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Escherichia coli plays an important role as a member of the gut microbiota; however,
pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and
extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have
traditionally been serotyped using antisera against the ca. 186 O-antigens and 53
H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and
H- serotyping for differentiating and characterizing E. coli have been used for many
years; however, these methods are generally time consuming and not always accurate.
Advances in next generation sequencing technologies have made it possible to develop
genetic-based subtyping and molecular serotyping methods for E. coli, which are more
discriminatory compared to phenotypic typing methods. Furthermore, whole genome
sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-
field gel electrophoresis, providing a major advancement in the ability to investigate
food-borne disease outbreaks and for trace-back to sources. A variety of sequence
analysis tools and bioinformatic pipelines are being developed to analyze the vast
amount of data generated by WGS and to obtain specific information such as O- and
H-group determination and the presence of virulence genes and other genetic markers.

Keywords: Escherichia coli, molecular serotyping, subtyping, detection, identification, whole genome
sequencing, O-group, H-type

INTRODUCTION

Escherichia coli strains are commensal organisms that are part of the normal intestinal microflora
of humans and other mammals. The traditional method for identifying E. coli uses antibodies
to test for surface antigens: the O- polysaccharide antigens, flagellar H-antigens, and capsular
K-antigens (described below). There are currently∼186 different E. coli O-groups and 53 H-types,
so serotyping is highly complex. There are also many pathogenic groups of E. coli that cause disease
in humans and animals, including diarrheagenic E. coli and the extra-intestinal pathogenic E. coli
(ExPEC) that cause illness outside of the GI-tract. Diarrheagenic E. coli that cause human illness
have been classified based on specific sets of virulence genes they carry and the characteristics
of the disease they cause (Kaper et al., 2004). These pathotypes include the enteropathogenic
E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteroaggregative
E. coli (EAEC), Shiga toxin-producing E. coli (STEC), diffusely adherent E. coli (DEAC), and
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adherent invasive E. coli (AIEC) that have been associated with
Crohn’s disease. There are also hybrid pathotypes, including the
enteroaggregative hemorrhagic E. coli (EAHEC) that carry STEC-
and EAEC-associated virulence genes. As an example, EAHEC
serotype O104:H4, an EAEC that acquired the phage that carried
the Shiga toxin gene of STEC, caused a large outbreak in 2011
associated with illness in over 3800 individuals and 54 deaths
(Frank et al., 2011). Certain E. coli serotypes are often associated
with specific pathotypes, such as STEC O157:H7 and O103:H21
(Kaper et al., 2004) that are important STEC, often referred to
as enterohemorrhagic E. coli (EHEC). Therefore, pathogenic E.
coli constitutes a genetically heterogeneous family of bacteria, and
they continue to evolve.

Extra-intestinal pathogenic E. coli cause illness outside of
the gastrointestinal tract, including urinary tract infections,
meningitis, pneumonia, septicemia, and other types of infections
(Russo and Johnson, 2003; Smith et al., 2007). ExPEC that
cause illness in poultry are known as avian pathogenic E. coli
(APEC). Avian colibacillosis caused by APEC is a major cause
of morbidity and mortality associated with economic losses in
the poultry industry throughout the world. The human gut is
a reservoir for ExPEC that cause human illness. When ExPEC
leave the GI tract and infect other parts of the body such
as the urinary tract, the blood, or the lungs, illness results
(Smith et al., 2007). Animals, particularly, poultry and poultry
products (eggs), pork/pigs, and beef/cattle, and also companion
animals may carry ExPEC, and thus, these pathogens may be
acquired through the food supply, and zoonotic pathogens may
also be acquired via contact with animals (Vincent et al., 2010;
Nordstrom et al., 2013; Mitchell et al., 2015; Singer, 2015).
Investigations of community-acquired UTI and outbreaks of
UTI suggested common point sources, such as contaminated
food products (Nordstrom et al., 2013). Indeed, high genetic
similarity, including antibiotic resistance and virulence gene
patterns, between APEC and ExPEC strains causing disease in
poultry and humans, respectively, has been observed (Smith et al.,
2007; Manges and Johnson, 2012). The ability to differentiate
commensal E. coli from ExPEC and other pathotypes is important
for risk assessment and epidemiological and ecological studies.
However, a rapid and reliable typing/identification system or
criteria that allows this type of discrimination and that also
provides information on the organism’s evolutionary history,
fitness, and pathogenic potential has not yet been established.
Determining whether an E. coli strain is an ExPEC and whether it
is pathogenic is based on its source, O:K:H serotype, phylogenetic
background, virulence factor profile, and experimental virulence
in an animal model. ExPEC belong to specific phylogenetic
groups (A, B1, B2, and D) determined based on multilocus
enzyme electrophoresis, ribotyping, or by triplex PCR targeting
the genes chuA and yjaA and a particular DNA fragment known
as TSPE4.C2. ExPEC strains belonging to phylogenetic groups B2
and D show higher virulence in humans (Clermont et al., 2000;
Smith et al., 2007). It has become evident that certain ExPEC
lineages or clonal groups are responsible for a large fraction of
human extraintestinal E. coli infections, and these lineages are
becoming increasingly multi-drug resistant (Smith et al., 2007;
Manges and Johnson, 2012).

