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Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South
America, and the Mediterranean basin. Despite extensive efforts to develop an
effective prophylactic vaccine, no promising vaccine is available yet. However, recent
advancements in computational vaccinology on the one hand and genome sequencing
approaches on the other have generated new hopes in vaccine development.
Computational genome mining for new vaccine candidates is known as reverse
vaccinology and is believed to further extend the current list of Leishmania vaccine
candidates. Reverse vaccinology can also reduce the intrinsic risks associated with
live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also
a possible outcome of reverse genome mining. Here, we will briefly compare reverse
vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we
will discuss how it influences the aforementioned topics. We will also introduce new
in vivo models that will bridge the gap between human and laboratory animal models in
future studies.
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LEISHMANIASIS: THE PROBLEM

Leishmaniasis is caused by flagellated protozoan parasites in the Leishmania genus. The parasite’s
life cycle includes two developmental stages, that is, the flagellated, motile “promastigote” and
the non-motile “amastigote.” The amastigote resides and propagates within phagolysosomal
vesicles of the host’s macrophages. Different sandfly species from the genera Phlebotomus or
Lutzomyia transmit the parasite to human. Factors such as the parasite number, species and site of
invasion, sandfly saliva, host-derived factors affecting immune-competency and the host–parasite
interaction determine the severity of disease (Rodrigues et al., 2014).

Cutaneous leishmaniasis (CL) is a self-limiting infection and most often heals without any
intervention. Efficient cellular immune responses control the parasite burden and amelioration.
However, healing might proceed very slowly, lasting for months and eventually ending in
disfiguring scars. Ulcerated lesions do not always heal despite conventional treatments (Reithinger
et al., 2007). By contrast, diffuse cutaneous leishmaniasis (DCL), which is caused by Leishmania
mexicana complexes in Brazil and Venezuela, is distinguished by producing multiple parasite-
filled nodules all over the body. These nodules are not self-limiting, and they heal roughly without
intervention. Skin tests with parasite proteins turn out negative, which is a direct manifestation
of sub-optimal cellular responses (Convit et al., 1962). Mucocutaneous Leishmaniasis (MCL) is
also a non-healing problem that is secondary to cutaneous infection with specific parasite species
(especially L. braziliensis). Parasite invasion from the skin into the nasopharyngeal mucosa causes
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vast tissue destruction with irreversible disfiguration. A failure
in the proper immune response regulation is responsible for the
presence of few or no parasites at the lesion site (Faria et al., 2005).

There are 500,000 new cases per year of Visceral Leishmaniasis
(VL), and it is fatal if left untreated, especially in children.
Leishmania co-infection with HIV has further increased
mortality rates. Immune suppression concomitant with the
systemic dissemination of the parasite into visceral organs
debilitates patient because of the severe internal bleeding and
anemia. In South Asia and East Africa, anthroponotic VL is
caused by L. donovani. In the Mediterranean basin, Central and
South America, zoonotic disease is caused by L. infantum, with
dogs as the primary reservoirs (Chappuis et al., 2007). Post-kala-
azar Dermal Leishmaniasis (PKDL) is a complication of VL that
appears as dermal nodules a few years later in VL-recovered
patients in India, Nepal, and Sudan. The nodules from these
patients are full of parasites, and as is the case for DCL, these
nodules are very important for the transmission of the disease
(Zijlstra et al., 2003).

The latest epidemiological data show that leishmaniasis is a
serious global problem (Alvar et al., 2012). Despite all efforts
to control it, the incidence of this disease is rising primarily
because of urbanization, migration, drug resistance, and co-
infection with the HIV virus (Okwor and Uzonna, 2013). The
current form of control relies on chemotherapy to alleviate the
disease and on vector control to reduce transmission. Although
a few therapeutic chemicals are now available, including
antimonials, amphotericin-B (as deoxycholate or in liposomal
form), paromomycin and miltefosine, some problems such as
high toxicity, variable efficacy, inconvenient treatment schedules,
costs and above all, drug resistance, still remain to be addressed
(Croft and Olliaro, 2011). Vector control is also a difficult task
because sandflies are adapted to many different micro-landscapes
(Kishore et al., 2006). Therefore, an efficient prophylactic vaccine
is desperately needed in addition to new drug development.
Three different generations of vaccines besides leishmanization
have been the subjects of massive investigations. Among the
options, live attenuated and multi-subunit vaccines are more
attractive (Alvar et al., 2013; Mutiso et al., 2013).

