies peptides abundance against such newly generated
database.

We derived functional profiles from 16S or shotgun libraries
with PICRUSt or MEGAN5, respectively. For this analysis, we
used stool samples from three healthy individuals, the CD and
the C. difficile samples described in Figure 3, and the three mice
samples described in Figure 4. Twenty-three KEGG reference
pathways were used to compare relative abundance determined
from both type of libraries (Figure 5A). The level of concordance
between results derived from 16S or from shotgunmetagenomics
was variable depending on the pathway under consideration.
In general both methods recapitulated general patterns of
abundance. For example, the metabolic profile of the CD stool
sample was clearly distinct from the rest and exhibited the highest
gene content related to membrane transport, signal transduction
and carbohydrate metabolism and the lowest content related to
amino acid metabolism, metabolism of cofactors and vitamins
and translation factors, as previously reported for IBD patients
(Greenblum et al., 2012; Knights et al., 2013; Kostic et al., 2014).
In addition, we show two KEGG reference pathways (at the KO
level), which relative abundance was similarly (glycolysis; r =

0.88) or distinctly (fatty acid biosynthesis; r = 0.52) assessed by
both programs (Figure 5B). The Pearson correlation coefficient
of abundance of KOs detected by at least one of the methods
was 0.66.

Although 16S and shotgun metagenomics both allow
functional profiling of the microbiome, shotgun metagenomics
offers a more reliable assessment, provided that enough
sequences are available and, ideally, it should be complemented
with metatranscriptomics analyses (Franzosa et al., 2015).

CONCLUDING REMARKS AND
PERSPECTIVE

The choice of shotgun or 16S approaches for microbiome
analyses is usually dictated by the nature of the studies being
conducted. For instance, 16S is well suited for analysis of
large number of samples, i.e., multiple patients, longitudinal
studies, etc. but offers limited taxonomical and functional
resolution. Moreover, it should be pointed out that using
primers for different regions of the 16S rRNA gene may lead
to discordant results due not only to the distinct binding
affinities for the corresponding flanking conserved regions,
but also due to the resolution of each variable region across
taxa (Soergel et al., 2012). Shotgun metagenomics on the
other hand is usually more expensive but offers increased
resolution, enabling a more specific taxonomic and functional
classification of sequences as well as the discovery of new
bacterial genes and genomes (Franzosa et al., 2015), which usually
requires assembly of individual reads into contigs. Importantly,
shotgun metagenomics allows the simultaneous study of archaea,
viruses, virophages, and eukaryotes (Norman et al., 2014,
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FIGURE 5 | Inference of gut bacterial microbiome functional content from 16S or shotgun metagenomics libraries. Samples from three healthy individuals

(Hthy1-3), the CD and the C. diff samples described in Figure 3, and the three mice samples described in Figure 4 were used here to illustrate metabolic inference of

the gut bacteria microbiome from 16S or shotgun metagenomic libraries. High quality sequences were procured as described in Figure 1. (A) Twenty-three KEGG

reference pathways known to be present in bacteria are depicted for both types of libraries. (B) Two KEGG pathways are illustrated at the gene (KEGG orthology, KO,

groups) level. On top of each heatmap pair, the Pearson correlation coefficient for relative abundance of KOs derived with each method is presented. Inference of the

functional content of the 16S metagenome was performed with PICRUSt, while gene content of shotgun metagenomic libraries was determined with MEGAN5.

PICRUSt outputs results in number of bacteria cells that encode a gene (KO) while MEGAN5 outputs counts of sequences that mapped to a KO representative

sequence. To make results from both methods comparable, counts were normalized by total sum. In both cases, the results represent the abundance of each KO as

a fraction of the abundance of all detected KOs in each library. In order to achieve full representation of all values included in each normalized count table, colors in

each heatmap were stretched between the minimum and maximum values. Therefore, the intensity (value) of each cell is not comparable between methods (16S of

shotgun). Instead the Pearson correlation coefficient is shown as an estimator of the concordance of results provided by both approaches.
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2015). Although several significant efforts to unravel bacterial
strains have already been published (Qin et al., 2010; Qichao
et al., 2014; Zhu et al., 2015), bacterial strains identification is
an issue that remains unsatisfactory with current approaches.
This is not only important from an aetiological perspective
but also for the study of bacterial populations dynamics in
general (Franzosa et al., 2015). Shotgun metagenomics offers
a greater potential for identification of strains. Reportedly,
the software MetaPhlAn2 has the ability to resolve different
strains from the same species when reference genomes
are available (https://bitbucket.org/biobakery/metaphlan2), and
other software for shotgun data will likely perform well as
more comprehensive databases are generated. Shotgun single-
cell sequencing efforts also hold promise for bacterial strains
deconvolution (Rinke et al., 2013).

