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The stochasticity due to the infrequent collisions among low copy-number molecules
within the crowded cellular compartment is a feature of living systems. Single cell
variability in gene expression within an isogenic population (i.e., biological noise) is
usually described as the sum of two independent components: intrinsic and extrinsic
stochasticity. Intrinsic stochasticity arises from the random occurrence of events inherent
to the gene expression process (e.g., the burst-like synthesis of mRNA and protein
molecules). Extrinsic fluctuations reflect the state of the biological system and its
interaction with the intra and extracellular environments (e.g., concentration of available
polymerases, ribosomes, metabolites, and micro-environmental conditions). A better
understanding of cellular noise would help synthetic biologists design gene circuits
with well-defined functional properties. In silico modeling has already revealed several
aspects of the network topology’s impact on noise properties; this information could
drive the selection of biological parts and the design of reliably engineered pathways.
Importantly, while optimizing artificial gene circuitry for industrial applications, synthetic
biology could also elucidate the natural mechanisms underlying natural phenotypic
variability. In this review, we briefly summarize the functional roles of noise in unicellular
organisms and address their relevance to synthetic network design. We will also
consider how noise might influence the selection of network topologies supporting
reliable functions, and how the variability of cellular events might be exploited when
designing innovative biotechnology applications.

Keywords: synthetic biology, biological noise, intrinsic/extrinsic stochasticity, network topology, standard
biological parts

INTRODUCTION

Novick and Weiner (1957) first observed the differential ability of individual Escherichia coli cells
within an isogenic population to respond to environmental conditions. Since then, the stochasticity
due to the infrequent collisions among low copy number molecules subjected to Brownian motion
within the cellular compartment has been identified as an inherent feature of living systems
(Shahrezaei and Swain, 2008). Owing to its pivotal role in biological processes, stochasticity in
gene expression has been the focus of research fostered by the progress in quantitative single-cell
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assays. Both experimental and theoretical studies have elucidated
the prime causes of phenotypic variability and their impact
on microbial fitness (Maloney and Rotman, 1973; Spudich and
Koshland, 1976; Berg, 1978).

The overall variability in gene expression within an isogenic
population (i.e., biological noise) is usually described as the
sum of two independent components: intrinsic and extrinsic
stochasticity (Figure 1). Intrinsic stochasticity arises from
the random occurrence of biochemical events inherent to
the gene expression process (e.g., the burst-like synthesis of
mRNA and protein molecules). Extrinsic fluctuations reflect
the state of the cell and its interaction with the intra-
and extracellular environments (e.g., the concentration of
available polymerases, ribosomes, metabolites, and the micro-
environmental conditions). These two components have been
empirically distinguished either through dual-reporter gene
assays (Elowitz et al., 2002; Swain et al., 2002), or via indirect
methods (Ozbudak et al., 2002; Blake et al., 2003; Acar et al,,
2005). Although extrinsic stochasticity appears to often be the
dominant component of biological noise (Elowitz et al., 2002;
Raser and O’Shea, 2004; Rosenfeld et al., 2005), we lack a
precise characterization of its significant contributors (Shahrezaei
et al, 2008; Hilfinger and Paulsson, 2011). On the other
hand, the data collected in prokaryotes shows that intrinsic
fluctuations relate primarily to translational efficiency (Elowitz
et al., 2002; Ozbudak et al., 2002). Synthetic biology would
certainly benefit from a quantitative understanding of cellular
noise, given that its aim is the design of gene circuits with
well-defined functional properties. While optimizing artificial
gene circuitry for industrial applications, synthetic biology might
also contribute to the understanding of the natural mechanisms
underlying phenotypic variability.

In this review, after a brief summary of the functional roles
of noise in unicellular organisms, we will discuss its relevance in
the design of synthetic networks. In particular, we will consider
how noise might influence the selection of network topologies,
and how the variability of cellular events might be exploited when
designing innovative biotechnology applications.