IMMUNE CORRELATES OF THE
DISEASE: CD4+ AND CD8+ T CELLS
AND REGULATION

The characterization of the immune response in murine
CL models that were infected with L. major has thus far
answered some questions about susceptibility or resistance
to Leishmania infection. Leishmania parasites are obligatory
intracellular microorganisms. Amastigotes are sensitive to toxic
oxygen and nitrogen metabolites of activated macrophages. In
murine CL (C57BL/6 model), a Th1-mediated immune response
by CD4+ T cells potentially activates macrophages primarily
through IFN-γ production (Belkaid et al., 2000). Experiments by
the Darrah group showed that the degree of protection against
L. major after a needle challenge in vaccinated C57BL/6 mice
depends on the frequency at which multifunctional CD4+ T

cells are capable of simultaneously producing IFN-γ, TNF and
IL-2 (Darrah et al., 2007). However, (Peters et al., 2014) showed
that CD44+CD62L−T-bet+Ly6C+ T- effector cells that are short-
lived in the absence of infection and produce only IFN-γ play
the key role in immunity against secondary infection by sandfly
challenge. Persistent parasites after healing of primary infection
are responsible for induction of these effector cells that are rapidly
recruited to infection site early after secondary challenge (Peters
et al., 2014). The persistent production of IL-12 by dendritic cells
during active infection is indispensable for the polarization and
maintenance of the Th1 response (Park et al., 2000). However,
the predominance of anti-inflammatory Th2 cytokines such as
IL-4, IL-5, and IL-13 suppress efficient Th1 polarization and
macrophage activation, thereby enhancing disease progression
(Liu and Uzonna, 2012).

Although leishmaniasis is an intracellular infection, the
contribution of CD8+ T-cells as immune correlates of the
disease upon primary infection remained to be addressed
(Wang et al., 1993; Huber et al., 1998) until the data from a
low-dose experimental challenge in both Balb/c and C57BL/6
mice were extrapolated. The data from Balb/c mice that were
infected by a low-dose challenge were controversially CD8+
T-cell dependent, but these mice were able to elevate the Th1-
type immune response and control the primary and secondary
infections (Doherty and Coffman, 1996; Menon and Bretscher,
1996; Courret et al., 2003). However, data from C57BL/6 mice
clearly indicated that CD8+ T-cells contribute to CL control.
CD8+ T-cell depletion at primary infection abolished resistance
in C57BL/6 mice that were infected intra-dermally with 100–
1,000 metacyclic promastigotes (an approximation of a low-
dose natural infection) (Belkaid et al., 2002b). Uzonna et al.
(2004) further noted that the IFN-γ secreted by CD8+ T-cells
is important for directing early Th2-type responses toward Th1
and for establishing protection, which will end in a long-term
memory that protects against subsequent infections (Okwor et al.,
2014). The protective function of antigen-specific CD8+ T cells
is used not only for IFN-γ production but also for the cytolysis
of infected host cells that are defective in intracellular killing.
Mice that are deficient in Fas or Fas ligands cannot eliminate
L. major despite the enhanced production of nitric oxide (Huang
et al., 1998). IL-10 is an important regulatory cytokine, and
it plays a key role in immune response regulations in murine
CL. Different cell types are responsible for IL-10 production,
including CD4+ CD25+ regulatory T cells (Belkaid et al., 2002a)
and CD4+ CD25− Foxp3− cells (Anderson et al., 2007; Pagan
et al., 2013). IL-10 is the most important cytokine for parasite
persistence after the primary infection heals (Belkaid et al.,
2001).

In human CL, a clear Th1 or Th2-polarized immune
response is never observed. However, an inflammatory profile
is crucial for disease control and an anti-inflammatory profile
exacerbates the condition. The CD4+ T cells are the primary
contributors to pro-inflammatory cytokine production. Inter-
species differences must not be neglected. Some new world
species such as L. mexicana and L. amazonensis require a more
robust Th1 immune response in comparison with that of L. major
(McMahon-Pratt and Alexander, 2004). The CD8+ T cells and
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IL-10 that are produced by different cell types are also primary
factors, and they play a dual role in human CL. CD8+ T cells
contribute to the differentiation of Th1 responses during the
early events of parasite infection (Pompeu et al., 2001). After
the disease is cured, the CD8+ T cells can produce IFN-γ and
participate in the healing process (Mohajery et al., 2007). IL-10
is also produced by CL patients and is responsible for down-
regulating inflammatory responses, primarily those induced by
IFN-γ. The presence of regulatory T cells in lesions from CL
patients has already been described (Campanelli et al., 2006).
CD8+ T cells and anti-inflammatory IL-10 and TGF-β cytokines
are also responsible for immunopathology in leishmaniasis. The
highest parasite loads are found in early human CL lesions
(Kumar et al., 2009). Experimentally, the peak parasite load
has been observed just prior to L. major lesion development
(Belkaid et al., 2000), which supports the idea that immune-
mediated skin inflammation leads to ulceration rather than a
direct tissue damaging effect from the parasites (Nylen and
Eidsmo, 2012). This finding is consistent with findings on
chronic Leishmania infections such as MCL, DCL, and PKDL.
MCL (Faria et al., 2009; Novais et al., 2013; Santos Cda et al.,
2013) is characterized by the immunologic hyperactivity of
CD4+ and CD8+ T cells (because of low IL-10 reactivity),
tissue destruction, and a low parasite burden. DCL (Nylen and
Eidsmo, 2012) and PKDL (Saha et al., 2007) are associated
with suppressed immune responses from sustained IL-10/TGF-β
production and high parasite loads without ulceration and tissue
destruction.

