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Mahoney Lake in British Columbia is an extreme meromictic system with unusually

high levels of sulfate and sulfide present in the water column. As is common in

strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic

microbial community where light reaches the chemocline. Below this “plate,” the euxinic

hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur,

and other sulfur intermediates. While much is known regarding microbial communities in

sunlit portions of euxinic systems, the composition and genetic potential of organisms

living at aphotic depths have rarely been studied. Metagenomic sequencing of samples

from the hypolimnion and the underlying sediments of Mahoney Lake indicate that

multiple taxa contribute to sulfate reduction below the chemocline and that the

hypolimnion and sediments each support distinct populations of sulfate reducing bacteria

(SRB) that differ from the SRB populations observed in the chemocline. After assembling

and binning the metagenomic datasets, we recovered near-complete genomes of

dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial

genomes encoded a 16S rRNA sequence that was most closely related to the

sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA

sequence that was most closely related to the fatty acid- and aromatic acid-degrading

genus Syntrophus. We also recovered two near-complete genomes of Firmicutes

species. Analysis of concatenated ribosomal protein trees suggests these genomes

are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter.

Our metagenomic data indicate that these Firmicutes contribute to carbon cycling

below the chemocline. Lastly, we recovered a nearly complete genome from the

sediment metagenome which represents a new genus within the FCB (Fibrobacteres,

Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found

little or no evidence for organisms capable of sulfide oxidation in the aphotic zone
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below the chemocline. Instead, comparison of functional genes below the chemocline

are consistent with recovery of multiple populations capable of reducing oxidized sulfur.

Our data support previous observations that at least some of the sulfide necessary to

support the dense population of phototrophs in the chemocline is supplied from sulfate

reduction in the hypolimnion and sediments. These studies provide key insights regarding

the taxonomic and functional diversity within a euxinic environment and highlight the

complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.

Keywords: meromictic, euxinia, DSR, Clostridia, sulfate reducing bacteria, Deltaproteobacteria, sulfide, sulfate

INTRODUCTION

Opposing gradients of light and sulfide support phototrophic
sulfur bacteria where those gradients meet. These bacteria
contribute to oxidative sulfur cycling and primary productivity
through carbon fixation. Mahoney Lake (ML), a small
meromictic lake in British Columbia, Canada, supports a
remarkably dense 10–20-cm floating “plate” of anoxygenic
phototrophs in the chemocline at a depth of ∼7 m, below which
no light penetrates. The lake characteristics represent an extreme
endmember of euxinia: a high concentration of sulfate (400–
500mM) is supplied by local surface waters draining alkaline
lavas enriched in Mg2+, Ca2+, Na+, and SO2−

4 , and CO2−
3 , and

the hypolimnion of the lake contains one of the highest levels of
sulfide (30–35mM) observed in a natural system (Northcote and
Hall, 1983). The epilimnion is oxic and oligotrophic whereas the
hypolimnion is eutrophic (Hall and Northcote, 1986).

At times throughout Earth’s history the deep oceans have
been oxygen depleted. During several of these events, regional
accumulation of sulfide created areas of the ocean that were
euxinic. These episodes accompanied significant events such
as Phanerozoic biotic crises (e.g., Pancost et al., 2004; Grice
et al., 2005) and perhaps were common in the Mesoproterozoic
(Canfield, 1998; Brocks et al., 2005; Reinhard et al., 2013). Today,
examples of euxinia are rare but permanently sulfidic water is
observed in silled basins, meromictic lakes, coastal upwelling
zones, and fjords. Of these systems, meromictic lakes are of
particular interest due to their shallow phototrophic chemocline
communities, extreme geochemical gradients, and laminated
sedimentary records under conditions of rapid sedimentation
that can preserve biosignatures (Meyer and Kump, 2008). ML
is a model system as an extreme endmember of high sulfide
concentration and permanent redox stability compared to other
meromictic systems. Lake Cadagno, a small meromictic lake in
the southern Swiss Alps, for instance is a more dilute system
and experiences greater seasonal variation (Bosshard et al., 2000;
Del Don et al., 2001; Decristophiris et al., 2009; Gregersen et al.,
2009). The high concentration of sulfide in the water column
of ML requires overloading of organic matter to support high
rates of sulfate reduction. In ML, this process is driven by
input of allochthonous carbon from the surrounding catchment
as well as autochthonous production. The meromictic redox
stability of the ML water column (permanently, rather than
seasonally, stratified) results from the high salinity and high
sulfur concentrations, which are promoted by the arid climate

and surrounding geology (rainfall 40 cm y−1). The maintenance
and stability of the euxinic system depends on the combination
of these extrinsic factors which may contribute to their apparent
rarity in other marine and nonmarine settings (e.g., Meyer and
Kump, 2008; Johnston et al., 2009; Canfield, 2013; Leavitt et al.,
2013).

Microbial assemblages appear to be unique within each
horizon of meromictic lakes, consistent with permanent
geochemical and physical partitioning, and these populations
function to maintain biogeochemical cycling. In ML, the
dense phototrophic plate limits the mixing of nutrients to
the epilimnion and absorbs all visible light (Overmann et al.,
1991, 1996a). The chemocline maintains a stable ecosystem
in which complex cycling of carbon and sulfur occurs
(Hamilton et al., 2014). The oxic surface waters support the
growth of phytoplankton and aerobic heterotrophic bacteria
(Overmann et al., 1996b); however, little is known regarding the
microbial community below the chemocline where the sulfide
concentration is the highest. Rates of sulfate reduction in the
chemocline capable of supplying most of the sulfide necessary
for anoxygenic photosynthesis are only observed in late summer
(July–September; Overmann et al., 1996a). The rest of the year,
molecular diffusion must supply a significant fraction of sulfide
to support the dense phototrophic layer, assuming the layer is
very active throughout the year. Sulfate concentrations in the
monimolimnion were similar throughout the year while the
sulfide concentrations ranged from 27 to 60mMduring the study
(Overmann et al., 1996a). Collectively, these data provide few
clues regarding biological activity in the monimolimnion and
sediments of the lake. 16S rRNA analyses of ML indicate that
each stratified layer is taxonomically distinct (Klepac-Ceraj et al.,
2012). These data also suggest that microbial communities in the
deep waters and sediments of Mahoney Lake make important
contributions to biogeochemical cycling in the lake through
sulfate reduction and fermentation.

Here we report the results of metagenomic sequencing of the
ML community from 8 m, just under the phototrophic plate,
and from the lake bottom sediment, (15 m) as obtained by grab
core. Our data reveal the presence of anaerobic bacteria involved
in remineralization of organic matter below the chemocline.
Consistent with the high levels of sulfide in ML, we observed
populations of sulfate reducing bacteria at 8m and in the
sediments. Genomic reconstruction resulted in two genomes of
Deltaproteobacteria species, two genomes of Firmicutes species,
and a genome of a species from the FCB (Fibrobacteres, Chlorobi,
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Bacteroidetes) superphylumwhich represents a new genus within
this superphylum. Collectively, our data provide key insight into
biogeochemical cycling in a modern, extreme analog of early
Earth euxinia.

MATERIALS AND METHODS

Environmental Sample Collection and DNA
Extraction
Water from 8m was collected using a Niskin bottle and a grab
core was collected of the underlying sediments (15 m) from
ML, British Columbia (49◦ 17′N, 119◦ 35′W) in July 2008.
50mL samples of water and sediments were immediately frozen
on dry ice for transport to Harvard University, where they
were stored at −80◦C until further processed. For extraction of
genomic DNA, samples were thawed and centrifuged, and DNA
was extracted from the resulting pellets using an e.Z.N.A SP
Plant Maxi Kit (Omega Bio-tek, Norcross, Georgia) according
to the manufacturer’s instructions. The yield and quality of
the extracted DNA were assessed using gel electrophoresis
visualized by ethidium bromide staining and spectrophotometry
using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, Delaware).