NOISE IN NATURAL NETWORKS

Noise is generally considered to hamper the outcome of
cellular processes relying on fine control of molecular fluxes
(Arias and Hayward, 2006). However, a plethora of studies
has attributed beneficial functions to noise-driven phenotypic
variability (Figure 2). For example, the noise in gene expression
introduces phenotypic heterogeneity within clonal populations,
allowing species survival in time-varying environments. Indeed,
fluctuations might divide a clonal population into phenotypic
subpopulations, providing an evolutionary advantage without
the burden of sensing and reacting (Kussell and Leibler, 2005).
A classic example of this logic is represented by the phage \
choice between lytic and lysogenic cycles (Arkin et al., 1998). The
phage’s probabilistic fate commitment has been attributed to the
overwhelming abundance of one of two key repressors (Cro/CI),
interacting through nested positive and negative feedback loops
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FIGURE 1 | Intrinsic and extrinsic components of noise. Extrinsic noise
results from changes in the environmental conditions and cellular state. This
contribution equally affects two fluorescence reporter proteins transcribed
from the same promoter (a). Their expression is modulated in an uncorrelated
way by intrinsic noise, due to the stochasticity of biochemical events (b).

constituting a genetic switch (Dodd et al., 2005; Balazsi et al.,
2011). This switch controls a bistable system in which the
phenotype decision is memorized in each cell, preventing
reversion of fate commitment (Losick and Desplan, 2008).

Another case of noise-driven differentiation is observed in
Bacillus subtilis; a fraction of the population becomes competent
after entering a stationary phase as a stress response induced by
limited nutrient availability. This dynamic transition is triggered
when the expression level of the regulator comK exceeds a
threshold value, leading to the activation of downstream genes
responsible for the uptake of extracellular DNA. The noisiness
of the system impacts both the percentage of cells entering
the competent state and its duration (Maamar et al., 2007).
Natural variability in the duration of competence events has
been related to the architecture of the molecular loop controlling
the stress response. Indeed, a rewired network where the end
of competence events occurs at high ComS$ concentrations,
rather than at low ones as in the wild-type configuration,
exhibits a reduced variability in their duration while preserving
the behavior in the deterministic limit. This evidence suggests
that cells have evolved mechanisms for tuning and exploiting
biological noise within a defined spatial and temporal frame.
Note also that noise control is often encoded in simple network
topologies, where nested positive and/or negative feedback loops
support the coexistence of alternative states and ensure the
stochastic achievement of a functional optimum for at least
a proportion of the cells, in physiological and pathological
conditions (Davidson and Surette, 2008).

NOISE IN SYNTHETIC BIOLOGY

Synthetic biology seeks to implement de novo cellular tasks or
rewire faulty cellular processes by engineering complex biological
architectures. Many biomolecular widgets are described in the
literature (Elowitz and Leibler, 2000; Gardner et al., 2000;
Rinaudo et al, 2007; Ham et al., 2008; Win and Smolke,
2008; Friedland et al., 2009; Ceroni et al, 2010, 2012).
However, significant effort is still required to achieve a level of
complexity (e.g., number of genes composing the network and its
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FIGURE 2 | Noise as a positive regulator of cellular behavior. Variability
in protein expression levels among isogenic individuals might improve the
overall performance of a cell population. Boxes of different colors are used to
represent cells where a protein (or a set of proteins), critical for the cell
survival, is differently expressed among the individuals of an isogenic
population. When the population is featured by limited phenotypic variability
(left hand side of the lower diagram), different cells have comparable
expression levels. In a noisy population (right hand side of the lower diagram),
the same average expression level, as accessible with bulk measurements,
result from a more dispersed distribution of protein concentrations at the
single-cell level. If the cell survival depends on the expression level of a given
protein (i.e., only cells with expression levels corresponding to light-blue, blue,
and purple boxes survive) a noisier population might be more robust to
changes in environmental conditions causing selective stress, thereby
ensuring the species survival. Similar strategies could be adopted to improve
sensing properties in synthetic applications. >< dead; .  alive. The reader is
referred to (Smits et al., 2006) for additional examples.