The experimental VL shows almost the same results as the CL,
although the same Th1/Th2 polarization is not clearly defined
in experimental VL. Resistance to infection is Th1 response-
dependent in the presence of IL-12. CD4+/IFN-γ+ T cells
induced in liver are essential for parasite persistence in liver
and resistance to VL reinfection in C57BL/6 mice model (Bunn
et al., 2014). Recently Romano et al. (2015) have demonstrated
a cross reactive immunity induced by CD4+/Ly6C+/IFN-γ+
T cells between L. major induced CL and L. infantum induced
VL, again bolding the role of these cells this time in memory
response against VL. However, studies using IL-4−/− and IL-
4R−/− mice show that IL-4 signaling is also important for
parasite clearance in the spleen and liver (Stäger et al., 2003).
CD8+ T cells play a clear role in murine models of VL. They
contribute to granuloma formation in the liver (to sequester the
parasite inside macrophages). Their contribution is both pro-
inflammatory cytokine production and the cytolysis of infected
cells (Tsagozis et al., 2003). Joshi et al. (2009) showed that CD8+
T cells are exhausted during L. donovani infection in murine
models, and that the PD1/PDL-1 pathway blockade restores
the capacity of these cells to control the parasite load. The
IL-10 is very important in experimental VL. The blockade of
the IL-10/IL-10R pathway promotes parasite clearance (to near
complete resolution) in experimental models of VL (Murray
et al., 2002). In human VL, the Th1 response alone is insufficient
for controlling the disease, and other factors also contribute to
determine the disease outcome (Singh et al., 2012). CD8+ T cell
exhaustion and dysfunction has been observed in the presence

of high IL-10 (Gautam et al., 2014). IL-10 is primarily produced
by cells other than CD4+ CD25+ regulatory T cells (Nylen et al.,
2007).

Evidently, an immunological memory after Leishmania
infection is achievable: the complete resolution of the disease
results in lifelong protection. Healing from the primary infection
both in mice and humans is followed by a chronic state
of parasite persistence and is associated with a powerful
cell-mediated immune response that rapidly deals with early
immune-modulatory events at infected sandfly bite sites (Peters
et al., 2009). Residual persistence is a critical factor, and the
sterile cure fails to protect against further challenges (Belkaid
et al., 2001; Uzonna et al., 2001; Zaph et al., 2004). The CD4+
effector memory and central memory T cells are two well-
known components of immunity to reinfection (von Stebut,
2007). Effector memories (but not central memories; Zaph et al.,
2004) owe their persistence to residual tissue parasites. IL-10 is
required to suppress the anti-parasitic function of macrophages
to maintain a small amount of parasites. Studies have shown
that immunity to reinfection is compromised in IL-10−/− mice
(Belkaid et al., 2002a). Recently published data also attribute the
establishment of an effective memory response to skin-resident
memory CD4+ T cells (Gebhardt et al., 2013). Long after the
resolution of the primary Leishmania infection, these T cell
subsets are still detectable in skin sites far from the primary
infection site. Resident memory T cells do not rely on residual
parasites, produce IFN-γ upon re-stimulation and contribute to
the rapid recruitment of cells back into the infection site, early
after reinfection (Glennie et al., 2015). These early recruited
T cells could be CD44+/Ly6C+ T- effector cells, however, this
needs to be further addressed. Furthermore, primary Leishmania
infection resolution is undoubtedly CD8+ T cell-dependent with
respect to natural infection features. After complete resolution,
CD8+ memory T cells are responsible for secondary infection
control in addition to CD4+ T cells (Muller, 1992). These cells
promote long-lasting protection, which is compromised in the
absence of activated CD8+ T cells (Gurunathan et al., 2000;
Mendez et al., 2001). Some controversial data has recently raised
concern about the role of these cells in secondary infection
after low dose or high dose challenge, but undoubtedly confirm
that CD8+ T cells contribute to optimal primary immunity
and establishment of successful memory response (Okwor et al.,
2014). Our recently published data indicates that CD8+ T cells
are very important in protection induced by a polytope DNA
construct expressing individual MHC-I restricted peptides in
Balb/c mice and that CD8+ T cell depletion clearly abrogates Th1
response deviation (Zandieh et al., 2015).

To conclude, despite all the unanswered questions about
immunity to leishmaniasis, multifunctional CD4+ and CD8+
T cells are undoubtedly essential in a pro-inflammatory Th1
environment to control the disease. Thus far, all the vaccine
approaches have focused on CD4+ T cell stimulations, neglecting
the important CD8+ T cells. However, new advancements
during the post-genomics era will improve vaccine design
through multiple online immunoinformatics tools to mine whole
genomes for potential candidates with both CD4+ and CD8+
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T cell-stimulating capabilities, in addition to new strategies.
Inborn differences within Leishmania species, the pertinent
disease and a good understanding of the immunopathological
mechanisms displayed by CD4+ and CD8+ T cells must be kept
in mind when planning new therapeutic and vaccine strategies
in human leishmaniasis. Recently published data reinforce the
vaccine researchers to reconsider two main facts in Leishmania
vaccine: the chronic parasitic infection after successful healing of
primary infection (which has recently highlighted novel aspects
of immunity to reinfection mediated by CD4+ T cells) and
sandfly challenge infection instead of needle challenge.