Metagenomic Sequencing, Assembly, and
Binning
Fragmentation and library preparation were performed by the
North Carolina State University Genomic Sciences Laboratory.
Paired-end 150 bp Illumina (HiSeq 2500) sequencing was
performed at the Harvard Center for Systems Biology. Reads
were trimmed with Trimmomatic 0.20 (Lohse et al., 2012), and
only sequences with at least 50 base pairs in both the forward and
reverse direction were retained. Trimmed, screened, paired-end
Illumina reads were assembled into contigs with IDBA-UD (ver.
1.1.1) using eight threads with default parameters (Table S1; Peng
et al., 2012). Coverage was determined by aligning raw reads to
contigs using BWA 0.5.9 (Li and Durbin, 2009).

The assembled contigs were annotated with an in-house
annotation pipeline as described previously (Hamilton et al.,
2014). Briefly, rRNAs were identified using Meta_RNA (Huang
et al., 2009) and Phyloshop (Shah et al., 2010), and tRNAs
were identified with tRNAScan (Lowe and Eddy, 1997). Protein-
coding genes were identified using the ab initio gene calling tools
GeneMark (v.2.6r) (Lukashin and Borodovsky, 1998), MetaGene
(v. Aug08) (Noguchi et al., 2006), Prodigal (Hyatt et al., 2010),
and FragGeneScan (Rho et al., 2010). Genes were associated
with COGs (Clusters of Orthologous Groups of proteins) using
rpsblast (Tatusov et al., 2001) and Pfamwith hmmsearch (Durbin
et al., 1998). Amino acid similarity searches were used for
assignment of KO terms (KEGG) (Ogato et al., 2000) and EC
numbers to open reading frames.

A custom Python script (available at https://github.com/
bovee/Ochre) was used to calculate tetranucleotide frequency
of all contigs ≥2500 bp. Corresponding reverse-complement
tetranucleotides were combined as described (Dick et al.,
2009). Contigs were then binned using emergent self-organizing

maps (ESOM) based on tetranucleotide frequency, which
resulted in clusters corresponding to taxonomically sorted
tetranucleotide usage patterns (Dick et al., 2009). For binning,
contigs were split into 5000-bp segments, clustered into
taxonomic groups (or “genomic bins”; Voorhies et al., 2012) by
tetranucleotide frequency and visualized with Databionic-ESOM
(http://databionic-esom.sourceforge.net) using parameters from
Dick et al. (2009). Followingmanual inspection for homogeneous
read coverage and further curation by BLASTX/N, phylum-level
taxonomic assignment was performed using Phyloshop (Shah
et al., 2010) and Megan (Huson et al., 2011).

Well-defined, high coverage bins were selected for in-depth
characterization and taxonomic assignment of their predicted
genes. Paired reads mapping to scaffolds from each bin were
reassembled using Velvet (Zerbino and Birney, 2008) or IDBA-
UD (ver. 1.1.1) as previously described (Hug et al., 2013).
Scaffolds of each re-assembly were annotated as described above.
To estimate genome completeness, the presence of a suite of 76
genes selected from a set of single-copy marker genes that show
no evidence for lateral gene transfer (Sorek et al., 2007; Wu and
Eisen, 2008) was evaluated (Table S2). Genome coverage was
estimated by assuming that the genome size of each phylotype
was approximately the same as its closest relative (Whitaker and
Banfield, 2006; Jones et al., 2012). Average nucleotide identity
(ANI) of protein-coding genes between genomes was calculated
using the ANIb BLAST+-based analyses within the JSpeciesWS
(Richter et al., 2015).

16S rRNA Gene Reconstruction
Near full-length 16S rRNA sequences were reconstructed from
Illumina sequencing reads using EMIRGE (Miller et al., 2011).
EMIRGE was run for 100 iterations with default parameters
designed to merge reconstructed 16S rRNA genes if candidate
consensus sequences share ≥97% sequence identity in any
iteration. The non-redundant SILVA SSU reference database
version 111 (http://www.arb-silva.de/) was used as the starting
database of curated SSU sequences. The relative abundance of
each OTU was calculated statistically via the EMIRGE algorithm
based on “prior probabilities” of read coverage depth (Miller
et al., 2011). Sequences with an estimated abundance of <0.01%
were removed from further analyses. Potential chimeras were
identified with UCHIME (Edgar et al., 2011) using Mothur (ver
1.32.1; Schloss et al., 2009) and removed from further analyses.
Taxonomic assignment of the EMIRGE-reconstructed 16S rRNA
sequences was performed using BLAST and ARB (Ludwig et al.,
2004).

Taxonomic Assignment of Genome Bins
Several different marker sequences were used to robustly assign
taxonomy of the genome bins including 16S rRNA gene
sequences (if present in the bin) and ribosomal proteins encoded
in a syntenous block (Table S3). When present, the phylogenetic
position of 16S rRNA genes was used to make genus-level
assignments of genomic bins. The 16S rRNA gene sequences
from the genomic bins and closely related sequences identified
with BLASTN searches were aligned to the SILVA reference
alignment using the SINA Webaligner and merged into the
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SILVA version 108 database (Pruesse et al., 2007). The alignment
was manually refined in ARB (Ludwig et al., 2004), and neighbor-
joining analyses were performed in PAUP∗ v. 4b10 (Swofford,
2001) using Jukes-Cantor-corrected distances and 1000 bootstrap
replicates.

Single-copy ribosomal proteins were also analyzed to make
genus-level assignments of genomic bins independently from
the 16S rRNA gene sequences and in cases where 16S rRNA
gene sequences were not present in the bins. Such analyses yield
resolution comparable to that for 16S rRNA phylogenetic trees
(Hug et al., 2013). A subset of single copy phylogenetic marker
proteins (n = 18), identified by Phylo-AMPHORA (Wang and
Wu, 2013; Table S3) and verified by annotation and BLAST,
were used to assign phylotypes. Reference datasets were further
populated with sequences mined from genome sequences in
the NCBI databases and JGI IMG-M. Each protein was aligned
individually using MEGA (version 6.0, Tamura et al., 2013), and
evolutionary models were determined using ProTest (version 3,
Darriba et al., 2012). Alignments were then concatenated and
neighbor-joining and maximum likelihood phylogeny of each
concatenated alignment was calculated using PhyML (Guindon
and Gascuel, 2003) and the ProTest-determined evolutionary
model with 1000 bootstrap replicates.

Comparative Analysis
Through the annotation pipeline describe above, genes were
associated with COGs using rpsblast (Tatusov et al., 2001).
The abundance of individual reads matching a particular
COG were converted to a fraction representing the relative
contribution of each COG count to the total number of sequences
assigned to COGs for each dataset (8m and sediment) to
account for different levels of sampling across multiple datasets
(Konstantinidis et al., 2009; White et al., 2009; Ferreira et al.,
2014). This method has been shown to reduce annotation bias
(Delmont et al., 2011). For analysis of carbon, nitrogen, and
sulfur cycling pathways, marker genes were defined as previously
described (Lauro et al., 2011; Llorens-Marès et al., 2015) and
normalized. A full list of the genes is provided in Table S4.
Hierarchical cluster analysis and heat map plots were generated
with R (R Development Core Team, 2008) using the library
“seriation.” The marker genes for dissimilatory sulfate reduction
and sulfide oxidation (K00394, K00395, K00396) can operate in
both sulfide oxidation and sulfate reduction. Therefore, they were
assigned to sulfate reduction or sulfur oxidation based on the best
match within KEGG.