organization in hierarchical structures) commensurate with the
natural biological landscape in order to offer biosynthetic devices
of environmental, industrial and medical relevance. The design of
novel gene circuits would greatly benefit from the development
of standard procedures for a meticulous and context-dependent
characterization of synthetic biological parts and modules. The
improved reliability of the parameters describing the properties
of and the interactions among these parts would allow the
development of more reliable computational models. As a result,
the functionality of a device could be accurately predicted and
only robust gene circuits would merit physical implementation.
Circuits able to operate reliably in noisy conditions (random
fluctuations in the environment and in the cell state) require
that stochasticity in gene expression be controlled and, ideally,
exploited. In addition, the comparison of engineered networks
with their natural counterparts would extend our knowledge of
design principles shaped by evolution.

Using genetically modified organisms (GMOs), Ozbudak
et al. (2002) experimentally investigated the impact of
transcription and translation on phenotypic variability. The
transcription rate was tuned by means of an inducible promoter
or by mutating the promoter sequence, while translational

regulation was achieved by inserting point mutations in
either the ribosome binding site (RBS) or the first codon of
a green fluorescent protein (GFP) reporter. Noise amplitude
was reduced when translation of GFP was driven by an
inefficient RBS, confirming earlier theoretical predictions that
translational efficiency is a major determinant of prokaryotic
gene expression noise. In the same year, Elowitz et al. (2002)
evidenced that noise magnitude scales with increasing promoter
strength and that the relative contribution of intrinsic and
extrinsic components to the overall stochasticity varies
with the expression regime. Indeed, when the fluorescent
reporters expression was downregulated intrinsic noise
monotonically decreased (Paulsson and Ehrenberg, 2001;
Swain et al., 2002), while extrinsic fluctuations reached a
maximum at intermediate transcription rates. Thus, strong
promoters and weak RBS sequences should be selected
when assembling robust gene circuits (Libby et al., 2007;
Lehner, 2008). Recently, the tuning of active promoter-specific
transcription factors has also been proposed as a useful tool
to define the sensitivity and dynamic range of inducible
promoters as well as the noise profile of the associated genes.
Weak (strong) promoters driving the transcription of the
repressor (activator) enhanced both sensitivity and dynamic
range of the regulated promoter. Noise amplitude proved
coherent with expectations at low induction (e.g., low titers
of receptor were associated with high stochasticity) and
decreased at higher inducer concentrations (Wang et al,
2015).

Another variable relevant for noise control is the gene circuit
copy number, with high copy-number plasmids reducing the
relevance of finite number effect. Indeed, increasing plasmid
copy number implements the synthetic analog of evolutionary
gene redundancy, a strategy adopted in naturally occurring
networks, which enhances their robustness (Raj et al., 2006;
Kafri et al., 2009). However, one has to consider the metabolic
burden imposed on transformants by plasmid high copy number;
moreover, the variation in their counts during cell growth
and division could introduce an additional source of extrinsic
stochasticity (Paulsson and Ehrenberg, 2001), complicating the
relationship between the copy number and the amplitude of
noise.

Clearly, the architecture of a network also impacts its
dynamics and robustness. In fact, regulatory mechanisms
that cells evolved to tune noise (Swain, 2004; Pedraza and
Paulsson, 2008; Lestas et al., 2010) are implemented through
complex networks. Their properties have been theoretically
and experimentally investigated, permitting the characterization
of elementary synthetic circuits such as feedback loops and
transcriptional cascades.