CONVENTIONAL AND REVERSE
VACCINOLOGY CONCEPTS

Historically, vaccination was introduced through the elegant
experiment that was performed by Edward Jenner in 1801
(Henderson, 1997). However, Louis Pasteur was the one
who established the principles of vaccination as “isolation,
inactivation and inoculation” after the discovery of the causative
agents of diseases. These rules provided a basis for conventional
vaccinology and led to several effective vaccine developments
against multiple pathogens. The in vitro killing or attenuation
of the whole pathogen by physical or chemical methods and
the isolation and characterization of potential immunogenic
subunits of the cultured pathogen are the primary concerns of
conventional approaches (Rappuoli, 2007). Fortunately, killed,
live attenuated or even pathogen subunits have successfully
lowered the incidence of many infectious diseases and have
increased the average human life expectancy (André, 2003;
Moriel et al., 2008). However, decades of experiments have
shown that vaccine-prone pathogens are among those that
actually do not undergo antigenic variation and are effectively
cleared by antibody responses. By contrast, diseases that are
caused by pathogens such as HIV and Influenza with numerous
variants and those that demand cellular immune responses to be
controlled, such as leishmaniasis, malaria and tuberculosis, still
await effective vaccines (Rappuoli and Aderem, 2011).

In 1995, the complete genome of Haemophilus influenzae was
published as the first entire genome sequence. Since then, 1000s
of genomes have been sequenced and made available in data
banks. The huge amount of data that is available from sequenced
genomes could not be manually integrated into the desired
data sets. The concomitant advancements in computer-based
algorithms and “omics” such as proteomics, transcriptomics,
immunomics, functional genomics and in systems biology have
helped to extract the data from the genome and to integrate them
into vaccine concepts (Rinaudo et al., 2009; Seib et al., 2009). This
approach is called “reverse vaccinology” because it begins at the
genome sequence (and not at the cell) to select potential vaccine
candidates using computer-based high throughput screening (De
Groot and Rappuoli, 2004). Reverse vaccinology has the potential
to extend the number of subunit candidates of a pathogen from
none or a few that were identified by conventional vaccinology to
a genome-wide scale, saving time and energy. If the pathogen of
interest is successfully controlled by humoral immune responses

and neutralizing antibodies, the genome-wide screening could
be further confined to the potential surface-exposed or secretory
antigens. Otherwise, the genome-wide antigenic capacity is open
to surveys for T cell epitopes as cellular immune response
inducers.

CURRENT STATUS OF Leishmania
VACCINES: WHAT WE HAVE GAINED
FROM CONVENTIONAL VACCINOLOGY

Leishmanization has made an important contribution to
Leishmania vaccine history. Exudates from active lesions
containing live infectious parasites were directly inoculated into
naive individuals (Nadim et al., 1983). Although it could be
potentially protective by polarizing Th1 immune responses,
leishmanization was discontinued because of serious concerns
about its safety and standardization, problems that still remain
to be resolved (Amini, 1991; Dunning, 2009). To follow Pasteur’s
rule, killed Leishmania promastigotes entered the Leishmania
vaccine field in 1940. Since then, different approaches have
been examined to compensate the low immunogenicity of
killed parasites such as BCG (Momeni et al., 1999) or CpG
oligonucleotide (Heravi Shargh et al., 2012) supplementation.
However, inconsistent clinical outcomes have raised serious
questions about the protection potential in humans (Noazin et al.,
2008).

Live parasites with attenuated pathogenicity were then
developed to cover the inborn limitations of live infectious
vaccination and killed vaccines. Live attenuated vaccines expose
the recipient to the entire antigenic capacity of Leishmania and
“pathogen-associated molecular patterns” that are necessary for
the proper activation of immune responses but ideally lack
pathogenicity potential (Silvestre et al., 2008). Conventional
attenuation is achieved by exposure to chemicals, consecutive
cultures or gamma irradiation (Alexander, 1982), all of which give
rise to non-pathogenic strains with genetically undefined random
mutations. Instead, targeted gene manipulation further facilitated
the specific manipulation of virulence-related genes and resulted
in many successful attenuated strains (Selvapandiyan et al., 2009;
Dey et al., 2013). Although it is promising, the major concern
about live attenuated vaccines is the risk of reversion to the wild
type strain from compensatory gene expression in Leishmania
(Spath et al., 2004). Therefore, human clinical trials still remain
challenging. It is noteworthy to mention the importance of
newly introduced nonpathogenic Leishmania species such as
Leishmania tarentolae, which highly resemble pathogenic strains
but lack virulence genes (Raymond et al., 2012). These species
strongly stimulate Th1-type responses, and they are promising
surrogates for live vaccines (Saljoughian et al., 2014).