Nucleotide Sequence Accession Numbers
The assembled metagenomic sequences can be accessed via
IMG/M (http://img.jgi.doe.gov). Raw sequence reads of all
samples were deposited at the NCBI Short Read Archive (SRA)
and can be accessed under the accession numbers SRR2986055
(8-m sample) and SRR2989655 (sediments). Metagenome bin
sequences—ML8_D, MLS_D ML8_F1, ML8_F2, and MLS_C—
are deposited at DDBJ/EMBL/GenBank under the accession
numbers SAMN04330442, SAMN04330450, SAMN04330440,
SAMN04330448, and SAMN04330451, respectively.

RESULTS AND DISCUSSION

Community Structure below the
Chemocline
Metagenomic data from 8m water depth and the sediments
fromMahoney Lake resulted in 364,727 contigs containing∼496
Mbp and 593,174 contigs containing ∼781 Mbp, respectively.
Based on BlastX, the majority of contigs (>92%) in each
metagenome were assigned to Bacteria while small numbers
of sequences affiliated with Archaea, Eukaryota, and viruses
were also recovered (Figure S1). Despite changes in the redox
chemistry of the water column (Northcote and Hall, 1983;
Overmann et al., 1991, 1996a) and the close proximity of
the 8-m sample to the dense phototrophic plate at 7 m, the
microbial community at 8m is remarkably similar at the phylum
level to the sediments (Figure 1). Within the Bacteria, the
largest number of sequences were assigned to the Firmicutes
and Alpha-, Delta,- and Gammaproteobacteria at both 8m
and in the sediments (Figure 1). This observation is consistent
with the recovery of lipids common to Deltaproteobacteria
and heterotrophic, Gram-positive bacteria such as Firmicutes
from these samples (Bovee and Pearson, 2014). Sequences
affiliated with the Alphaproteobacteria were the most abundant
in the 7-m (Hamilton et al., 2014) and sediment samples,
accounting for more than 24% and more than 22% of the total,
respectively. Sequences affiliated with the Firmicutes were the
most abundant group from 8m, where they accounted for 18% of
the total sequences. Sequences affiliated with the Cyanobacteria
were present in all samples, while sequences affiliated with
Planctomycetes were present only in the sediments. Our previous
observations of the chemocline community (Hamilton et al.,
2014) and those presented here suggest that phylum-level
similarities mask the true level of microbial complexity, which
imply variations in the biogeochemical functions being carried
out in each environment of the lake.

Analysis of full-length 16S rRNA gene sequences
reconstructed using EMIRGE resulted in 35 unique operational
taxonomic units (OTUs) from both the 8-m and the sediment
samples. Rank-abundance curves of the EMIRGE-reconstructed
16S rRNA gene sequences indicate that sequences affiliated with
the Deltaproteobacteria and Clostridia are the most abundant in
both the 8-m and sediment sample (Figure 2). At 8m, the relative
abundance of 16S rRNA sequences affiliated with Actinobacteria,
Cyanobacteria, and Bacilli was higher than in the sediments.
In contrast, 16S rRNA sequences affiliated with Planctomycetes
and Marine Benthic Group D, an uncultured archaeal clade
(Vetriani et al., 1999), were more abundant in the sediments.
The recovery of Cyanobacterial 16S rRNA sequences below the
sunlit zone suggests sinking biomass from the oxygenated layer
of the lake above the chemocline, with preservation of their
DNA promoted by the sulfidic, anoxic environment (Coolen
and Overmann, 1998). It is worth noting that these 16S rRNA
sequences were most closely related to typical phototrophic
Cyanobacteria as opposed to the recently discovered non-
photosynthetic Melainabacteria which form a novel candidate
phylum sibling to Cyanobacteria (Di Rienzi et al., 2013). No
observations have been reported of Cyanobacteria thriving
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FIGURE 1 | Taxonomic affiliation of sequences in the metagenomes

assigned at the phylum-level (except the Proteobacteria which are

represented by class). Other indicates all phyla represented by <5% of the

total sequences in any metagenome. Data for 7m are from Hamilton et al.

(2014).

in sulfide-rich water below the chemocline in a permanently
stratified lake.

In addition to the analysis of EMIRGE-reconstructed 16S
rRNA gene sequences, we also examined ribosomal protein
S3 (rpS3) sequences. rpS3 has a strong phylogenetic signal
(Brown et al., 2015) and unlike the EMIRGE-reconstruction
that is independent of assembly, provides a direct marker
for community composition in the assembled metagenomic
data. Using read coverage depth, we also constructed rank-
abundance curves of rpS3 sequences from the 8-m and sediment
metagenomes. The rank abundance curves for rpS3 sequences
are based on average depth of coverage of the contig where
each rpS3 sequence was encoded. In general, the rank abundance
curves for the rpS3 sequences were in agreement with those
observed for the 16S rRNA gene sequences—the highest coverage
rpS3 sequences at 8m and in the sediments were affiliated with
Deltaproteobacteria and Clostridia (Figure 2). Actinobacteria
and Bacilli rpS3 sequences were abundant in the 8-m sample,
and Planctomycetes were abundant in the sediments. In the 8-m
sample, rpS3 sequences affiliated with Microgenomates (OP11)
and Atribacteria were also abundant.

Some of the highest coverage 16S rRNA and rpS3 sequences
were affiliated to lineages with no cultured representatives. For

instance, 16S rRNA sequences affiliated with the recently
described Woesearchaeota were identified at 8 m. The
Woesearchaeota are a new phylum-level lineage within
the DPANN superphylum of Archaea with no cultured
representatives, despite recovery of multiple genomes of this
lineage from groundwater and sediment samples (Castelle et al.,
2015) as well as from Sakinaw Lake (Rinke et al., 2013). Sakinaw
Lake is a coastal meromictic lake in British Columbia, Canada,
with a mixolimnion at 30m and an anoxic monimolimnion
with high concentrations of sodium chloride, sulfate, and sulfide
(Perry and Pedersen, 1993; Vagle et al., 2010; Gies et al., 2014).
Sequences affiliated with Atribacteria (OP9 and JS1) were also
abundant at 8 m. Members of the Atribacteria have been detected
in a variety of environments including geothermal systems,
petroleum reservoirs, anaerobic digesters, and wastewater
treatment facilities. Sequences affiliated to Atribacteria are
also found in anaerobic, methane hydrate-bearing sediments
(Inagaki et al., 2006; Carr et al., 2015), including those that are
low in sulfate. Single-cell and metagenomic sequencing suggests
members of the Atribacteria are not involved in sulfate reduction
(Dodsworth et al., 2013; Nobu et al., 2015a) but are anaerobic
sugar fermenters. Notably, Atribacteria were also recovered
from Sakinaw Lake (Rinke et al., 2013; Gies et al., 2014). 16S
rRNA sequences affiliated Archaea of Marine Benthic Group
D (MBG-D) were abundant in the Mahoney Lake sediments.
Members of MBG-D are among the most numerous Archaea
in sediments underlying the Earth’s oceans (Lloyd et al., 2013).
rpS3 sequences affiliated with the Microgenomates (OP11)
were present in high coverage at 8 m. Sequences affiliated with
Microgenomates have been detected in many environmental
samples (Harris et al., 2004) including in anoxic, carbon-rich
environments (Briée et al., 2007), but no cultured representatives
have been characterized. Metagenomic sequencing suggests a
lifestyle based on fermentation (Wrighton et al., 2012).

