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Rising sugar content in grape must, and the concomitant increase in alcohol levels in
wine, are some of the main challenges affecting the winemaking industry nowadays.
Among the several alternative solutions currently under study, the use of non-
conventional yeasts during fermentation holds good promise for contributing to relieve
this problem. Non-Saccharomyces wine yeast species comprise a high number
or species, so encompassing a wider physiological diversity than Saccharomyces
cerevisiae. Indeed, the current oenological interest of these microorganisms was initially
triggered by their potential positive contribution to the sensorial complexity of quality
wines, through the production of aroma and other sensory-active compounds. This
diversity also involves ethanol yield on sugar, one of the most invariant metabolic
traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces
yeasts, aiming to produce wines with lower alcohol content than those from pure
Saccharomyces starters. Critical aspects discussed include the selection of suitable
yeast strains (considering there is a noticeable intra-species diversity for ethanol yield,
as shown for other fermentation traits), identification of key environmental parameters
influencing ethanol yields (including the use of controlled oxygenation conditions), and
managing mixed fermentations, by either the sequential or simultaneous inoculation of
S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial
level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require
an improved understanding of the metabolism of these alternative yeast species, as well
as of the interactions between different yeast starters during the fermentation of grape
must.

Keywords: non-Saccharomyces yeasts, low alcohol wine, ethanol yield, yeast respiration, mixed starters

INDUSTRIAL AND SOCIAL INTEREST IN REDUCING ALCOHOL
LEVELS IN WINE

The ethanol content in wine increased considerably over the past 20 years due to two main factors:
the impact of climate change upon the global production of grapes, and the current quest for new
wine styles, often requiring increased grape maturity (Jones et al., 2005; Grant, 2010; MacAvoy,
2010; Alston et al., 2011; Gonzalez et al., 2013). Late harvests are indeed required to meet present
consumer’s preferences toward well-structured, full body wines, and optimal phenolic maturity
of grapes. This practice results in a noticeable increase in the sugar content of the berries (Mira
de Orduña, 2010) with consequent higher alcohol levels in wine. On the other hand, global
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climate change has deeply influenced the vine phenology and
the grape composition, resulting in grapes with lower acidity,
altered phenolic maturation and tannin content, and increasing
sugar concentration (Jones et al., 2005). These changes further
contribute to rising alcohol content in wines, in addition
to modifying other wine sensory attributes as well as wine
microbiology (Mira de Orduña, 2010). Alston et al. (2015)
reported that the ethanol content in New World wines was higher
than in European wines (13.65 vs. 13.01% v/v). The ethanol
contents found in North American, Argentinean, Australian,
and Chilean wines were 13.88, 13.79, 13.75, and 13.71% v/v,
respectively. In Europe, Spain accounted the highest values
(13.43% v/v). The high ethanol content in wine can lead to
stuck and sluggish fermentations (Coulter et al., 2008) and to
unbalanced wines that are unpleasant for consumers. Indeed,
several studies reported that high ethanol concentration increase
hotness and bitterness perceptions, while it decreases acidity
sensations and masks the perception of some important aroma
compounds such as higher alcohols, esters and monoterpenes
(Escudero et al., 2007; Robinson et al., 2009; Fischer, 2010; Frost
et al., 2015). This trend brings about some troubles for the wine
industry, as well as social and public safety problems related to
alcohol consumption (Grant, 2010; MacAvoy, 2010). In order to
overcome these issues, the market focus is directed to wines with a
moderate alcohol content. In addition, lowering ethanol content
has an economic interest due to the high taxes imposed in some
countries (Gil et al., 2013).

Pickering (2000) and Saliba et al. (2013) reported that
wines with reduced ethanol content have been classified as
dealcoholized or alcohol free (<0.5% v/v), low alcohol (0.5–
1.2% v/v), reduced alcohol (1.2 to 5.5–6.5% v/v) and lower
alcohol wine (5.5–10.5% v/v), even if these classifications, which
are loosely based on labeling and legislative requirements,
vary between different countries (Pickering, 2000). However,
most winemakers are interested in developing practices aiming
to reduce the alcohol concentration in wine by just 1–3%
v/v, in order to compensate the impact of global warming
and to obtain better-balanced wines (Meillon et al., 2010a,b;
Gambuti et al., 2011). The winemaking industry is addressing
this challenge by targeting almost all the different steps of
the production cycle (Teissedre, 2013), starting from grapevine
clonal selection, vineyard management, pre-fermentation and
winemaking practices, microbiological approaches and post-
fermentation and processing technologies (García-Martín et al.,
2010; Gil et al., 2013; Poni, 2014; Varela et al., 2015).

In this regard, the viticultural practices to reduce ethanol
content in wine act to manage grapes sugar content through
different approaches such as reducing leaf area (defoliation or
topping of shoots; Martinez de Toda et al., 2013; Poni, 2014),
pre-harvest irrigation to cause a significant delay of ripening
(Mendez-Costabel, 2007), application of growth regulators to
postpone ripening (Symons et al., 2006) and manage harvest date
(Bindon et al., 2013). At pre-fermentative stage the reduction
of sugar concentration in must could be achieved by dilution
of grape must with water (depending of country regulation) or
using nanofiltration technologies (Harbertson et al., 2009; García-
Martín et al., 2010). Another pre-fermentative strategy to remove

sugar from must could be the addition of glucose oxidase enzyme
(Pickering, 2000). The ethanol reduction in wine could be also
achieved at post-fermentation stage. In this regard, it is possible
to mention the blending of low-high alcohol wines or physical
removal of alcohol from wine with membrane-based system,
vacuum distillation and supercritical CO2 extraction (Gambuti
et al., 2011; Kontoudakis et al., 2011; Schmidtke et al., 2012).