Positive feedback loops, in which a protein upregulates
its own synthesis, have been associated with bistability and
increased phenotypic variability. The bimodal distribution of
protein levels reflects the coexistence of high- and low-expression
states, between which single cells stochastically switch. Analyzing
the positively regulated expression of a GFP reporter in
Saccharomyces cerevisiae, Becskei et al. (2001) attributed the lack
of an ON/OFF switch to a hysteretic component, which could
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reduce GFP fluctuations by ‘remembering’ past states. An inverse
proportionality between positive feedback strength and switching
frequency has been theoretically proved (Isaacs et al., 2003).

The general idea that negative feedback loops enhance system
robustness while reducing gene expression noise (Thattai and van
Oudenaarden, 2001; Rao et al., 2002; Simpson et al., 2003; Orrell
and Bolouri, 2004) has been experimentally demonstrated by
Becskei and Serrano (2000), who compared fluctuations in TetR-
GFP levels controlled by a PTet promoter. The less noisy behavior
was observed at maximal feedback strength, while administering
anhydrotetracycline resulted in weaker feedback and noisier
expression. In contrast Dublanche et al. (2006) observed optimal
noise suppression at intermediate feedback strengths. Their
results agreed with theoretical analyses indicating that negative
feedback has the ability to reshape the noise spectrum through
a shift from low to high frequency components. The latter can
easily be suppressed by downstream molecular cascades acting as
low-pass filters. In particular the extent of the shift, a function of
the feedback strength, was maximum at intermediate strengths
(Austin et al., 2006).

The most prevalent form of negative feedback in natural
networks is protein-mediated transcriptional regulation (Alon,
2007; Balazsi et al, 2008; Nevozhay et al, 2009; Singh
and Hespanha, 2009). Alternative negative-feedback topologies
can be implemented through transcriptionally-/translationally
regulated expression of a gene mediated by mRNA (Zhang
et al., 2005, 2008; Bandiera et al, 2016). In fact, mRNA-
operated translational gene downregulation is indicated as the
best noise suppression strategy by mathematically controlled
comparison of efficiency in alternative regulatory mechanisms
of noise minimization. It is worth noting that the disruption
of this type of negative feedback has been associated with
pathological states and improper stress-related responses (Hinske
et al, 2010; Schmiedel et al., 2015). Although mRNA-based
feedback proved optimal for minimizing noise under the
constraint of fixed feedback strengths, it is important to
consider that, when the protein products translated from the
target mRNA regulate the strength of the feedback via their
multimerization, this introduces a cooperative regulation which
might render transcription/translation ultrasensitive to protein
levels.

The effect of the length of a transcriptional cascade on
noise propagation has been investigated by Hooshangi et al.
(2005), who compared the magnitude of fluctuations in
networks with up to three stages. The authors observed higher
stochasticity at intermediate inducer concentrations, revealed by
bimodal fluorescent distributions. Furthermore, the addition of
a transcriptional layer approximately doubled gene-expression
noise, resulting in the noisiest output at maximal cascade length.
The increasing number of stages improved the hypersensitivity of
the network at intermediate induction, leading to a more precise
steady-state switch between low and high expression levels,
but it also extended the time required for network activation.
This caused decreased synchronization within the population, as
transient intercellular variability in the activation times increased.
Analogous results were obtained by Blake et al. (2003) and
Pedraza and van Oudenaarden (2005). Remarkably, theoretical

studies showed that elongating a transcriptional cascade leads to
low-pass filter activity, preventing network activation from short,
noisy inputs (Powell, 1958).

EXPLOITING NOISE IN SYNTHETIC
CIRCUITS

Thanks to a deeper understanding of the strategies adopted
to modulate the amplitude and the spectral properties of
biological noise in nature, it is now possible to develop
more reliable synthetic devices. Indeed, the usefulness of
engineered systems in applicative contexts requires the precise
integration of multiple inputs providing details on extracellular
environment and host internal state. Lu et al. (2008) developed
a theoretical noise generator, in which the independent
regulation of transcription and translation of any gene of
interest allows its expression at different noise levels while
preserving mean protein concentration. Coupling the output of
such a generator with a designed network input would allow
us to test the robustness of synthetic circuits. Furthermore,
understanding the effect of stochasticity on the expression of
crucial transcription factors would hasten the development of
optimal phenotypic reprogramming strategies. This has been
verified in a broad range of settings, including innovative cancer
therapies where neoplastic cells are specifically targeted by lytic
phages synthesizing chemotherapeutic agents (Lu et al., 2009)
and protocols to selectively knock down cancer-related cascades
(Xiang et al., 2006).