Potential for Sulfate Reduction
Sulfate reducing bacteria and archaea include members of
the phyla Proteobacteria (Deltaproteobacteria), Firmicutes,
Nitrospirae, Thermodesulfobacteria, Crenarchaeota, and
Euryarchaeota. In general, these taxa couple the oxidation of
organic matter or H2 to the reduction of sulfate or compounds
with intermediate sulfur oxidation states to sulfide. Sulfide
concentrations reach 30–35mM in the hypolimnion of ML
(Overmann et al., 1996a), exceeding the concentration thought
to inhibit sulfate reduction (∼16mM; (Reis et al., 1992)). At
elevated levels, sulfide is reversibly toxic. However, the H2S:SO

2−
4

ratio in this system still is not high enough to thermodynamically
inhibit sulfate reduction because of the very high levels of
associated sulfate (Amend and Shock, 2001; Hamilton et al.,
2014). Here, we classified rpS3 sequences affiliated with known
sulfur reducing bacteria (Deltaproteobacteria and Clostridia
were the only ones detected) to better understand the potential
for sulfate reduction below the chemocline in ML.

Sequences affiliated with the Desulfuromonadales are present
in high coverage at both 8m and in the sediments based on
rank abundance curves of Deltaproteobacterial rpS3 sequences
(Figure 3A). The hypolimnion (8 m) and sediments are also
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FIGURE 2 | Rank-abundance curves of EMIRGE 16S rRNA sequences and ribosomal protein S3 (rpS3) sequences from the 8m and sediment

metagenomes. The relative abundance of 16S rRNA genes was calculated with EMIRGE (Miller et al., 2011). The rank abundance curves for rpS3 sequences are

based on average depth of coverage of the contig where each rpS3 sequence was encoded. Bars represent the sum of the relative abundance of taxonomic groups

(at the phylum level except for Proteobacteria and Firmicutes which are summed at the class level).

rich in both elemental sulfur and polysulfide and most members
of the Desulfuromonadales couple the complete oxidation of
organic substrates to CO2 with the reduction of S0 or Fe(III).
Sequences affiliated with the Desulfobacterales were present
in highest coverage at 8m (Figure 3A). Members of the
Desulfobacterales grow best when coupling acetate oxidation to
sulfate reduction although some species are capable of fixing
CO2. Acetate was the main volatile fatty acid accumulated in
ML chemocline incubations when sulfate reduction was inhibited
by molybdate, suggesting it is the preferred carbon source
of sulfate reducers within the chemocline (Overmann et al.,
1996a). Our detection of Desulfobacterales at 8m suggests that
acetate is also important in the hypolimnion. Desulfobacterales
species are common in anaerobic marine and brackish sediments
(Widdel, 1987).

Desulfovibrionales were also relatively more common in ML
sediments than in the water column (Figure 3A). While these
taxa also reduce sulfate to sulfide, the Order Desulfovibrionales
includes spp. that are capable of switching to a syntrophic

lifestyle based on hydrogen consumption (Bryant et al., 1977;
McInerney and Bryant, 1981; Stolyar et al., 2007). rpS3 sequences
affiliated with the Syntrophobacteriales also were recovered from
the sediments (Figure 3A). Members of the Syntrophobacteriales
are syntrophic, usually with hydrogen- or formate-utilizing
organisms, and are capable of fueling sulfate reduction, and
typically degrade fatty or aromatic acids. Together, these results
point to the likely importance of H2-based syntrophy in
ML sediments. Syntrophic metabolisms are common in many
anoxic environments where they are integral to carbon cycling
(Morris et al., 2013). In characterized Desulfovibrionales species,
the switch to syntrophy occurs in the absence of sulfate.
In contrast to this observation, the recovery of sequences
affiliated with syntrophic sulfate reducing organisms from the
sulfate-rich deep ML environment suggests that syntrophic
interactions mediated by Deltaproteobacteria might contribute
to the anoxic carbon cycle in Mahoney Lake. Alternatively,
members of the Desulfovibrionales and Desulfobacterales are
also capable of fueling cell growth via disproportionation of
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FIGURE 3 | Phylogenetic classification of ribosomal protein S3 (rpS3) sequences affiliated with Deltaproteobacteria (A) and Clostridia (B). (A)

Rank-abundance curve of Deltaproteobacterial ribosomal protein S3 (rpS3) sequences from the 8m and sediment metagenomes classified at the order level. (B)

Maximum likelihood phylogenetic tree of rpS3 sequences affiliated with Clostridia recovered from the 8m and sediment metagenomes and closely related sequences.

Sequences recovered in the present study are in bold. NCBI accession numbers or IMG gene ids are shown in parentheses. Bootstrap support values based on 1000

bootstrap samplings >90 are noted. Cov = average depth of coverage of the contig containing the rpS3 sequence.

sulfite or thiosulfate to sulfate and sulfide (Bak and Pfennig,
1987). rpS3 sequences affiliated with the Desulfovibrionales and
Desulfobacterales were also recovered from the chemocline of
Mahoney Lake, where disproportionation rather than (or in
addition to) H2-based syntrophy is thought to be important
(Hamilton et al., 2014).

We recovered 14 unique rpS3 sequences affiliated with
Clostridia below the chemocline. The majority of these sequences
were most closely related to the alkaliphilic Dethiobacter
alkaliphilus (Figure 3B). Dt. alkaliphilus spp. can grow by sulfur
disproportionation, and polysulfides are important intermediates
during this reaction (Poser et al., 2013). Geochemical data
collected in situ indicates zero valent sulfur, including both
intracellular sulfur and polysulfides, are important intermediates
in the S cycle in ML (Overmann et al., 1996a). Polysulfide
concentrations in the bulk chemocline water of Mahoney
Lake are around 50µM and increase to ∼400µM at a depth
of 13–14m (Overmann et al., 1996a). Other rpS3 sequences
were affiliated with Alkaliphilus metalliredigenes, Alkaliphilus
oremlandii, and Clostridium celluloyticum (Figure 3B). A.
oremlandii is a spore-forming organism that can use arsenate
or thiosulfate as an electron acceptor with small organics such
as acetate, pyruvate, or lactate as electron donors (Fisher et al.,
2008). A. metalliredigenes was isolated from a high-pH borax
leachate pond. It reduces metals in the presence of yeast extract at
elevated salt concentrations; however use of sulfate or thiosulfate
as an electron acceptor in pure culture was not observed

(Ye et al., 2004). C. celluloyticum and other closely related
Clostridium species degrade cellulose, xylan and polysaccharides.

Community Metabolism
Consistent with the observation of anoxic water below the
chemocline, we detected very few genes that encode components
of aerobic carbon fixation or aerobic respiration (Figure 4).
The genetic potential for fermentation and CO oxidation was
moderately more abundant at 8m than in the sediments.
We observed no evidence for methanogenesis or the aerobic
oxidation of methane at either depth. Genes for nitrogen
mineralization and nitrogen assimilation were abundant at both
depths. The 8-m and sediment metagenomes contain a limited
diversity of functional genes for assimilatory and dissimilatory
sulfate reduction. To further assess the genetic potential for
sulfate reduction at 8m and in the sediments, we identified
three genes essential for sulfate reduction: dsrAB, the genes
encoding dissimilatory sulfite reductase, and dsrC. The 8-m
metagenome contained five copies of dsrAB, and the sediment
metagenome contained 12 copies of dsrAB. We also recovered
17 copies of dsrC, that all encode the two strictly conserved
cysteines in the C-terminal arm (Santos et al., 2015), from the
8-m metagenome and 17 from the sediments. dsr genes are
also encoded in the genomes of non-sulfate-reducing, syntrophic
bacteria and thus their presence does not confirm sulfate
reduction (Imachi et al., 2006). Regardless, the closest tBlastN
hits of all of the dsrAB and dsrC sequences were to dissimilatory
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FIGURE 4 | The genetic potential for carbon, nitrogen, and sulfur cycling at 8m and in the sediments of Mahoney Lake. The genetic potential for each

step was estimated using a combination of normalized marker gene ratios as previously described (Lauro et al., 2011). The marker genes for dissimilatory sulfate

reduction and sulfide oxidation (K00394, K00395, K00396) can operate in both sulfide oxidation and sulfate reduction. Therefore, they were assigned to sulfate

reduction or sulfur oxidation based on the best match within KEGG. Sed, sediments. Marker genes are provided in Table S4.

sulfate reducing Deltaproteobacteria, suggesting they are not
involved in sulfur oxidation. Genes encoding components of
the Sox enzyme complex which oxidizes thiosulfate were rare,
as were genes coding for sulfide quinone oxidoreductase, a
protein that oxidizes sulfide to elemental sulfur (data not
shown).