S. cerevisiae IS NOT THE BEST YEAST
SPECIES FOR REDUCING ALCOHOL
LEVELS IN WINE

Development and application of yeast strains showing below
normal alcohol production has been a recurrent objective for
wine biotechnology for more than 20 years, starting even before
increasing ethanol content in wines was widely perceived as a
problem. Low alcohol production by yeasts might be related with
two distinct metabolic features, alcohol tolerance, or ethanol yield
on sugar. Traditional scientific literature on wine yeast often use
the term fermentative power, to refer to the amount of alcohol
produced by different yeast strains from natural or synthetic
grape must (Lopes et al., 2006). Due to the assay conditions, this
parameter is mainly related to alcohol tolerance, and tells little
about the usefulness of yeast strains for alcohol level reduction.
Indeed, oenological use of yeast strains having low fermentative
power would result in either stuck fermentation or the starter
being quickly replaced by native yeasts.

To attain a relevant alcohol level reduction in wine (fermented
to dryness), the appropriate yeast metabolic trait to take into
account is alcohol yield on sugar. Ethanol yield on sugar is
formally expressed as grams of ethanol produced per gram of
glucose or fructose consumed (g/g). The rule of thumb says
consumption of 17 g/L of sugar will result in an increase of 1%
v/v in alcohol content. Not surprisingly, being Saccharomyces
cerevisiae the main yeast species responsible of alcoholic
fermentation during winemaking, it has almost invariably been
the species of choice for all research efforts aiming to reduce
ethanol yields. However, evolution has shaped this species to
quickly and efficiently produce ethanol from sugars under
most environmental conditions, following the make-accumulate-
consume life strategy (Piskur et al., 2006). Although, some natural
variability can be found among wild isolates of this species, the
distribution of ethanol yield values is rather narrow (around the
values mentioned above).

Researchers have designed several alternative genetic
engineering approaches in order to partially redirect S. cerevisiae
normal carbon flux, starting with the overexpression of
GPD1 or GPD2, coding for isozymes of glycerol 3-phosphate
dehydrogenase. The choice of GPD genes was additionally driven
by glycerol contribution to sweetness, smoothness and wine
body. Other strategies aiming to reducing alcohol yields also
involve genetic manipulation of the central carbon and energy
metabolism of S. cerevisiae. Target genes include for example
PDC2, coding for pyruvate decarboxylase; ADH1, coding for
alcohol dehydrogenase; or TPI1, coding for triose phosphate
isomerase. An excellent review by Kutyna et al. (2010) gathers
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additional genetic engineering strategies in order to reduce
alcohol yield during wine fermentation. However, a recent
experimental evaluation of genetic modifications to develop low
ethanol yield wine yeast strains concluded that overexpression
of GPD1 was the most efficient strategy to lower alcohol yield
(Varela et al., 2012). Also in agreement with early studies in
this field (Remize et al., 1999; Cambon et al., 2006) they found
overexpression of GPD1 resulted in the overproduction of
some metabolites negatively affecting wine quality. In order to
avoid these drawbacks additional genetic modifications were
required (Cambon et al., 2006; Ehsani et al., 2009). Metabolic
pathways mentioned in this paragraph are summarized in
Figure 1.

Limitations of the genetic engineering approach are twofold.
First, commercial use of genetically engineered wine yeast strains
does not seem to be feasible in the short term (Gonzalez et al.,
2013). In order to circumvent this problem, some researchers
are now using adaptive laboratory evolution (Cadière et al.,
2011; Kutyna et al., 2012). Second, the increase in concentration
required to reach a relevant impact on wine final alcohol content
(2–3% v/v), would certainly compromise wine quality for most
alternative metabolites. This holds true even for glycerol, one
of the preferred targets for researchers in this field. Reduction
of 2% v/v ethanol by diverting carbon flux toward glycerol
production would result in more than 30 g/L extra glycerol
(about five times the usual values). Almost any other chemical
compound would also become unacceptable in wine at such
elevated concentrations. Carbon dioxide is perhaps the only
metabolite that would cause no trouble when overproduced by
yeast during wine fermentation, in part because it is readily
released to the atmosphere. The two main metabolic pathways for
CO2 production are respiration and fermentation. Concerning
alcohol reduction, the advantage of respiration is that no ethanol
is produced, since all six carbon atoms from each molecule of
sugar end up as CO2. Some researchers have suggested partial
respiration of sugars from grape must as a way to decrease
ethanol yield during winemaking (Gonzalez et al., 2013 and
references therein). A possible way to reach this goal is shown
in Figure 2.