Natural phenotypic variability in isogenic populations also
challenges the use of GMOs in industrial processes, where
it reduces their yield (Alonso et al, 2012; Lee et al,
2013). In addition to stochasticity in gene expression, genetic
mutations and heterogeneous extracellular environments might
also contribute to this unwanted outcome. Genetic mutations,
which could overcome the productive population, increase with
culture time. A solution for this issue might come from active
biocontainment procedures, used to prevent the spread of GMOs
in the natural environment. Thus, heterologous genetic circuitry
might include cell-cycle dependent promoters which drive the
expression of a toxic protein after a given number of replications
(Lu et al,, 2009), thereby constraining the age of the vital
population and preventing the useless nutrients consumption by
undesired and potentially unproductive mutants. Heterogeneity
in batch and fed-batch bioreactors’ environment (such as
gradients in carbon sources, oxygen, carbon dioxide and pH)
exposes cells to sudden variations in extracellular signals,
introducing an uncontrollable and history-dependent cell-to-
cell variability. This latter effect might be counteracted by
re-designing bioreactors or developing engineered strains robust
to these oscillations (Neubauer and Junne, 2010). Due to the
slow diffusion of chemical signal, the environmental gradients
characterizing biofilms - in which GMOs have shown to be more
robust and efficient than planktonic equivalent (Li et al., 2006;
Gross et al., 2007) - support phenotypic variability which might
underpin functional stratification. Nevertheless, experimental
studies suggesting the benefits of using biofilms compared to
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stirred reactors have so far been performed at the micro-scale
level and might therefore not be preserved with the scale-up.
Biochemical noise also constitutes a practical concern in the
engineering of metabolic pathways. Dynamic control of the
enzyme’s expression would allow an adjustment of the synthetic
pathway state to variations in host metabolism and bioreactor
environment, thereby preventing metabolic flux imbalance
and insufficient yields. Hypothesizing the metabolite-dependent
transcriptional downregulation of an enzyme operating in a
catalytic reaction, Oyarzun et al. (2015) numerically examined
the effect of synthetic-circuit parameter space on noise
propagation in a metabolic pathway. The authors found that
weak promoters and high negative feedback strength (or vice
versa) together minimize noise levels. Their work emphasized
the usefulness of in silico predictions for selecting biological
parts and circuit topology. It is worth noting that dynamic
control in heterologous expression systems has theoretically
(Dunlop et al, 2010) and experimentally shown to enhance
population-level efficiency through optimization of single cells
pathway flux balance (e.g., phenotypic noise). Indeed, E. coli toxic
intermediate-responsive promoters outcompeted constitutive
or inducible analogs of equal strength when comparing
the yields in the mevalonate-based isoprenoid biosynthetic
pathway (Dahl et al., 2013). In another study, the dynamically
controlled expression of the ion-efflux pump eilA counteracted
the growth-inhibiting effect of ionic solvents used in pre-
treatment of carbon biomasses, leading to a more effective
biofuel production (Frederix et al, 2014). Considering the
theoretical analysis previously reported, we envisage that an
mRNA-based downregulation of enzyme synthesis, e.g., via
riboregulators, might lead to a faster-responding and less noisy
equivalent. The coupling of synthetic circuits’ control with cell-
cell communication strategies (e.g., quorum sensing) is perhaps
the best known and pursued example of harnessing phenotypic
variability within an isogenic individuals in order to achieve
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