Organisms such as Clostridia produce H2 to dispose of
the excess reductant generated during fermentation, while
others may also produce H2S when polysulfide is available
(Vignais et al., 2001). In general, the H2 evolution activity of
[FeFe]-hydrogenases is 10- to 100-fold greater than [NiFe]-
hydrogenases that are typically involved in H2 uptake (Vignais
et al., 2001; Frey, 2002). Fermentative organisms can also
consume H2 via [NiFe]-hydrogenases to produce the reduced
form of nicotinamide adenine dinucleotide phosphate (NADPH)
for anabolic metabolism. The 8-m metagenome contained 154
copies of genes encoding [NiFe]-hydrogenases and 163 copies of
genes encoding [FeFe]-hydrogenases, while the sediment dataset
contained 242 genes encoding [NiFe]-hydrogenases and 199
copies of genes encoding [FeFe]-hydrogenases. This distribution
is consistent with the high abundance of organisms related to
known fermenters and with the presence of other genes involved
in fermentation. The 8-m metagenome contained 32 copies of
the gene encoding the NifD, a structural component of the Mo-
dependent nitrogenase, while 40 copies of nifD were recovered
from the sediment metagenome. N2 reduction, catalyzed by
the nitrogenase enzyme, results in H2 production concomitant
with N2-fixation with a fraction of the electrons used for H2

production (Eady, 1996). In environments where fixed nitrogen
is not limiting, an intriguing possibility is that nitrogen fixation
is employed for H2 production. The metagenomes also encode
numerous proteins that may be involved in the decomposition
of recalcitrant plant biomass or cellulose, including glycosyl
hydrolyses, glycosyl transferases, endoglucanases, and glyoxal
oxidases.

We recovered 12 and 15 full-length, unique sequences of the
gene encoding ribulose-1,5 bisphosphate carboxylase-oxygenase
(RuBisCO), the key CO2-fixing enzyme of the Calvin-Benson-
Bassham (CBB) cycle, from the 8-m metagenome and the
sediment metagenome respectively. Of the 27 sequences, eight
were identified as type I, five as type II, 10 as type III, and
five as type IV (Figure S2). RuBisCO type I is most efficient
under low CO2 concentration while Type II is less able to
discriminate between O2 and CO2 and thus tends to function
better under low oxygen and/or high CO2 concentrations. Type
III RuBisCO enzymes are typically associated with Archaea;
however, sequences affiliated with archaea were not abundant in
eithermetagenome. In Archaea, the type III enzymes are involved
in converting AMP, phosphate, CO2, and H2O to adenine and
two molecules of 3-PGA, salvaging the adenine base of AMP
(Sato et al., 2007; Wrighton et al., 2012). Type IV RuBisCO or
RuBisCO-like protein is thought to be incapable of catalyzing
carbon fixation because it lacks several key conserved residues
necessary for carboxylase activity; instead, RuBisCO-like protein
may play a role in sulfur oxidation or oxidative stress (Tabita
et al., 2007).
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Genomes
Analysis of tetranucleotide frequency allowed the recovery of
several near-complete genomes, including two Firmicutes species
from the 8-m sample, a genome of a new member of the FCB
superphylum from the sediments and two Deltaproteobacteria
species—one from 8m and one from the sediment sample.

Deltaproteobacteria

Previous work has shown that a significant portion of the sulfide
used by the dense layer of photoautotrophs in theML chemocline
at 7m is generated by sulfate reduction within the chemocline
(Overmann et al., 1991, 1996a). However, sulfide flux from
below the chemocline has also been observed (Overmann et al.,
1991) and sulfide concentrations increase with depth suggesting
sulfate reducing bacteria are active below the chemocline
(Northcote and Hall, 1983; Overmann et al., 1991). In addition,
analysis of 16S rRNA sequences from ML are consistent with
sulfate reduction in the hypolimnion and sediments (Klepac-
Ceraj et al., 2012). Here, we reconstructed genomes of two
Deltaproteobacteria species from the aphotic zone of ML—one
from the 8-m sample and one from the sediments. According
to phylogenetic analysis of 16S rRNA gene sequences and 18
concatenated ribosomal proteins in the bins (Figure 5A; Figure
S3), the ML8_D population is closely related to uncultured
deep-sea sediment clones and to Dissulfuribacter thermophilus, a
hydrothermal vent chemolithoautotroph that disproportionates
elemental sulfur to thiosulfate and sulfite (Figure 5A; Slobodkin
et al., 2013). The ML8_D and D. thermophilus 16S rRNA
sequences share 90% sequence identity. The closest relatives
with fully sequenced genomes are Desulfobulbus spp. (Figure
S3). The ML8_D genome is 98% complete and contains ∼3.5
Mbp over 93 scaffolds with an average G+C content of 45.2%.
The genome encodes a complete dissimilatory sulfate reduction
pathway—a sulfate adenylyltransferase (ATP-sulfurylase, Sat), an
APS reductase (AprAB), and the dissimilatory sulfite reductase
complex (DsrAB, DsrC, and DsrMKJOP). In addition, the
genome encodes all of the proteins necessary for dissimilatory
nitrate reduction—nitrate reductase (Nar) and nitrite reductase
(Nir) as well as genes encoding proteins for gluconeogenesis,
ATP synthase, acetyl-CoA synthetase (the key enzyme for
the utilization of acetate), some genes encoding homologs
of TCA cycle proteins, and genes encoding flagella. The
genome also encodes an acetyl-CoA synthase, a carbon
monoxide dehydrogenase, a formate dehydrogenase and a Hox
[NiFe]-hydrogenase. The presence of hydrogenase and formate
dehydrogenase suggest that H2 and formate play important roles
in the flow of electrons during sulfate reduction by the ML8_D
population. However, the exact function of the NAD+-reducing
hydrogenase (Hox) is not known—it has been suggested to play
a role in removing excess electrons from fermentation (Horch
et al., 2012). Some SRBs use CO dehydrogenase/acetyl-CoA
synthase to fix carbon via the reductive acetyl-CoA pathway
(Schauder et al., 1989); however, the ML8_D genome does not
encode the full pathway. Although the genome is incomplete,
the gene content for the ML8_D population suggests that these
organisms are heterotrophic, motile, and capable of coupling
anaerobic acetate oxidation to the reduction of sulfate.