Rapid and accurate molecular methods are critically needed
to detect and trace pathogenic E. coli in food and animals
and for epidemiological investigations to enhance food safety
and animal and human health, as well as to minimize the size
and geographical extent of outbreaks. As opposed to traditional
serotyping using antisera raised against the different E. coli O-
and H-types, molecular serotyping generally refers to genetic-
based assays targeting O-group-specific genes found within the
E. coli O-antigen gene clusters and the H-antigen genes that
encode for the different flagellar types. Although determining the
E. coli serotype could be considered a component of subtyping
(differentiation beyond the species level), methods used for
molecular subtyping such as pulsed-field gel electrophoresis
(PFGE), multilocus sequence typing (MLST), and whole genome
sequencing (WGS) generate a unique “fingerprint” of the
bacterium that can be used in outbreak investigations and to
determine the source of illnesses. There are many problems
associated with traditional serotyping for determining the
E. coli O- and H-groups. It is costly, labor-intensive and
time consuming, cross reactivity of the antisera with different
serogroups occurs, antisera are available only in specialized
laboratories, batch-to-batch variations in antibodies can occur,
and many E. coli strains isolated from various sources are non-
typeable (Lacher et al., 2014). Thus, molecular serotyping offers
alternative methods for E. coli serotyping, and furthermore, they
can be coupled with assays for specific virulence gene enabling
the determination of O- and H-group, pathotype, and the strain’s
pathogenic potential simultaneously.

E. coli O-, K-, AND H-ANTIGENS

The outer membrane of E. coli is composed of
lipopolysaccharides (LPS) that includes lipid A, core
oligosaccharides, and a unique polysaccharide, referred to
as the O-antigen. Loss of the O-antigens results in attenuated
virulence suggesting their importance in host–pathogen
interactions (Sarkar et al., 2014). Based on the antigenic
diversity among the different O-antigens, they have been
targeted as biomarkers for classification of E. coli since the
1940s (Kaufmann, 1943, 1944, 1947). Later, Ørskov et al.
(1977) presented a comprehensive serotyping system for 164
E. coli O-groups and developed a typing scheme based on the
presence of three principal surface antigens, O-antigens, flagellar
H-antigens, and capsular K-antigens. Since few laboratories
had capabilities to type the K antigen, serotyping based on O-
and H-antigens became the gold standard for E. coli typing.
Currently, O-groups numbered O1-O188 have been defined,
except for O31, O47, O67, O72, O94, and O122 that have not
been designated (Ørskov and Ørskov, 1984; Scheutz et al., 2004),
and four groups have been divided into subtypes O18ab/ac,
O28ab/ac, O112ab/ac, and O125ab/ac, giving a total of 186
O-groups.

The conventional serotyping method is based on agglutination
reactions of the O-antigen with antisera that are generated
in rabbits against each of the O-groups (Ørskov and Ørskov,
1984). The method is easy to carry out; however, it is
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laborious and error-prone, and thus, molecular methods are
better alternatives for O-typing (Ballmer et al., 2007; Lacher
et al., 2014). The genes that encode for O-antigens are
located on the chromosome in a cluster designated as the
O-antigen gene cluster (O-AGC). These are flanked by two
conserved sequences called JUMPstart, a 39 bp-element at the
5′ end (Hobbs and Reeves, 1994), which is downstream of
galF (UTP-glucose-1-phosphate uridylyltransferase) and gnd (6-
phosphogluconate dehydrogenase) at the 3′ end. Analysis of
the O-AGCs of all E. coli O-groups (Iguchi et al., 2015a;
DebRoy et al., 2016) showed that the sizes of the O-AGCs
and their gene content vary considerably, which results in
the variability of O-antigens. O-antigens are composed of 10–
25 repeating units of two to seven sugar residues and are
processed by three mechanism of which the most common
is Wzy (O antigen polymerase) dependent, followed by an
ABC transporter dependent system, and the third mechanism,
which involves a synthase dependent pathway (Greenfield
and Whitfield, 2012) by which the O-antigens are flipped
across the outer membrane. The pathways for biosynthesis of
the O-AGCs and assembly of O-antigens have been studied
extensively (Samuel and Reeves, 2003). Each of the O-antigens
that utilize Wzy-dependent pathway carries two unique genes
wzx (O-antigen flippase) and wzy (O-antigen polymerase). Wzx
proteins translocates the O-units across the inner membrane,
and Wzy polymerizes the O-antigen (Samuel and Reeves, 2003).
For the ABC transporter-dependent pathway, wzm (O-antigen
ABC transporter permease gene) and wzt (ABC transporter
ATP-binding gene) are involved in O-AGC synthesis. The
O-AGCs are composed of nucleotide sugar biosynthesis genes
that are involved in the synthesis of O-antigen nucleotide sugar
precursors, the glycosyl transferases that transfer the various
sugar precursors to form the oligosaccharide, and the O-antigen
processing genes described above.