In the view of experts in the field, metagenomics should
be complemented with metatranscriptomics, proteomics,
metabolomics and metadata, like clinical and dietary
information, to derive mechanistic models that explain the
structure and function of the microbiome (Brown et al.,
2013; Morgan and Huttenhower, 2014; Franzosa et al., 2015;
Waldor et al., 2015). Data integration will require sophisticated
statistical techniques like ordination methods, hierarchical
regression analyses, network analysis, and machine-learning
approaches, among others (Abubucker et al., 2012; Segata et al.,
2013; Franzosa et al., 2014; Joice et al., 2014; Morgan and
Huttenhower, 2014). It is hoped that this primer will provide
clinicians and researchers with a basic understanding of the main
bioinformatics approaches for microbiome analyses with a view
of advancing future investigations.
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Supplemental Figure 1 | Average quality scores of mock libraries

presented in Figure 1 show that end1 (blue line) is higher than the

corresponding quality in end2 (red line) especially at the 3′ end of each end.

Supplemental Figure 2 | Comparison of taxonomic classifications using

different combinations of end1 and end2 for 16S libraries. The name of the

method is at the bottom of each bar and the Pearson correlation coefficient

between the expected (Input) and obtained relative abundance of taxa is on top of

each bar.

Supplemental Figure 3 | Taxonomical classification of reads from library

Mock1 described in Figure 1. Sequences were aligned either with BLAST

(upper panel) or LAST (lower panel) and taxonomically classified using MEGAN5.

The Krona plot depicts different bacteria taxonomic levels in concentric circles,

from subspecies in the outermost circle to the bacteria kingdom in the innermost

circle.

Supplemental Figure 4 | Taxonomical classification of sequences derived

from the Kefir shotgun metagenomics library described in Figure 3.

Taxonomical classification was done by alignment of sequences to the NCBI nt/nr

and human microbiome project bacteria databases and then classified using

MEGAN5.

Supplemental Figure 5 | Shannon’s diversity index was used to describe

species diversity in each bacterial community (the so-called α-diversity). It

takes into account the number of species and their evenness, and is calculated as

a weighted sum of the proportion (p) that each species (i) constitutes of the total

number of species (S) in the bacterial community (H = −

s∑

i=1
pilnpi ). The higher the

number of species and number of individuals inside each species, the higher the

Shannon’s diversity index will be. Shannon’s equitability or evenness (EH ) index

compares the actual diversity with the maximal possible diversity (the situation

when all species are equally abundant), and is calculated as

(EH = H/Hmax = H/lnS ). A bacterial community in which all species are equally

represented will have an equitability of 1. The average value of both indices and

the corresponding standard deviation were calculated from 20 simulations at

depths of 1000 (blue boxes) and 50,000 (magenta boxes) reads. Artificial bacterial

mixes were excluded. Kefir, grains of Kefir; CD, sample from a patient affected by

Crohn’s disease; Cdiff, sample from a patient affected by Clostridium difficile;

Hthy1, sample from a healthy individual.
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GLOSSARY

α-diversity: number of species (richness) at one site. Some
formulations also consider the proportion that each species
represents (evenness), in which case a high diversity implies a
large number of species with similar abundances.

β-diversity: differences in species composition between
sites. Some formulations incorporate phylogenetic information,
assigning lower weights to differences in abundances that involve
closely related species, on the assumption that closely related
species have similar genetic capabilities.

Bray Curtis dissimilarity: a non-phylogenetic measurement
of β-diversity based only on the species present in both sites.

Greengenes: a database of 16S rRNA gene sequences at the
Lawrence Berkeley National Laboratory.

Hierarchical clustering: a method to detect patterns of
bacterial abundance by recursively grouping samples with similar
bacterial profiles into branches of a dendrogram.

Lowest common ancestor (LCA): refers to the common
node of two descendants in a phylogenetic tree. With respect
to taxonomic classifications, assignments are made at the lowest
non-ambiguous level.

Non-metric multidimensional scaling (NMDS): an
ordination method where the positions on the low-dimensional
plot represent the rank orders of the inter-sample distances.

Operational taxonomy unit (OTU): a group of sequences
clustered together based purely on similarity and an arbitrary
threshold. OTUs may or may not be equivalent to taxonomical
entities (species, genera, etc.).

Ordination: statistical techniques to transform multi-
dimensional datasets into easier-to-visualize two or
three-dimensional representations, such that similar datasets are
placed close to each other and dissimilar datasets are placed far
from each other.

Principal coordinate analyses (PCoA): an ordinationmethod
where the relative positions on the low-dimensional plot attempt
to faithfully match the original inter-sample distances.

Read counts normalization: a linear scale factor correction
that facilitates dataset comparisons by minimizing technical
sources of variability and sample-specific data dispersion
patterns.

UniFrac: a measurement of β-diversity that incorporates
the phylogenetic distances between species. Both
weighted (quantitative) and unweighted (qualitative)
variants are used, where the former accounts for
abundance, while the latter only considers presence vs
absence.

Unique clad-specific marker genes: genes that are universally
found in their taxonomic clade and yet are absent outside it,
as scored by BLAST. Typically about 5% of bacterial genes will
qualify
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