Analysis of the Deltaproteobacteria bin from the sediments,
MLS_D, indicates this population is related to clones from oil-
impacted sediments and basalts and to previously characterized
members of the genus Syntrophus, including the model organism
S. aciditrophicus (Figure 5B; Figure S3). The MLS_D and
S. aciditrophicus 16S rRNA sequences share 91% sequence
identity. S. aciditrophicus degrades fatty acids and aromatic
acids in syntrophic association with hydrogen/formate-using
microorganisms (Jackson et al., 1999). MLS_D contained ∼2.5
Mbp over 70 scaffolds with an average G+C content of 55.9%.
The genome is 98% complete based on the presence of single
copy marker genes (Table S2). The genome encodes the genetic
machinery necessary for assimilatory sulfate reduction (the
Cys system) as well as Nap (a periplasmic nitrate reductase),
the genetic machinery necessary for assimilation of ammonia,
and biosynthesis of flagella. The genes necessary for an F-
type ATPase were also present as were the gluconeogenic
and pentose phosphate pathway genes to synthesize hexose-
and pentose-phosphates from acetyl-CoA. Genes encoding
two of the subunits for the ATP-dependent, benzoyl-CoA
reductase were detected as well as genes encoding an Rnf-
type, ion-translocating, electron transport complex, and genes
for transporters for uptake of branched-chain amino acids.
Genes encoding multiple alcohol deyhrogenases were encoded
in the MLS_D genome, including one that is closely related
to adh1 of Desulfovibrio vulgaris Hildenborough. In D.vulgaris
Hildenborough, adh1 is highly expressed in cells grown on
lactate, pyruvate, formate, or hydrogen as electron donors for
sulfate reduction (Haveman et al., 2003). Genes encoding proton-
translocating, NADH:ubiquinone oxidoreductase (complex I) or
succinate dehydrogenase (complex II) were not recovered. In
addition, MLS_D genome did not contain the genes that would
permit the use of external electron acceptors such as oxygen,
nitrate, sulfate, iron, or organic molecules. While these genes
are also lacking from the genome of the obligate syntroph
S. aciditrophicus, the MLS_D genome is incomplete (∼98%
complete), and thus we cannot conclude that the MLS_D
population in Mahoney Lake relies on hydrogen/formate-using
microorganisms.

Firmicutes

We reconstructed two Firmicutes genomes from the 8-m sample.
Based on phylogenetic analysis of 18 concatenated ribosomal
proteins (Figure 6), the ML8_F1 population is most closely
related to members of the Alkaliphilus genus, and ML8_F2 is
most closely related to D. alkaliphilus. The ML8_F1 genome
contained ∼2.3 Mbp over 58 scaffolds with an average G+C
content of 50.2% (Table 1). TheML8_F2 genome contained∼3.0
Mbp over 143 scaffolds with an average G+C content of 46.6%.
Based on the presence of single copy phylogenetic marker genes
(Table S2), the ML8_F1 genome is 98% complete while the
ML8_F2 genome is 96% complete.

The ML8_F1 genome is most closely related to Alkaliphilus
spp.—including A. metalliredigens, A. transvaalensis, and A.
oremlandii. A. metalliredigens was isolated from a leachate pond
and is a metal-reducing alkaliphile (Ye et al., 2004). A. oremlandii
can use thiosulfate as an electron acceptor with a variety of
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FIGURE 5 | Maximum likelihood based phylogenetic 16S rRNA gene tree of closely related Deltaproteobacteria and the Deltaproteobacteria genomic

bins from the 8m metagenome (A) and the sediment metagenome (B). Bootstrap support values based on 1000 bootstrap samplings >90 are noted.

organic electron donors, including acetate, pyruvate, and formate
(Fisher et al., 2008). The ML8_F2 genome is most closely related
to D. alkaliphilus. In addition to sulfur disproportionation, D.
alkaliphilus oxidizes H2 and is a facultative autotroph (Sorokin
et al., 2008). The ML8_F1 genome encodes a Nuo-type NADH
hydrogenase and an F-type ATPase. The ML8_F2 genome
encodes components of a Nuo-type NADH dehydrogenase, a
V-type ATPase, and an F-type ATPase. The ML8_F2 genome
encodes a homolog of acetyl-CoA synthase acetyl-CoA synthase
and a carbon monoxide dehydrogenase as well as all of
the genes necessary to carry out this activity (Ragsdale
and Pierce, 2008). The ML8_F1 genome encodes a carbon
monoxide dehydrogenase but not the acetyl-CoA synthase. Both
genomes encoded multiple [FeFe]-hydrogenases and one [NiFe]-
hydrogenase—plus all the necessary hydrogenase maturation
genes. Genes encoding enzymes necessary for assimilatory (Cys)
and dissimilatory sulfate reduction (Dsr), as well as nitrogen
fixation, denitrification, or nitrate reduction, were absent in
both ML8_F genomes which are both >95% complete based
on the presence of single copy marker genes. Genes encoding

proteins involved in glycolysis and the tricarboxylic acid (TCA)
cycle were present in both genomes, along with numerous
transporters, particularly metal transporters. While further data
are required to test our hypothesis that the ML8_F1 and F2
populations are acetogenic bacteria that use CO or CO2 plus
H2 as their sole carbon and energy sources (Drake et al.,
1994) our data do suggest a role for Firmicutes populations
in hydrogen oxidation and acetate production in Mahoney
Lake.

MLS_C Genome

We reconstructed a genome from the ML sediment metagenome
that contains ∼2.9 Mbp over 35 scaffolds with an average G+C
content of 59.6%. The genome is nearly complete, encoding
98% of single copy phylogenetic marker genes (Table S2). The
16S rRNA gene sequence is most closely related to sequences
recovered from Yuncheng Salt Lake of Shanxi Province, China
which is rich in sulfate, chloride and magnesium; submarine
methane seeps (Beal et al., 2009; Pachiadaki et al., 2010);
and Zodletone Spring (anaerobic spring rich in methane,
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FIGURE 6 | Maximum likelihood phylogenetic tree of 18 concatenated single-copy ribosomal proteins (Table S3) the Clostridia species genomic bins.

Bootstrap support values based on 1000 bootstrap samplings >90 are noted.

TABLE 1 | Statistics for the genome bins.

8 m Sediments

ML8_D ML8_F1 ML8_F2 MLS_D MLS_C

Scaffolds 93 58 143 70 35

Longest scaffold (bp) 168,842 200,011 205,602 218,332 335,466

GENERAL INFORMATION

Total bp 3,568,747 2,376,371 3,019,424 2,512,366 2,978,745

N50 (bp) 69,455 101,095 46,500 69,790 208,158

CHARACTERISTICS

G + C 45.2 50.2 46.6 55.9 59.6

Protein coding genes 3112 3853 2272 2539 2726

Average coverage 27 23 12 21 31

% completea 98 98 96 98 98

aBased on the presence of single copy marker genes (Table S2).

sulfide, and sulfur in Oklahoma, USA; Elshahed et al., 2007)
as well as to the isolates Caldithrix abyssi and Caldithrix
paleocroryensis, which are thermophilic, mixotrophic anaerobes
from hydrothermal deep-sea environments (Miroshnichenko

et al., 2003, 2010). The MLS_C 16S rRNA sequence shares
only 83 and 84% sequence identity with the C. abyssi and C.
paleocroryensis 16S rRNA sequences, respectively. In addition,
the MLS_C 16S rRNA sequence shares 79% sequence identity
with the 16S rRNA sequence from Fibrobacter succinogenes
S85, a cellulolytic luminal mesophilic bacterium (Weimer,
1993). The predicted MLS_C proteins shared the highest
percent sequence identity to proteins from many different phyla
(Figure 7). The majority were affiliated with Deltaproteobacteria
and Candidatus Cloacimonetes (WWE1 clade). Most Caldithrix
sequences have been recovered from sulfide-rich marine niches,
such as those found near hydrothermal vents, but they have
also been recovered from mangrove soil, sulfidic caves, farm
soil, methanogenic granular sludges, and in a benzoate-degrading
consortium (Huang et al., 2010; Zhou et al., 2011; Alauzet
and Jumas-Bilak, 2014). Sequences affiliated with Candidatus
Cloacimonetes were first recovered from a wastewater treatment
plant (Pelletier et al., 2008). Analysis of the single copy
marker genes in these related isolates was similar—the highest
percent sequence identity of individual proteins were from many
different phyla, even though the majority of these sequences are
on the same contig (Table S5).
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FIGURE 7 | Best BlastP hits for all predicted protein sequences in the

Candidatus Aegiribacteria MLS_C genome. Other indicates all phyla

represented by <5% of the total sequences in the genome. The relative

abundance of taxonomic groups is summed at the phylum level except for

Proteobacteria and Firmicutes which are summed at the class level and

Caldithrix which are summed at the genus level.