All of the O-AGC clusters have been sequenced, and sequence
analyses revealed that some O-AGCs are 98–100% identical
(Iguchi et al., 2015a; DebRoy et al., 2016) while others have
point mutations or insertion sequences which causes these to
type as different serogroups (Liu et al., 2008, 2015) . Therefore,
there is a need to resolve these discrepancies, merge or eliminate
serogroups and to revise the E. coli serotype nomenclature
(DebRoy et al., 2016). Furthermore, many of the E. coli
O-AGCs have been found to be identical to those of other
Enterobacteriaceae members such as Shigella and Salmonella
(Wang et al., 2007). Out of 34 distinct Shigella O-antigens, 13
were unique to Shigella; however, the other 21 were also found
in E. coli (Liu et al., 2008). Similarly, out of 46 O-AGCs of
Salmonella, 24 of were found to be identical or closely related to
E. coli O-antigens (Liu et al., 2014).

Serology has defined 53 H-flagellar antigens (Ørskov and
Ørskov, 1984; Ewing, 1986) that are numbered from H1 to
H56, but H-types 13, 22, and 50 are not in use (Ørskov et al.,
1975; Centers for Disease Control and Prevention [CDC], 1999).
Molecular H-typing methods are based on the sequences of fliC
gene that encode for the FliC, the flagellar filament structural
protein (Wang et al., 2003). The N- and C-terminals of FliC
are highly conserved, so different H-types are due to amino

acid differences within the central region, which is the surface-
exposed antigenic part of the flagellar filament (Namba et al.,
1989). Thus, PCR methods developed to distinguish H-types
target the variable region of the fliC gene (Machado et al.,
2000); however, these regions of some H-types such as H1
and H12 and H25 and H28 are very similar, making them
difficult to distinguish. However, a two-step PCR method was
developed that can distinguish between fliCH1 and fliCH12
(Beutin et al., 2015, 2016). Other methods such as Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-
TOF)-based peptide mass fingerprinting in conjunction with a
custom E. coli H-antigen data base (Cheng et al., 2014) has been
also utilized to distinguish H-types (Chui et al., 2015).

METHODS USED FOR SUBTYPING AND
MOLECULAR SEROTYPING OF E. coli

Subtyping methods that allow for differentiation of E. coli beyond
the species and subspecies level are critical for determining
the source of outbreaks and establishing transmission pathways
(Eppinger et al., 2011; Frank et al., 2011). Several phenotype-
based and genotype-based methods for subtyping E. coli are listed
in Table 1. Phenotypic culture methods, in conjunction with
biochemical-based testing, serotyping, phage typing, multilocus
enzyme electrophoresis have been used for many years
and could be considered gold standard methods; however,
they are time and labor intensive and may not be very
discriminatory.

Compared to phenotypic methods, genetic subtyping methods
that are based on bacterial DNA, generally have better
discriminatory ability. Of the various methods used for E. coli
subtyping, PFGE is a reliable and highly discriminating method
and has been considered to be the “gold standard” of typing
methods. Through the establishment of PulseNet (Ribot et al.,
2006), use of PFGE has had a major impact on pathogen
subtyping and outbreak investigation.

In contrast to traditional serotyping, Luminex R©-based
suspension assays allow for simultaneous testing for multiple
serogroups in a single assay. Lin et al. (2011) performed
PCR assays targeting the wzx and wzy genes of ten Shiga
toxin-producing E. coli (STEC) serogroups, and then used the
Luminex R© system to identify the 10 serogroups through binding
of the PCR products to fluorescent microspheres conjugated to
specific DNA probes for each of the ten serogroups. Clotilde
et al. (2015) used the Luminex R© technology, both antibody- and
multiplex PCR-based, and compared them to traditional E. coli
serotyping. The results of the two Luminex R© assays were mostly
consistent, and 11 STEC isolates that were previously untypeable
by traditional serotyping were able to be typed.