To lower the safety risks of whole pathogen vaccines, sub-
cellular components have attracted attention for generating
subunit vaccines. Conventionally, subunits are identified by
serological, biochemical, microbiological and molecular genetics
approaches (Raju and Rao, 2010). After decades of investigation,
almost 30 different protein subunits of Leishmania are labor
intensively isolated, characterized and introduced as vaccine
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candidates. These subunits are primarily identified on the basis
of their abundance (gp63) (Etges et al., 1985), by screening
expression libraries with sera from infected animals (TSA) (Webb
et al., 1998), by expressed sequence tag analyses of cDNA libraries
(LeIF) (Almeida et al., 2004), by screening parasite fractions from
sera obtained from infected humans (CPs) (Rafati et al., 2001)
and by differential cloning (A2) (Charest and Matlashewski,
1994). Because resistance against Leishmania infection requires
Th1-type cellular immunity and because the proteins evidently
stimulate weak or no cellular responses, the characterized
protein subunits have been formulated in various iterations.
Many innovative adjuvants (Raman et al., 2012) including CpG
oligonucleotides (Ramírez et al., 2013), delivery systems (Doroud
and Rafati, 2012) including liposomes (Colhone et al., 2015), a
combination of adjuvants and a delivery system (Das and Ali,
2014), DNA constructs (Taheri and Rafati, 2013), stand-alone
versions (Iborra et al., 2004) or those with delivery systems
(Doroud et al., 2011) and vectored vaccines (Griffiths and Khader,
2014) including non-pathogenic L. tarentolae (Zahedifard et al.,
2014) have been extensively investigated to compensate for the
low efficiency of the proteins. However, despite the satisfactory
protection levels in animal models, no effective human vaccine
has entered the market yet. Multi-subunit vaccines have been
shown to be more promising (Rafati et al., 2005, 2006), and
the only vaccine formulation that is now in human clinical
trials is Leish-F. This vaccine is a tri-fusion protein composed
of TSA, LmSTI1 and LeIF, which are three well-conserved
Leishmania proteins, and this vaccine has successfully protected
mice, hamsters, and rhesus macaques in MPL-SE formulation
(Campos-Neto et al., 2001; Skeiky et al., 2002). Together, several
clinical trials have shown that the LEISH-F1 + MPL-SE vaccine
is safe and immunogenic in patients with LCL and MCL (Llanos-
Cuentas et al., 2010; Chakravarty et al., 2011). LEISH-F1 was
formulated with GLA-SE, a new promising adjuvant, and it
has shown even better responses in comparison with those
of MPL-SE (Coler et al., 2015). Other poly-protein vaccine
formulation with diverse subunit candidates including CPA-
CPB-A2 (Saljoughian et al., 2013; Shahbazi et al., 2015b) and
A2-Kmp11-CPB-SMT (KSAC) (Goto et al., 2011), have also
shown promising results in experimental models and even dogs
(Shahbazi et al., 2015a).

Despite all successful protections conferred by different
subunit vaccine formulations, unraveling the role of vector’s
saliva in Leishmania infection (Gomes et al., 2012) raised
a big concern: vector transmission of Leishmania abrogates
vaccine-induced protection (Peters et al., 2009, 2012). Sandfly
challenge massively recruits neutrophils to the infection site
and strongly promotes “Trojan Horse” pathway but needle
challenge is less reactive in respect to neutrophil recruitment
and this might basically explain vaccination failure after sandfly
challenge (Peters et al., 2009). To resolve this, several groups have
used salivary related immunostimulatory proteins like SP15 as
vaccine and have challenged either with needle and pertinent
salivary gland homogenate/SGH (Katebi et al., 2015) or infected
sandfly instead (Oliveira et al., 2015). Together their concept
has shown promising in protection against Leishmania challenge.
Respecting these results, combining effective vaccine candidates

(could be mined out of whole genome sequence) and salivary
proteins seems a better idea to further improve subunit vaccine
approach (Kamhawi et al., 2014a; Zahedifard et al., 2014) which
less complexes with safety concerns than the leishmanization or
the live attenuated vaccines.

HOW CAN REVERSE VACCINOLOGY
AMELIORATE THE CURRENT STATUS
OF THE Leishmania VACCINE?

Since the completion of the whole genome sequence of
Leishmania major (Friedline reference strain) in 2005,
approximately 8298 protein coding genes were identified
on approximately 33 mega-base pair genomes (Ivens et al., 2005).
This approach has attracted interest in relation to finding new
vaccine candidates by reverse methods (Stober et al., 2006). In
recent years, remarkable advancements in immunoinformatics
science have improved potential immunogenic epitope selections
from the genomes of various pathogens (De Groot et al., 2002;
Tang et al., 2011). This in silico peptide mapping approach is the
basis for “fishing antigens using epitopes as bait” (He et al., 2010)
because it identifies highly ranked proteins with both CD4+
and CD8+ T cell-stimulating potential, thus helping to extend
vaccine candidates (Paape and Aebischer, 2011; Aebischer, 2014;
Singh et al., 2015). Furthermore, If we believe the concept in
which “the most efficient immune response to some pathogens
is derived from a number of different T cells that respond to an
ensemble of pathogen-derived short peptides called epitopes (De
Groot et al., 2002),” then epitope mapping can be further used
to design “poly-epitopes” or “polytopes” as vaccines. Polytope
ensembles are preferable surrogates for the pathogen body
(always linked to pathogenicity reversion risk) because peptide
epitopes from one potential protein, or the different proteins
of one strain, or conserved proteins from different strains of
a species could be easily assembled together. HLA-transgenic
mice are now available from different companies to evaluate
both epitope immunogenicity and polytope vaccine efficiency.
Because they carry human HLA as their MHC background, these
models are perfect surrogates for any other mice model. They
help to evaluate not only the in vivo immunogenicity of predicted
peptides that bind to human HLA (Seyed et al., 2014) but also the
protective efficacy of polytopic constructs that encode multiple
human-HLA-restricted epitopes. The latter is still missing in
Leishmaniasis.