Phylogenetic analysis of the MLS_C 16S rRNA gene places the
lineage into a monophyletic branch within the FCB superphylum
MLS_C represents a deep-branching, monophyletic lineage (90%
bootstrap support) with F. succinogenes S85 as the next relative
(Figure 8). Phylogenetic analysis of the rpS3 sequences places
the MLC_S lineage into a monophyletic branch (95% bootstrap
support) with Candidatus Cloacimonetes acidaminovorans
(Figure S4). The highest ANI observed in this limited data set was
between the MLS_C genome and a Marinimicrobia bacterium
genome (76.9%) whereas the average nucleotide identity between
the MLS_C genome and the genomes of F. succinogenes and
CandidatusCloacimonetes acidaminovorans was 64.3 and 62.4%,
respectively (Figure S4). Members of the clade Marinimicrobia
(formally SAR406; Rinke et al., 2013) are common in marine
environments (Yilmaz et al., 2015). Based on these data, the
MLS_C population appears to be only distantly related to the
Caldithrix genus, Candidatus Cloacimonetes, and F. succinogenes
S85. Because the 16S rRNA gene from MLS_C shares low
sequence identity (79–84%) to described bacterial phyla, and
the sequence represents a deep-branching, monophyletic lineage,
we propose that it represents a new genus within the FCB
superphylum. In agreement with recently proposed guidelines
for taxonomic classification of environmentally-derived genome
sequences with currently accepted nomenclature standards
(Hedlund et al., 2015), we propose the name Candidatus
Aegiribacteria MLS_C after the Norse God of the Sea,
Aegir, a renowned undersea brewer, reflecting its presumed

fermentative metabolism. The FCB superphylum now includes
the original phyla Fibrobacteres, Chlorobi, Bacteroidetes, and
Ignavibacteriae as well as the candidate phyla Cloacimonetes
(WWE1), Marinimicrobia (SAR406), Latescibacteria (WS3),
Gemmatimonadetes, Hydrogenendentes (NKB19) (Rinke et al.,
2013), the Zixibacteria RBG1 (Castelle et al., 2013), the recently
discovered “Candidatus Kryptonia” (Eloe-Fadrosh et al., 2016),
the Caldithrix genus and the new genus described here,
Candidatus Aegiribacteria MLS_C.

The G+C content of the MLS_C genome is elevated
(59.6%) compared to the C. abyssi genome (43.3%) and the C.
palaeochoryensis genome (42.5%), as well as the reconstructed
Candidatus Cloacamonas acidaminovorans genome (37.9%;
Pelletier et al., 2008) and the F. succinogenes S85 genome
(48%; Suen et al., 2011). There are only two characterized
representatives of the Caldithrix genus, C. abyssi, and C.
palaeochoryensis. C. abyssi oxidizes molecular hydrogen and
acetate in the presence of nitrate, while C. palaeochoryensis is
an obligately fermentative chemoorganotroph that can grow
on di- and polysaccharides, as well as proteinaceous substrates
(Alauzet and Jumas-Bilak, 2014). Ca. Cloacimonetes sequences
have been recovered from anaerobic digesters (Pelletier et al.,
2008; Lykidis et al., 2011; Wu et al., 2013; Limam et al., 2014;
Nobu et al., 2015b). Ca. Cloacimonetes have been inferred to
perform syntrophic propionate degradation (Nobu et al., 2015b)
and the anaerobic digestion of cellulose (Limam et al., 2014), but
no isolates have been fully characterized. Selective enrichment
and a reconstructed genome sequence of Ca. Cloacamonas
acidaminovorans suggest the organism is syntrophic (Pelletier
et al., 2008). F. succinogenes S85 produces succinate, acetate, and
formate as major fermentative end products and is specialized to
derive energy from cellulose (Weimer, 1993; Suen et al., 2011).

Genes encoding pili and flagella were present in the ML_C
genome suggesting that MLS_C is motile. Genes encoding a
periplasmic [FeFe]-hydrogenase and a [NiFe]-hydrogenase
and all necessary hydrogenase maturation genes were present,
as well as a heterodisulfide reductase that is widespread in
anaerobic bacteria. The genome encodes homologs of D-lactate
dehydrogenase (gene ldhA) and pyruvate dehydrogenase (gene
pdh) for conversion of lactate to acetyl-CoA, as well as carbon
monoxide dehydrogenase/acetyl-CoA synthetase (CODH/ACS).
The MLS_C genomes is nearly complete (∼98%) and similar to
theCa.Cloacamonas acidaminovorans genome, the genome does
not contain genes encoding the enzymes necessary to synthesize
certain amino acids. The genome encodes all of the machinery
necessary for degradation of organic matter for acquisition
of carbon and nitrogen including multiple proteases and
peptidases. The genome also encodes the proteins necessary for
the oxidation of propionate into acetate and carbon dioxide via
methylmalonyl-CoA, succinate, fumarate, malate, oxaloacetate,
pyruvate, and acetyl-CoA as intermediates. This pathway is found
in obligate syntrophic bacteria (Schink, 1997) and is also encoded
in the Ca. Cloacamonas acidaminovorans genome (Pelletier
et al., 2008). This pathway is only thermodynamically favorable
under low H2 conditions, such as in syntrophic consortia with
H2-scavenging bacteria (Megonigal et al., 2004; Ariesyady et al.,
2007). Populations capable of scavenging H2, such as sulfate
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FIGURE 8 | Maximum likelihood based phylogenetic 16S rRNA gene tree of members of the FCB superphylum and MLS_C. Bootstrap support values

based on 1000 bootstrap samplings >90 are noted. NCBI accession numbers or IMG gene ids are shown in parentheses.

reducing bacteria and acetogenic bacteria, are present in the
sediment metagenome and could fulfill this partnership.

Carbon and Sulfur Cycling in Mahoney
Lake
16S rRNA sequencing indicated that different layers of ML
are host to distinct microbial assemblages (Klepac-Ceraj et al.,
2012). Our metagenomic sequencing suggests these microbial
assemblages are similar phylogenetically at the phylum or class
level (Figure 1) despite marked differences in geochemistry
throughout the stratified water column—the epilimnion is oxic
and oligotrophic whereas the hypolimnion is anoxic, more saline,
eutrophic and rich in sulfate, sulfide, and polysulfide (Hall and
Northcote, 1986). To assess potential differences in functional
diversity at the chemocline and below, we compared COG
functional gene assignments between the 7-m (chemocline),
8-m, and sediment communities. These data indicate similar
COG distributions in assemblages from the three horizons
(Figure 9A; Figure S5A). COGs represented at high abundance
included common functions such as translation, ribosomal
structure, and biogenesis; energy production and conversion;
and replication, recombination, and repair. The sediment and
8-m communities contain a more similar distribution of COG
categories compared to the 7-m community. Because this

analysis is based on COG categories, we examined the 50 most
abundant COGs to determine what functional differences might
be detectable between the horizons. In this analysis, the 7- and 8-
m communities were more similar than the sediment community
(Figure S5B). Putative proteins with lower relative abundance
in the 7- and 8-m assemblages compared to the sediments
included COG0840 and COG1372. COG0840 is involved in
signal transduction and cell motility, while COG1372 is an
endonuclease with a role in DNA replication, recombination,
and repair. Sequences with lower relative abundance in the
sediments included proteins involved in signal transduction
(COG0745) and DNA replication, recombination, and repair
(COG4974). COG1595, a DNA-directed RNA polymerase, had
a higher relative abundance at 7 and 8m compared to the
sediments. A putative NAD(P)-dependent dehydrogenase
(COG1028) was also more abundant in and near the
chemocline.