There are, however, two restrictions to make yeast cells
respire sugars under standard winemaking conditions, oxygen
requirement and the Crabtree effect. Respiratory metabolism
has a huge oxygen demand, but it is known to participate
in many other chemical reactions that can be detrimental to
wine quality. Proper management of dissolved oxygen during
wine fermentation will be required in order to meet respiration
requirements while preserving other wine compounds from
excessive oxidation (see below). On the other side, S. cerevisiae
is the archetype Crabtree-positive yeast species. This metabolic
feature strongly favors fermentative over respiratory metabolism,
despite oxygen availability (Pronk et al., 1996), and have
played a key role in the adaptation of this species to sugar
rich environments (Piskur et al., 2006). In S. cerevisiae
“aerobic fermentation” involves usually above 98% of the
sugars consumed in the presence of oxygen (de Deken, 1966).
Only under conditions of very low sugar availability (which
is not obviously the case for grape must), is respiration

the main energetic metabolic pathway in this species (Pronk
et al., 1996). The possibility of reducing ethanol yields by
promoting respiration of sugars by S. cerevisiae or other
yeast species was initially suggested by Smith (1995), and
the idea has been independently recovered and developed
to different levels in recent years (Erten and Campbell,
2001; Contreras et al., 2015b; Morales et al., 2015; see
below).

SUGAR METABOLISM OF NS YEASTS

Common ethanol yields on sugar after complete grape juice
fermentation are 90–95% of theoretical, with the remaining 5–
10% being explained by biomass biosynthesis, ethanol stripping,
and alternative metabolic pathways (Konig et al., 2009).
This mainly reflects anaerobic carbon flux distribution in
S. cerevisiae. However, NS wine yeasts usually differ from
S. cerevisiae in metabolic flux distribution during fermentation
and, consequently, in ethanol production, biomass synthesis,
and by-product formation (Ciani et al., 2000; Magyar and
Toth, 2011; Milanovic et al., 2012; Tofalo et al., 2012). Under
anaerobic conditions, the diversion of alcoholic fermentation
and the abundant formation of secondary compounds may
in part explain the low ethanol yield of some of these NS
yeast species/strains. Indeed, some of these species are strongly
characterized by species-specific patterns of fermentation by-
products, which allows the differentiation of the majority of these
yeast strains according to the species (Domizio et al., 2011).

The production of ethanol and the other main fermentation
compounds are metabolically linked. In S. cerevisiae glycerol
production is highly correlated with the production of acetic
acid (Ciani and Rosini, 1995). Indeed, as mentioned above,
genetic engineering of S. cerevisiae for glycerol overproduction
often results a large production of acetic acid (Remize et al.,
1999, 2000; Eglinton et al., 2002). The evaluation of the relation
between fermentation by products and ethanol production
among several NS wine yeasts revealed both direct and inverse
correlations between acetic acid and ethanol production, for
Saccharomycodes ludwigii and Kloeckera apiculata, respectively
(Ciani and Maccarelli, 1998). In contrast, Torulaspora delbrueckii,
Candida stellata, and Hanseniaspora uvarum did not show any
correlation between the two fermentation products. Ethanol is
positively correlated with glycerol and ethyl acetate in C. stellata
and K. apiculata respectively, while an inverse correlation
between ethanol and succinic acid production was shown for
T. delbrueckii.

The most striking metabolic trait of S. cerevisiae is
perhaps the Crabtree effect. This feature makes S. cerevisiae
preferentially consume sugars by fermentation in almost any
growth condition, apart from carbon limited chemostat operated
at low dilution rates. This trait has been often related to
glucose triggered transcriptional repression of genes involved
in respiratory functions (Barnett and Entian, 2005). However,
current understanding of the Crabtree effect points to overflow
metabolism at the level of the pyruvate node, as the main
mechanism contributing to the observed distribution of carbon
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FIGURE 1 | Metabolic pathways involved in ethanol production by Saccharomyces cerevisiae. Genes targeted by genetic engineering strategies mentioned
in the text are indicated in black boxes.
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FIGURE 2 | Idealized representation of the expected evolution of
ethanol production during grape must fermentation in a sequential
inoculation with a Crabtree-negative non-Saccharomyces yeast strain,
followed by S. cerevisiae at the moment indicated (continuous line).
Aeration would be restricted to the first stages of alcoholic fermentation, as
indicated. The expected evolution of ethanol production for a pure
S. cerevisiae starter in the same conditions is indicated by a dashed line. For
simplicity, sugar consumption has been assumed to follow a similar pattern in
both situations. Reproduced from Gonzalez et al. (2013) with permission of
the copyright owner.

flux toward ethanol production (Holzer, 1961; Pronk et al.,
1996). In addition, Aceituno et al. (2012) found cytoplasm-
to-mitochondria NADH transport to be a limiting factor to
get a fully aerobic metabolism in the presence of oxygen.
Independent of the mechanism, the critical factor determining
the respiro-fermentative balance in S. cerevisiae seems to be
the rate of sugar consumption. Indeed, mutations slowing
down the glycolytic rate result in a noticeable relief of
the Crabtree effect (Otterstedt et al., 2004; Jansen et al.,
2005).

Several classifications of yeast species, according to the
way they regulate respiro-fermentative metabolism have been
proposed (Gancedo and Serrano, 1989; Alexander and Jeffries,
1990). In general, they are categorized as either Crabtree-positive
or Crabtree-negative, or as obligate respiratory. Assessment of
the Crabtree status is generally based on studies under carbon
limited chemostat conditions (Pronk et al., 1996). So, despite
most yeast species found in the oenological environment have
shown fermentative capacity (Kurtzman et al., 2011), most of
them have never been evaluated for Crabtree status. Furthermore,
according to recent studies (Quirós et al., 2014; Contreras et al.,
2015b) the classification based on standard Crabtree assays
has little prediction power on the behavior of yeasts under
growth conditions more closely mimicking those found in wine
fermentation. In addition, important differences can be found
among yeast strains belonging to the same species.