Reverse vaccinology could also make the live attenuated
vaccine dream come true. A pathogen’s genome encodes
thousands of proteins, and few are crucial for pathogenesis and
virulence. The essential genes in Leishmania that are involved
in promastigote to amastigote differentiation, amastigote survival
and immune system evasion are apparently related to virulence.
This complicates random gene attenuation by physical or
chemical methods. Forward genetics identifies virulence-related
genes beginning from a mutant or variant phenotype for
further targeted gene manipulation (Beverley, 2003). This
approach is a labor-intensive task for live attenuated parasite
generation, especially in complex organisms such as Leishmania.
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By contrast, reverse vaccinology through comparative or
subtractive genomics will cut the time to targeted live
attenuated vaccine development by many folds since genomic
sequences of pathogenic and non-pathogenic strains are now
available. Different computational tools make it possible to find
crucial gene/s through comparative analyses between different
pathogenic strains (to distinguish species-specific genes and the
core genome) (Peacock et al., 2007) and a subtractive analyses
with non-pathogenic strains such as L. tarentolae (to find relevant
virulence factors) (Raymond et al., 2012). These types of analyses
allow for the identification of genes and proteins that are very
specific for virulence (in addition, the prediction algorithms and
in silico tools help to predict protein interactions in biological
systems between the host and the invaded cell, which further
ameliorates pathogen-specific drug screening) (Ali et al., 2013).
Fortunately, most Leishmania strains are transfectable and will
tolerate many genetic manipulations. Together with advanced
transfection techniques, the targeted manipulation of pathogenic
strains at actual virulence-related genes might further guarantee
reversion failure.

FISHING NEW VACCINE CANDIDATES
FROM THE GENOME BY USING
EPITOPES AS BAIT

Epitopes are the smallest immune-stimulatory units of a protein
that are presented by major-histocompatibility complexes. MHC
molecules are among the most heterogeneous gene families
in humans. Each allele specifically accepts peptides bearing
compatible binding motifs with an HLA binding groove. The
term “Epitope Mapping” is used to identify epitopes from
a protein that bind MHC molecules with proper affinity
and stimulate T cell (or B cell) responses. In general, MHC
binding is a crucial determinant for T cell activation, but
for CD8+ T cells, factors other than MHC binding are also
important. Intracellular proteins are chopped into peptides by
proteasomal enzymatic cleavage and are destined for the MHC-I
compartment (via TAP molecules) in the endoplasmic reticulum.
Classical approaches select immunogenic epitopes within pools
of synthetic overlapping peptides (usually 15-mers) that stimulate
T cell clones in vitro and/or in vivo (Basu et al., 2007; Das
et al., 2014). The time and energy that are consumed this way
because of the large number of peptides that must be evaluated
could be saved by immunoinformatics. Immunoinformatics is
the part of bioinformatics science that is concerned with the
computational prediction of T cell (and B cell) epitopes from
proteins (Tomar and De, 2010) and is powered to reduce the
number of peptides that are valuable for further study. All we
need are mathematical algorithms that are capable of predicting
MHC binding, presentation and TCR activation. Both the
sequence and structure of proteins have been considered during
the development of predictive algorithms (Liao and Arthur, 2011;
Resende et al., 2012). Those that are based on sequences include
“motif-based methods,” “quantitative matrices” and “machine
learning methods.”

Motif-based methods are relatively simple approaches that
look for allele-specific binding motifs (Falk et al., 1991). Each
allele has anchor positions that best fit with the anchor residues
of a peptide. Thus, a peptide with preferable anchor residues
is expected to be a binder. However, the identification of
potential binders without preferred anchor residues has raised
the possibility that not only the anchor but also the neighboring
positions play considerable roles in MHC-peptide interaction.
This line of reasoning led to matrix-based methods, although
motif-based methods are still used. In any given matrix, each
amino acid at each specific position has a defined score.
The final score of each peptide sequence is then the sum or
multiplication of individual scores used by the algorithm. All
peptides derived from a protein with a given length are then
ranked from the top-scored peptides to the last one. SYFPEITHI
is among the very well-known matrix-based methods that are
extensively used for in silico peptide prediction (Rammensee
et al., 1999; Dikhit et al., 2015; Ip et al., 2015). Because
epitopes that are extracted from MHC molecules are the primary
contributors to matrix design, these methods are not actually
able to discriminate between binders and non-binders. To find
true positive epitopes, 10% of the top ranked peptides should
be further evaluated in vitro and/or in vivo. However, matrix-
based methods underestimate the impact of neighboring amino
acids on the binding affinity of an amino acid at each position
(non-linearity). Machine learning methods instead fix these
drawbacks. Artificial Neural Networks (ANN), Hidden Markov
Models (HMM), and Support Vector Machines (SVM) not only
efficiently classify the peptide contents of a protein into binders
and non-binders with high positive predictive values but also
consider non-linearity using mathematical algorithms (Luo et al.,
2015). Finally, structure-based algorithms predict epitopes with
3D-structural information from MHC molecules and peptides.
According to in silico docking, peptides with a binding affinity
for a given MHC are selected (Patronov and Doytchinova, 2013).
Inborn limitations underlying motif-based and structural-based
methods have made matrix-based and machine learning methods
the first choices for in silico predictions (Shipo Wu et al., 2012)
with multiple open access tools on the World Wide Web. Initially,
users might become confused by the large amount of available
software. However, it is better to keep in mind that the more
algorithms that are used, the better the results (Yu et al., 2002).