Our recent analysis of the Mahoney Lake chemocline
indicated functional redundancy in both the oxidative
and reductive arms of the sulfur cycles within the narrow
phototrophic plate at 7m (Hamilton et al., 2014). Comparison
of COGs from 7, 8 m, and the sediments reveals no difference
in the abundance of assimilatory or dissimilatory sulfate
reduction, sulfur mineralization, or polysulfide reduction.
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FIGURE 9 | Hierarchical clustering of the relative abundance of COG

categories (A) and the genetic potential for carbon, nitrogen, and sulfur

cycling in each assemblage at 7, 8 m, and in the sediments of Mahoney

Lake (B). Values within each category are normalized across samples (see

Section Materials and Methods). Clustering analyses is based on the

normalized abundance profiles of COGs. The genetic potential for each step in

(B) was estimated using a combination of normalized marker gene ratios as

previously described (Lauro et al., 2011). Marker genes are provided in Table

S4. The 7m data set is from Hamilton et al. (2014). Sed, Sediment; A, RNA

processing and modification; B, chromatin structure and dynamics; C, energy

production and conversion; D, cell cycle control, cell division, chromosome

partitioning; E, amino-acid transport and metabolism; F, nucleotide transport

and metabolism; G, carbohydrate transport and metabolism; H, coenzyme

transport and metabolism; I, lipid transport and metabolism; J, translation,

ribosomal structure, and biogenesis; K, transcription; L, replication,

recombination, and repair; M, cell wall/membrane/envelope biogenesis; N, cell

motility; O, post-translational modification, protein turnover, chaperones; P,

inorganic ion transport and metabolism; and Q, secondary metabolites

biosynthesis, transport, and catabolism; R, general function prediction only; S,

function unknown; T, signal transduction mechanisms; U, intracellular

trafficking, secretion, and vesicular transport; W, extracellular structures; X,

nuclear structure; V, defense mechanisms; Z, cytoskeleton.

These data suggest that similar processes are also active
below the chemocline or that our data include genetic
material that settled from the chemocline (Figure 9B). In

the COG analysis, the marker genes for dissimilatory sulfate
reduction and sulfide oxidation (K00394, K00395, K00396)
are equivalent and can operate in either process. In the 8-
m and sediment metagenomes, the majority of sequences
cluster with those involved in dissimilatory sulfate reduction,
consistent with recovery of multiple populations capable of
reducing oxidized sulfur below the chemocline (data not
shown). In contrast, the majority of the same COGs from the
7-m metagenome clustered with sequences involved in sulfur
oxidation (Hamilton et al., 2014). The hypolimnion (8 m) and
sediments are also rich in polysulfides, elemental sulfur, and
other sulfur intermediates that can be disproportionated (Bak
and Cypionka, 1987; Finster, 2008; Poser et al., 2013). We

observed multiple populations capable of reducing oxidized
sulfur compounds in the highly sulfidic (35mM) hypolimnion
but very little evidence for sulfur oxidation. Autotrophic
growth by sulfite/thiosulfate disproportionation appears to be
a common trait among haloalkaliphilic SRB (Sorokin et al.,
2011). Based on the recovery of taxonomic markers genes (16S
rRNA and rpS3 sequences) related to Deltaproteobacteria that
disproportionate sulfur compounds and the abundance of sulfur
cycle intermediates below the chemoline in Mahoney Lake, it
is plausible that disproportionation is an important process
in ML.

The redox stability of ML can be attributed to its
geochemistry—that is, high salinity and high sulfur
concentrations—and a physiographic position that results
in minimal wind mixing and the delivery of allochthonous
carbon required to supply the extra flux of electrons needed
to sustain sulfate reduction (Overmann, 1997). Oxygenic

primary production in the epilimnion is not sufficient to supply
electrons for sulfate reduction in the form of phytoplanktonic
carbon fixed in situ—instead, organic matter is supplied
from the surrounding landscape (Overmann et al., 1996a,b;
Overmann, 1997). The strong density stratification and the

related redox profile help retain organic matter in neutrally
buoyant layers, supporting remineralization of organic matter
in the water column (Overmann, 1997)—a feature that is also
common in some marine systems (MacIntyre et al., 1995;
Sorokin, 2002). ML hosts one of the densest chemocline
phototroph communities observed to date, yet direct export
of this planktonic organic matter from the chemocline to
the sediments is low (Overmann, 1997). Based on fatty acid
profiles and bulk organic carbon isotopes, organic matter
from the water column is distinguishable from sediment
organic matter (Bovee and Pearson, 2014). The latter has

characteristics dominantly of allochthonous, higher-plant
sources and is most likely sourced from the margins of the lake
basin. In contrast, most of the planktonic organic matter is
lost from the shallow water column through respiration. We
found abundant evidence for anaerobic respiration below the
chemocline, while proteins necessary for aerobic respiration
were elevated at 7m compared to 8m and the sediments
(Figure 9B).
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In this study we recovered abundant evidence for
heterotrophic—and especially fermentative—organisms at
8m and in the sediments. The relative abundance of sequences
for proteins putatively involved in anaerobic carbon fixation
and fermentation were elevated relative to the chemocline
(Figure 9B). Our data also indicate the presence of syntrophic
populations and heterotrophs capable of degrading cellulose in
the sediments. These observations are consistent with intense
organic matter remineralization in the water column and
delivery of more complex carbon substrates to the sediments.

CONCLUSION

Mahoney Lake is an extreme meromictic system with unusually
high levels of sulfate and sulfide. Here, we observed diverse
microbial assemblages that are taxonomically similar at the
phylum level yet functionally distinct in different layers of the
lake. Metagenomic sequencing recovered abundant anaerobic
bacteria from below the chemocline that are putatively involved
in remineralizing organic matter and genes encoding for
hydrogenases presumably due to organic matter loading and
the need to dispose of excess electrons. Although the precise
biochemical pathway of sulfur disproportionation remains
uncharacterized, we recovered sequences most closely related
to Deltaproteobacteria spp. known to perform this reaction
in pure cultures. These data, along with the abundance of
zero valent sulfur below the chemocline (Overmann et al.,
1996a), suggest a role for sulfur disproportionation in highly
euxinic systems despite the observation that elemental sulfur
disproportionation becomes thermodynamically unfavorable

under high sulfide concentrations (Canfield and Thamdrup,
1994; Rabus et al., 2000). We recovered a breadth of taxonomic
and functional diversity from below the chemocline in an
extreme euxinic environment including a nearly complete
genome of Candidatus Aegiribacteria MLS_C, a new genus
within the FCB superphylum. Our data highlight the role of
these diverse assemblages in maintaining euxinia and suggest
undiscovered taxa and diversity exist in other dark, sulfur-rich
environments.
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