Analysis of the respiro-fermentative behavior of yeast strains
under controlled aeration conditions in high sugar containing
media has usually confirmed S. cerevisiae as one of the most
fermentation-prone yeast species. However, strains from some
other species have shown even higher ethanol yield or RQ

values than control S. cerevisiae yeast strains under such
assay conditions (Quirós et al., 2014; Contreras et al., 2015b).
Interestingly, respiratory behavior of yeast strains seems to
be strongly affected by other environmental factors, not only
sugar abundance or oxygen availability (Rodrigues et al., 2016).
The extent to which these environmental factors affect yeast
respiro-fermentative metabolism, and secondary by-products
like glycerol or acetic acid, is species or strain-specific. Further
research is required in order to understand the metabolic
diversity of NS yeast species and the relevance of this diversity
for oenological applications, including reducing ethanol content
of wines.

SELECTION OF NON-Saccharomyces
WINE YEAST TO REDUCE THE
ETHANOL CONTENT

During wine production, the non-Saccharomyces (NS) yeasts
contribute to the fermentation process, either directly or through
their effect on both growth kinetics and metabolic activity of
S. cerevisiae (Ciani and Comitini, 2015). These NS yeasts are
capable of anaerobic or aerobic growth and may persist during
the fermentation, competing with Saccharomyces for nutrients,
producing secondary compounds or modifying the S. cerevisiae
metabolism (Milanovic et al., 2012; Sadoudi et al., 2012; Barbosa
et al., 2015).

NS wine yeasts have been shown to modulate wine
fermentation and to enhance sensorial complexity and aroma
profile of wines (Fleet, 2008; Ciani et al., 2010). In addition, some
of these NS species/strains are able to combat spoilage yeasts
(Comitini et al., 2011; Oro et al., 2014; Alonso et al., 2015).
Thus, over the last years, the role of NS yeasts in winemaking,
previously neglected or demonized, has been re-evaluated, and
their use has been proposed in controlled mixed fermentation
with the aim to improve wine complexity, aroma profile and
control of spoilage microorganisms (Rojas et al., 2001; Swiegers
et al., 2005; Domizio et al., 2007; Renouf et al., 2007; Anfang et al.,
2009; Comitini et al., 2011; Jolly et al., 2014). In this context, the
metabolic traits of NS wine yeasts could also be profitably used
to reduce the alcohol content in wine. This application would
benefit from a better understanding of the metabolic pathways
diverting carbon flux from ethanol production in NS yeasts, as
well as the biological variability of these yeast species in terms of
ethanol yield. One of these alternative pathways would be sugar
respiration under suitable fermentation conditions, especially for
Crabtree-negative yeast species, as discussed in other sections of
this review. In summary, our current knowledge suggests several
promising approaches for the use of NS wine yeast to limit
ethanol production. However, taking into account the current
interest on NS wine yeasts is mostly related to their impact on
wine sensory quality (Lambrechts and Pretorius, 2000; Romano
et al., 2003; Ciani et al., 2010; Belda et al., 2015, 2016; Wang
et al., 2015; Hu et al., 2016; Masneuf-Pomarede et al., 2016;
Medina et al., 2016), a positive contribution to wine aromatic
complexity would certainly be a plus in yeast strain selection for
this purpose.
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Screening Based on Low Ethanol Yield
under Anaerobic Fermentation
Conditions
Over the recent years, there was a rising interest to investigate on
the wine yeast variability in ethanol yield as a potential tool for the
reduction of alcohol content in wine. Variability between different
yeasts genera and species could be exploited at industrial level to
produce wines better fitting consumer preferences. Reduction in
ethanol yield is strictly dependent on the microbial strategies that
divert sugar-carbon away from ethanol production.

As mentioned above, S. cerevisiae, shows high fermentation
performance with high ethanol yield and fermentation efficiency,
exhibiting a low intraspecies variability for these characters.
In contrast, NS wine yeasts show, as a trend, lower ethanol
production and lower ethanol resistance. Overall these features
are considered to be a major factor of the dominance of
S. cerevisiae over NS species during wine fermentation. Generally,
the species belonging to Hanseniaspora, Candida, Pichia,
Kluyveromyces, Metschnikowia, Torulaspora, and Issatchenkia
genera, widely or occasionally found in grape juice, are not
tolerant to ethanol concentrations above 5–7% v/v. Their decline
and death as the fermentation progresses can be mostly explained
by their low alcohol tolerance, even though recent studies
indicate that the interactions with S. cerevisiae might be more
complex (Arneborg et al., 2005; Branco et al., 2014; Ciani and
Comitini, 2015). On the other hand, NS wine yeasts exhibit a
broad spectrum of fermentation by-products, low fermentation
purity (volatile acidity g/L ÷ ethanol % v/v) and, often,
low ethanol yield (Muller-Thurgau, 1896; Ribéreau-Gayon and
Peynaud, 1960; Romano et al., 1992). A systematic investigation
on fermentation by-products formed by a wide collection of NS
wine yeasts, belonging to five different species, was carried out
by Ciani and Maccarelli (1998). In that work, “apiculate” yeast
species showed a high production of acetaldehyde, ethyl acetate
and acetoin; C. stellata exhibited high production of glycerol
and succinic acid, while T. delbrueckii was shown to be a lower
producer of secondary products of fermentation. In the various
NS species tested, the ethanol production is differently related
with the fermentation by-products. NS wine yeasts are generally
low-ethanol producing yeasts. However, this feature does not
necessarily mean that they exhibit also low ethanol yield.