Different groups have already started to mine the Leishmania
genome for new vaccine candidates by using peptide maps of
mouse MHC-I (Guerfali et al., 2009; Herrera-Najera et al., 2009)
or human HLA-I (Schroeder and Aebischer, 2011; John et al.,
2012; Singh et al., 2015) molecules. MHC-II epitope prediction
is more difficult and less sensitive than MHC-I prediction.
Therefore, there is still a lack of data about epitopes from
Leishmania species in mouse or human HLA-class-II molecules
to describe new potential protein candidates, and we need to
collect this information. The primary priority in the Leishmania
parasite is to focus on amastigote-specific proteins. Thus,
proteomics or phospho-proteomics data from the amastigote
stage will restrict whole genome screening to the amastigote-
specific proteome (Paape and Aebischer, 2011). For CD8+ T cell
epitope selection, some prefer to consider surface or secreted
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proteins (Naouar et al., 2016), but this consideration may cause
potential epitopes from intracellular proteins to be overlooked.
Recently published data show that epitopes from LPG-3 and
LmSTI-1 as intra-cellular molecules can recall CD8+ T cell
responses from CL-recovered HLA-A2+ individuals (Seyed et al.,
2011). Therefore, genome-wide screening for novel antigens
irrespective of sub-cellular localization could further extend the
vaccine candidate list for the Leishmania parasite.

POLY-EPITOPE CONSTRUCT DESIGN
BASED ON GENOME-DERIVED
EPITOPES

Multiple formulations are recommended for polytope ensembles.
One is a direct inoculation of epitope mixtures. Because single
peptides are weak immune-stimulators per se, robust adjuvanting
systems such as cytokines, Toll-Like-Receptor ligands, CpG
oligo-nucleotides or dendritic cell-based systems are needed.
In addition, these peptides are at risk of degradation by
endopeptidase or exopeptidase activity at the injection site and
in circulation. Thus, putting them together in long peptide
assemblies reduces the degradation risk but makes the synthesis
and production rather difficult (Lu et al., 2004; Slingluff,
2011). Alternatively, self-adjuvanted nucleic acid constructs with
remarkable potential to promote both CD4+ and CD8+ T cell
responses are more attractive than peptide assemblies (Cho and
Celis, 2012). Moreover, DNA prime-peptide boost (heterologous)
regimens further potentiate T-cell responses (Moise et al., 2011).
Polytope DNA constructs should be rationally designed by
focusing on some critical points such as minimal junctional
peptides, optimal proteasomal degradation for CD8+ T cell
epitopes and secretory pathway guidance for CD4+ T cell
epitopes.

Junctional peptides are inevitable in a “string of beads” in
which T cell epitopes are in tandem. If dominant, these peptides
will affect the immune response. To avoid junctional peptides,
spacers such as AAA (Jafarpour et al., 2014), AAY (Huebener
et al., 2008), K (Li et al., 2005) and AD (Bazhan et al., 2010)
for CD8+ T cell epitopes and GPGPG for CD4+ T cell epitopes
(Moise et al., 2011) are recommended. Spacers starting with
“A” are more frequently used with respect to the “P1 premise.”
Accordingly, the chance of proteasomal cleavage increases once
the P1 amino acid next to the C-terminal peptide is alanine
(Neisig et al., 1995). It is now possible to compare different
possibilities for epitope arrangements with or without spacers by
immunoinformatics, which can efficiently predict the cleavage
sites on the polytope sequence (Seyed et al., 2014). Another
important note is that endogenously synthesized proteins that
are destined for proteasomal degradation are ubiquitinated only
if they carry degradation signals (Mogk et al., 2007). Artificial
proteins such as polytopes without internal signals are long-
lived molecules with long half-lives before degradation. This
tendency could be compensated by ubiquitination with a single
ubiquitin molecule (76 amino acid long) that is covalently
attached to a polypeptide chain. Each molecule recruits more
molecules and consequently makes a poly-ubiquitinated polytope

(Sharma and Madhubala, 2009). Alternatively, the N-terminal
signal peptide could be used instead of ubiquitination (Eslami
et al., 2012). Although the CD8+ T cell response has been
shown to be essential in Leishmania clearance, polytopes aimed
at CD8+ T cell induction remain to be addressed with regards
to Leishmania infection. Our group has recently shown that a
rationally designed DNA construct that encodes multiple CD8+
T cell epitopes from Leishmania proteins effectively stimulate
cytotoxic T cells in both Balb/c and HLA transgenic C57BL/6
experimental models (Seyed et al., 2014). Others have focused
on human HLA-I or –II epitope prediction from well-known
vaccine candidates such as CPs, gp63, LeIF, LmSTI-1, KmP-
11 and LPG-3 by using an immunoinformatics approach for
future vaccine design (Saffari and Mohabatkar, 2009; Seyed
et al., 2011; Elfaki et al., 2012; Rezvan, 2013; Agallou et al.,
2014).

In addition to ubiquitination and optimal cleavage, T
helpers are also a primary concern during the rational design
of polytopes. T Helper-inducing peptides are necessary for
CD8+ T cell priming. PADRE (Cong et al., 2012) and
Tetanus Toxoid-derived peptides are extensively used for this
purpose. These peptides are applicable to both mouse and
human studies, and they induce Th1-type responses whenever
permitted. In any case, CD4+ T cell-inducing epitopes should
be destined for the excretory pathway, to enter the MHC
class-II compartment. Signal peptides are efficient at this
responsibility.

The HLA heterogeneity of human populations is still
a remaining obstacle to surmount. Promiscuous epitopes
presented by HLA super-types are a solution. Super-types
are allelic groups with close but not exact binding motifs
or “supermotifs” that bind a group of peptides with more
or less comparable affinities. Nine different supertypes have
already been characterized, and it is postulated that 3 out
of 9, including A2, A3 and B7, cover more than 90% of
the global population. The remaining percentage should be
covered by population-specific alleles (Reche and Reinherz,
2007). Predicting promiscuous epitopes is an easy task now
and immunoinformatics fulfills this job with algorithms such
as NetMHCpan and NetMHCpanII for MHC-I and MHC-II,
respectively. Although we are still far from an ideal polytope
vaccine for human population, some researchers have studied
the protective potential of epitope vaccines against Leishmania
infectious challenges in experimental models (Spitzer et al., 1999;
Sachdeva et al., 2009; Agallou et al., 2011; Kedzierska et al.,
2012). Recently published data provide the proof of concept for
T cell-based Leishmania vaccines. Das et al. (2014) have prepared
DNA constructs that are enriched with CD4+ and CD8+ T cell
stimulatory segments of four different proteins to minimize the
HLA effect. The vaccine has been shown to be protective in a
rodent model of VL (Das et al., 2014), and it is a candidate
for human clinical trials (Riede et al., 2015). The hallmark of
LEISHDNAVAX is that the vaccine antigens were tested with
T cells from leishmaniasis-recovered individuals, and they have
been shown to be immunogenic in genetically diverse human
populations, starting from humans and ending in a human
vaccine (Kamhawi et al., 2014b).
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Not only can polytopic constructs serve as prophylactic
vaccines, but they are also a promising approach for
immunotherapy. Recently, Teh-Poot et al. (2015) successfully
evaluated the immunotherapeutic potential of a mixture of 10
peptides in Trypanosoma cruzi-infected mice. The therapeutic
vaccine controlled the resulting parasitemia, cardiac tissue
inflammation and parasite burden (Teh-Poot et al., 2015).

HLA TRANSGENIC MICE PAVE THE
PATHWAY “FROM HUMAN TO HUMAN”

Mouse models are very well-known experimental models in
Leishmania research. However, subtle differences in peptide
presentations by mouse MHC or human HLA systems might be
one possible explanation for the failure of protective vaccines in
human trials. To fill this gap between experimental models and
human applications, new experimental models were generated
to express human HLA molecules in mice (Pascolo, 2005). In
the preliminary models, the immune response was more mouse
MHC and less human HLA-restricted. However, advancements
in transgenesis and gene manipulation techniques further
facilitated mice MHC knockout by replacing the gene with a
complete human HLA sequence. In these transgenic animals,
the human HLA allele is the only source of T-cell training in
the thymus; thus, they are invaluable models for bridging the
gap between laboratory and human field studies, especially for
peptide prediction and polytope vaccine development.

Animals that express either human HLA class-I or -II or
both class-I and II, are now available from different companies.
These pre-clinical models have revolutionized studies from
human in silico approaches to human in vivo experiments before
being moved to clinical trials, that is to say, from humans to
humans (Kotturi et al., 2009). Many investigators have harnessed
the model’s potential for evaluating human-derived epitope-
based vaccine efficacy both in tumor cell challenges (Dosset
et al., 2012; Ding et al., 2013) and different infections such
as Poxvirus (Moise et al., 2011), Toxoplasma gondii (Cong
et al., 2012), Mycobacterium tuberculosis (Geluk et al., 2012) and
Plasmodium falciparum (Mahajan et al., 2010). Our group has
also recently shown the immunogenicity of a polytope DNA

construct that encodes multiple CD8+ T cell-stimulating peptides
in HLA-A2 transgenic mice as the first report in Leishmania
(Seyed et al., 2014). Previously, Rezvan et al. (2012) showed the
immunogenicity of HLA-I and HLA-II (Rezvan, 2013)-restricted
peptides from Leishmania-gp63 in relevant pre-clinical models.
However, data to support the protective efficacy of epitope
vaccines against Leishmania are still missing.

CONCLUDING REMARK

Today there are almost 30 different characterized proteins, out of
at least 8000 proteins encoded in the parasite genome, for vaccine
studies. This substantiates further characterization of new protein
candidates both as virulence factors to generate more reliable
live attenuated parasites and also as members of more effective
multi-subunit vaccines to obtain better vaccine modalities. This
could be achieved from mining the full sequenced genome of
the Leishmania species now available. Hopefully massive data
extrapolated from the genome will further revolutionize the
future of vaccine design and drug development by unraveling the
mysteries around the biology of the parasite.
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