In this context, only recent studies addressed the interspecies
and/or intraspecies variability in ethanol yield among NS
wine yeasts (Magyar and Toth, 2011; Contreras et al., 2014,
2015b; Gobbi et al., 2014). In a comparative evaluation of
some oenological properties in several wine strains, Magyar
and Toth (2011) found a very low ethanol yield for four
Candida zemplinina strains. Gobbi et al. (2014), investigating
on several NS wine yeast species, showed that strains belonging
to the species of H. uvarum, Zygosaccharomyces sapae,
Zygosaccharomyces bailii, and Zygosaccharomyces bisporus
exhibited significant low ethanol yield and fermentation
efficiency in comparison with S. cerevisiae under anaerobic
conditions and using different grape juices. For H. uvarum,
these data confirm the low ethanol yield previously described
(Ciani et al., 2006), in contrast to species belonging to the

Zygosaccharomyces genus. Moreover, they found that ethanol
yield, like other fermentation features, is a species-related
trait. However, as indicated previously for other fermentation
parameters (Ciani and Maccarelli, 1998; Comitini et al., 2011;
Domizio et al., 2011), a pronounced intraspecies variability
was also evident. In another recent work a screening on
50 different NS strains belonging to 24 different genera for
their ethanol yield was carried out (Contreras et al., 2014).
This led to the identification of four NS yeast strains (two
strains of Metschnikowia pulcherrima and one strain each of
Schizosaccharomyces malidevorans and C. stellata) that showed
low ethanol yield. In a different study, under semi-aerobic
condition, nine out of 48 NS strains showed ethanol yields
lower than the S. cerevisiae control strain. Three of them
(T. delbrueckii AWRI1152, Pichia kudriavzevii AWRI1220, and
Z. bailii AWRI1578) gave promising results in the subsequent
aerobic sequential trials, with S. cerevisiae AWRI1631 (Contreras
et al., 2015b; see below for further discussion on this work).

Some Saccharomyces species, other than S. cerevisiae, have
also shown potential for ethanol reduction. This is the case
for Saccharomyces uvarum, a cryophilic species that has been
described as a low ethanol and high glycerol producer (Giudici
et al., 1995). Fermentation kinetics in must at 13◦C is better for
S. uvarum than for S. cerevisiae, but some strains get stuck at 8%
v/v alcohol when run at 24◦C (Kishimoto et al., 1994; Masneuf-
Pomarede et al., 2010). In a sequential inoculation of S. uvarum
(AWRI 2846) and S. cerevisiae, Contreras et al. (2015a) found
an ethanol reduction of 0.8% v/v, and an increase of glycerol
of 6.4 g/L. The decrease in ethanol production was not fully
explained by the increase in glycerol, in terms of carbon mass
balance.

Respiration Based Screening
As mentioned above, development of respiration based methods
to reduce alcohol content in wine requires the use of NS
yeast strains showing no or weak Crabtree effect. However, this
metabolic feature, which is indeed rather common across the
yeast phylogeny (de Deken, 1966), is not sufficient to warrant the
utility of a given yeast species/strain for such purpose. Suitable
yeast strains must be able to develop in grape must, a relatively
harsh growth medium due to osmotic stress, low pH, and the
presence of natural or added inhibitors of microbial growth. In
addition sugar consumption kinetics should be relatively fast,
in order to be compatible with industrial procedures; as well as
being able to dominate fermentation processes, in competition
with the microbiota naturally present in grape must. Finally,
they must not generate secondary metabolic products that would
result in wine spoilage, in either aerobic or anaerobic conditions.

Initial trials to follow the sugar respiration strategy analyzed
the behavior of three to four yeast strains in synthetic or natural
grape juice under aerobic or microaerobic conditions (Smith,
1995; Barwald and Fischer, 1996; Erten and Campbell, 2001).
More recent studies use a higher number of yeast strains (around
60) and milder aeration regimes, than previous studies (Quirós
et al., 2014; Contreras et al., 2015b). Quirós et al. (2014) chose
respiratory quotient (RQ) as an indicator of the respiration
capabilities of each yeast strain. RQ can be calculated as the
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ratio of CO2 produced to O2 consumed. When hexoses are
used as substrate RQ can range from 1 (full respiration) to
∞ (full fermentation). The relationship between RQ and the
percentage of sugar consumed by respiration (%SR) can be
expressed as follows: %SR = 100/(3RQ-2). They calculated RQ
values, in synthetic medium containing 200 g/L sugar, pH 3.5,
and high biomass content (OD600 = 20), under strongly aerated
conditions, and identified strains from several yeast species with
RQ values close to 1 under these specific growth conditions. The
advantage of RQ over direct calculation of ethanol yields is it
is not affected by ethanol stripping. One alternative which is
especially valid for mild aeration regimes is comparing ethanol
yields with S. cerevisiae, in order to identify low yield candidates,
and setting control experiments with pure nitrogen gas at the
same flow rate, in order to compare ethanol yields between
anaerobic and aerobic (or micro-aerobic) conditions (Contreras
et al., 2015b; Morales et al., 2015). We must, however, stress that
Contreras et al. (2015b) considered their aeration conditions to
be not strong enough to trigger respiratory metabolism.

However, low respiratory quotient or low ethanol yields
are not enough to ensure the usefulness of yeast strains
for the purposes discussed in this review. Indeed, strains
showing a strong preference for respiratory metabolism would
be completely useless if the amount of sugar they metabolized
were negligible (in a reasonable fermentation time). Hence,
authors took into account sugar consumption after 3 or 4 days
on synthetic grape must in order to identify interesting strains
(Quirós et al., 2014; Contreras et al., 2015b).

The other main aspect to be taken into consideration for a
proper yeast strain selection in this context is volatile acidity.
There are already several reports showing an important increase
in acetic acid yield for S. cerevisiae under aerated conditions, as
compared to anaerobic growth (Giovanelli et al., 1996; Papini
et al., 2012; Quirós et al., 2014; Contreras et al., 2015b; Rodrigues
et al., 2016). Strains from other yeast species have also been
found to produce high amounts of acetic acid under oxygenation
(Quirós et al., 2014; Contreras et al., 2015b); and some of them
also under standard fermentation conditions (Ciani and Picciotti,
1995; Viana et al., 2008).

MANAGING MIXED FERMENTATIONS

Apart from reducing ethanol yields, the main driver for the
current development of NS commercial starters is related to
the increasing consumer demand for wines showing improved
sensorial properties and distinctive flavor (Pretorius and Hoj,
2005; Belda et al., 2015, 2016; Masneuf-Pomarede et al., 2016;
Medina et al., 2016), in contrast to the limited complexity
attributed to wines fermented with S. cerevisiae starter strains
(Heard, 1999; Rojas et al., 2003; Romano et al., 2003; Ciani et al.,
2006, 2010; Jolly et al., 2006). However, NS wine yeasts often show
low fermentation power. For this reason S. cerevisiae starters have
to be used to ensure consumption of all sugars from grape must,
and to bring the fermentation process to completion. In addition,
the interactions between Saccharomyces and NS yeasts can be
exploited to modulate the content of ethanol in wine (Ciani

and Comitini, 2015; Wang et al., 2015). Temperature, sulphite
content, sugar concentration, nitrogen composition, oxygen and
pH, which influence glycerol and ethanol biosynthesis, must also
be modulated and controlled.

Mixed starters can be used by either simultaneous or
sequential inoculation. This later modality allows to take
advantage of the metabolism of the first inoculated NS yeast
without the influence of the Saccharomyces starter culture. In
this way, the reduction in ethanol content will depend on the
metabolic characteristics of the NS strain used, and on the actual
opportunity it will have to stamp its metabolic footprint before
S. cerevisiae takes over. Some important control parameters
should be taken in account for this purpose: the inoculation
concentration and the timing between the first and second
inoculation, nutrient consumption and sulphite content. High
inoculation level of NS yeast improves the competitiveness
toward S. cerevisiae and other wild yeasts; while the interval
between the first and the second inoculation affects the duration
of this metabolic activity, which will quickly decline upon
inoculation of S. cerevisiae. However, attention must also be paid
to the consumption of nitrogen sources and vitamins from grape
must by NS yeasts during the first stage of sequential inoculation
fermentation (Kemsawasd et al., 2015). This consumption often
requires to be compensated by suitable yeast nutrients in order
to prevent stuck fermentations after inoculation of S. cerevisiae
(Medina et al., 2012; Lage et al., 2014). Special attention is
required in oxygenated fermentations, since a strong nutrient
depletion is expected due to high biomass production by NS
yeasts under these growth conditions. Concerning sulphite
concentration, it must be adjusted during the first stage to the
actual tolerance of the NS yeast strain used, since it will usually
fall below the standard values for S. cerevisiae strains. Eventually,
they might be raised to ordinary winemaking concentration after
the second inoculation. Interestingly, controlled fermentation by
sequential inoculation has been proposed as a way to reduce
sulphite contents in the final wine.

The sequential inoculation strategy, using NS/S. cerevisiae
has been employed in several studies. Many of them use
Starmerella bombicola (formerly C. stellata) as the NS counterpart
to S. cerevisiae. In these investigations a high production of
glycerol and succinic acid and interactions involving some by-
products (acetaldehyde, acetoin) with a consequent reduction
of final ethanol amount were found (Ciani and Ferraro, 1996,
1998; Ferraro et al., 2000). The reduction in ethanol content in
these assays varied from 0.64% v/v at pilot scale in natural grape
juice to 1.60% v/v at laboratory scale using synthetic grape juice.
Sequential fermentation trials using Lachancea thermotolerans
(formerly Kluyveromyces thermotolerans) were carried out under
industry condition using a high inoculation level (107 cell/ml)
with a delay of the second inoculum (S. cerevisiae strain) of 2 days
resulting in an ethanol reduction of 0.7% v/v (Gobbi et al., 2013).
A sequential inoculation of M. pulcherrima AWRI1149 followed
by a S. cerevisiae wine strain gave rise to a wine with an ethanol
concentration lower than that achieved with S. cerevisiae (0.9 and
1.6% v/v in Chardonnay and Shiraz wines, respectively; Contreras
et al., 2014). Di Maio et al. (2012) showed that C. zemplinina may
be used in mixed fermentation with S. cerevisiae to reduce the
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ethanol content in wine (0.32% v/v) and to increase the glycerol
content More recently, the use of sequential fermentation
with immobilized non-Saccharomyces wine yeast, was proposed
to reduce the ethanol content in wine using S. bombicola,
M. pulcherrima, H. uvarum, and Hanseniaspora osmphila selected
strains, in Verdicchio grape juice. Sequential fermentation of 72-
h showed an ethanol reduction of 1.64% (v/v) for S. bombicola,
1.46% (v/v) for M. Pulcherrima, 1.21% (v/v) for H. uvarum, and
1.00% (v/v) for H. osmophila. The wines obtained did not exhibit
any negative fermentation products, but rather an increase of
some desirable compounds (Canonico et al., 2016). In Table 1 are
summarized the anaerobic sequential fermentations of some NS
yeasts as compared to control S. cerevisiae proposed to reduce the
ethanol content in wine.

As a general trend, using NS/S. cerevisiae pairs in mixed
fermentation did not result in the overproduction of undesirable
by-products, in contrast to some S. cerevisiae genetically
engineered strains, which can dramatically accumulate acetic
acid or other metabolites with a negative impact on wine
sensorial quality (Michnick et al., 1997; Remize et al., 1999).
Indeed, apart from the reduction of ethanol content in wine,
positive interactions in fermentation by-products have been
shown during sequential fermentation. In NS/S. cerevisiae
mixed cultures, the interactions due to the wide inter-generic
metabolic diversity should be higher. These interactions were
investigated in S. cerevisiae and S. bombicola (Sipiczki et al.,
2005) mixed fermentation. In this co-culture complementary
consumption of glucose and fructose was observed (Ciani and
Ferraro, 1998). Using sequential, continuous fermentation and
immobilized yeast cells, preliminary evidence has highlighted
the exchange of acetaldehyde between these two yeast species.
The excess of acetaldehyde production by S. bombicola, due
to the low activity of alcohol dehydrogenase (Ciani et al.,
2000), was quickly metabolized by S. cerevisiae, which is a
more active alcoholic fermentation species (Ciani and Ferraro,
1998). In this context, an acetaldehyde flux between S. cerevisiae
and Saccharomyces bayanus has also been reported (Cheraiti
et al., 2005). These interactions in acetaldehyde reduction,

TABLE 1 | Reduction of ethanol content in anaerobic sequential
fermentations of some NS yeasts as compared to control Saccharomyces
cerevisiae.

Sequential fermentation Grape
juice

Ethanol
reduction
% (v/v)

Reference

S. bombicola/S. cerevisiae White 0.64 Ferraro et al., 2000

S. bombicola/S. cerevisiae Synthetic 1.60 Ciani and Ferraro, 1998

S. bombicola/S. cerevisiae White 1.64 Canonico et al., 2016

H. uvarum/S. cerevisiae White 1.21 Canonico et al., 2016

H. osmophila/S. cerevisiae White 1.00 Canonico et al., 2016

M. pulcherrima/S. cerevisiae White 0.90 Contreras et al., 2014

M. pulcherrima/S. cerevisiae Red 1.60 Contreras et al., 2014

M. pulcherrima/S. cerevisiae Red 0.90 Contreras et al., 2015a

M. pulcherrima/S. cerevisiae White 1.46 Canonico et al., 2016

L. thermotolerans/S. cerevisiae Red 0.70 Gobbi et al., 2013

C. zemplinina/S. cerevisiae Red 0.32 Di Maio et al., 2012

were also detected in mixed fermentations using S. cerevisiae,
T. delbrueckii (Ciani et al., 2006; Bely et al., 2008; Belda
et al., 2015) and L. thermotolerans (Ciani et al., 2006). Another
compound involved in interactions between two yeast species
in mixed fermentation is acetoin; this is largely accumulated
by S. bombicola in pure culture, and completely metabolized
by S. cerevisiae in mixed fermentation (Ciani and Ferraro,
1998). More recently, the influence Hanseniaspora guilliermondii
on genomic expression of S. cerevisiae in mixed culture wine
fermentation was investigated (Barbosa et al., 2015)

On the other hand, oxygenated fermentation, as proposed
above to stimulate yeast respiration, introduce a new challenge
for managing mixed fermentations. Oxygen supply has a
positive impact in several microbial and chemical processes
during winemaking. It activates S. cerevisiae metabolism, in part
because it is required for the biosynthesis of plasma membrane
sterols, so aeration practices are often used in order to ensure
good initial fermentation kinetics or to help recover sluggish
fermentation (Alexandre and Charpentier, 1998; Valero et al.,
2001; Fornairon-Bonnefond et al., 2002). Oxygen is also used in
hyper-oxygenation treatments, in order to get rid of compounds
highly sensitive to oxidation that would contribute to browning
of white wines if oxidized in later stages of the winemaking
process. In turn, macro- and micro-oxygenation of wines are
used, alone or in combination with other oenological practices, in
order to improve and stabilize wine color during the aging of red
wines, or to avoid the “reduced” character sometimes associated
to aging on yeast lees (Fornairon-Bonnefond et al., 2003).

Nevertheless, oxygen supply amounts required to ensure
efficient yeast respiration are far beyond requirements for
even the most demanding oxygenation practices, among those
described above. There is a risk that the strong oxygenation
levels required for yeast respiration would promote, as a side
effect, the oxidation of key components for the sensory quality
of wines, namely phenolics and aroma compounds. However,
oxygen affinity of fermenting yeast cells has been determined
to be about 1000 times higher than wine polyphenols (Salmon,
2006). Accordingly, the target to avoid oxidative damage to wine
phenolics would be coupling air supply to oxygen consumption
by yeast cells. Being able to keep dissolved oxygen values around
0% would be a good indicative of success for this objective.
This goal was shown to be feasible by using controlled aeration
conditions and an appropriate M. pulcherrima strain (Morales
et al., 2015).

An additional major issue of strong aeration of wine during
the fermentation step is acetic acid production. Several authors
have described a boost in acetic acid production by S. cerevisiae
when fermenting under aerobic or micro-aerobic conditions
(Giovanelli et al., 1996; Papini et al., 2012; Quirós et al., 2014;
Contreras et al., 2015b; Rodrigues et al., 2016). Other yeast
species have also been shown to negatively impact volatile
acidity under aerated growth conditions in synthetic grape must
(Quirós et al., 2014). Rodrigues et al. (2016) analyzed volatile
acidity across several growth conditions for four different yeast
strains. They found a clear correlation between oxygen supply
and acetic acid production. The good news is that some yeast
species produce very little volatile acidity even under oxygenated
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conditions (Quirós et al., 2014; Rodrigues et al., 2016). It
is possible to manage oxygen supply in fermentation trials
driven by simultaneous inoculation of S. cerevisiae and a NS
strain (Morales et al., 2015). However, the strict control of
the process required under such growth conditions suggests
that a better control of volatile acidity would be achieved by
inoculating S. cerevisiae only after oxygen supply has been
arrested (i.e., by sequential inoculation). In addition, proper
control of yeast metabolism in aerated fermentations would
benefit from the development of dedicated devices, able to
monitor oxygen consumption and to adapt air supply to yeast
requirements, so avoiding both excess oxidation and excess acetic
acid production.

CONCLUSION

Research on yeast based strategies in order to reduce ethanol
content of wines started about 20 years ago (Michnick et al.,
1997). The growing evidence about global climate warming
and its impact on sugar content of grapes at harvest has
contributed to an ever increasing interest on this topic. The
biotechnological strategies initially explored were based on
genetic engineering of S. cerevisiae, a rational choice considering
the preponderant role of this species in both spontaneous
and inoculated fermentation. However, the use of these
recombinant strategies soon faced hurdles coming from both
yeast metabolism and the regulatory framework for genetically
modified organisms. The fact that further genetic modification
was required in order to overcome initial problems did not help
much.

In this context, the intense research activity around NS wine
yeasts, our increasing awareness about the metabolic diversity
of yeasts, and the arrival to the market of NS starters, opened
new opportunities to exploit yeast metabolism with the aim of
reducing ethanol content of wines. Current knowledge indicate
that, similar to other metabolic traits, ethanol yield on sugar
is not only species-specific, but often strain-specific. Some NS
yeast species can show ethanol yields similar or higher than
S. cerevisiae, but many of them show reduced ethanol yields. It
has also been shown that oxygenation during wine fermentation
can help further reduce ethanol yields by these, often Crabtree
negative, NS yeast species.

Since most NS wine yeasts are sensitive to ethanol
concentrations above 6–8%, in order to keep the microbiological
control of the fermentation process, and to avoid stuck
or sluggish fermentation (and wine spoilage), the use of
S. cerevisiae starters, in either sequential or simultaneous
inoculation, will still be required. The introduction of
mixed starter inoculation to routine winemaking practices
also demands for a better control of the fermentation
parameters, adapted to each specific combination of yeast
starters. Some parameters to take into account are sulphite
concentration, temperature, pH adjustments, inoculation levels

(and timing, for sequential inoculation), yeast nutrition,
and eventually oxygenation levels and timing, among other
parameters.

In order to perform knowledge based decisions in this
field, further research will be required. Some of the topics
that need to be addressed are common to other oenological
applications of NS wine yeasts, while other are more specific
for alcohol level reduction. Environmental factors influencing
ethanol yield by different wine yeast species warrant a special
attention, both for respiration-based and anaerobic fermentation
strategies. As a general rule, research projects on NS wine
yeasts should always pay attention to the production of
unwanted metabolites, including acetic acid, which has been
identified as a serious drawback, especially for respiration-
based strategies or certain yeast strains. Reliable assessment of
the impact of new yeast strains/species, and new oenological
practices on quality related features of wines would require
pilot scale experiments, use of natural grape must, and rigorous
sensory analysis. One complex but very relevant aspect that is
indeed already attracting attention by wine biotechnologists is
physiological and ecological interactions between cells from the
starter cultures, among them and with the natural microbiota.
The few articles already published on this topic are just
opening the window to a world of interactions, including
competitions, metabolite exchanges, and production of narrow
and wide spectrum antimicrobials. All these phenomena have
a potential to impact alcohol level and overall quality of
wines. Yeast inter and intraspecific diversity must always
be taken into account both in the design of experiments
and to draw general conclusions. Finally, the interaction of
starter cultures with natural microbiota is a very relevant
but complex topic, which might eventually benefit from the
increasing availability of high throughput technologies, including
metagenomic analysis.
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