Multiplex PCR-based assays targeting unique regions within
the E. coli O-AGCs have been used to determine the O-groups.
A review by DebRoy et al. (2011) describes many of these
assays, most of which target the E. coli wzx and wzy genes.
Based on O-AGC sequence data for all O-groups, Iguchi et al.
(2015b) designed 162 PCR primer pairs for identification and
classification of E. coli O-serogroups. The primer pairs were
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TABLE 1 | Phenotype- and genotype-based methods for subtyping and molecular serotyping of E. coli.

Phenotype-based methods O-antigena H-antigena Virulence-
related and
other genes

SNPs and
other markers

Reference

Immunological O/H typing (serotyping) X X Ørskov et al., 1977

Bacteriophage typing X Ahmed et al., 1987;
Krause et al., 1996

Multilocus enzyme electrophoresis
(MLEE)

X Ochman and Selander, 1984;
Selander et al., 1986;
Campos et al., 1994

MALDI-TOF X X Chui et al., 2015

Genotype-based methods

Restriction length polymorphism (RFLP) X X X Coimbra et al., 2000;
Beutin et al., 2005;
Moreno et al., 2006;
Abbadi and Strockbine, 2007

Luminex-based suspension assay X Lin et al., 2011;
Clotilde et al., 2015

Amplified fragment length
polymorphisms (AFLP)

X Hahm et al., 2003;
Leung et al., 2004

Optical mapping X X Kotewicz et al., 2007, 2008;
Miller, 2013

Ribotyping X Martin et al., 1996;
Carson et al., 2001

Multilocus variable number tandem
repeat analysis (MLVA)

X Hyytiä-Trees et al., 2006;
Byrne et al., 2014

Pulsed-field gel electrophoresis X X Krause et al., 1996;
Ribot et al., 2006

Multilocus sequence typing (MLST) X Eichhorn et al., 2015;
Manges et al., 2015

High throughput real-time PCR X X X Bugarel et al., 2010a,b, 2011a,b;
Delannoy et al., 2013;
Tseng et al., 2014

Multiplex PCR X X X Fratamico and DebRoy, 2010;
Botkin et al., 2012; Doumith
et al., 2012; Fratamico et al.,
2014; Iguchi et al., 2015b

Whole genome sequencing and SNP
analysis

X X X X Zhang et al., 2006; Eppinger
et al., 2011; Norman et al., 2012,
2015; Joensen et al., 2014, 2015;
Griffing et al., 2015; DebRoy
et al., 2016; Ison et al., 2016

Virulence gene profiles X Nandanwar et al., 2014;
Manges et al., 2015

CRISPRs X Shariat and Dudley, 2014;
Delannoy et al., 2015

Microarray X X X X Liu and Fratamico, 2006; Hegde
et al., 2013; Lacher et al., 2014

NeoSEEKTM (PCR-mass spectroscopy) X X X X Stromberg et al., 2015

aThe O-somatic and H-flagellar antigens define the E. coli serotype. Agglutination assays using antibodies that react with the specific O- and H-antigens are the basis for
traditional serotyping. Molecular serotyping methods are generally based on genetic targets specific to the O- and H-antigens.

used in 20 separate multiplex PCR assays with each assay
containing 6–9 primer pairs that amplified products of different
sizes so that they could be distinguished. A high-throughput
PCR method based on the GeneDisc R© array targeted virulence
genes and O- and H-type-specific genes for identification of
STEC associated with severe illness (Bugarel et al., 2010b).
Another high-throughput method, known as the BioMarkTM

real-time PCR system (Fluidigm), used a panel of virulence genes
as discriminative markers to differentiate EHEC O26 strains,

EHEC-like O26 pathogenic strains, and avirulent O26 strains
(Bugarel et al., 2011a).

Clustered regularly interspaced short palindromic repeats
(CRISPR) are short, highly conserved DNA repeats separated
by unique sequences of similar length, and they have been used
for subtyping, identification, and detection of bacteria (Shariat
and Dudley, 2014). Based on spacer content or sequencing
of CRISPR loci, CRISPR-based typing analyses can be used
to differentiate strains for epidemiological investigations or
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for detection. Delannoy et al. (2012) utilized CRISPR loci of
seven important EHEC serotypes to develop real-time PCR
assays, generating results based on CRISPR polymorphisms that
correlated with specific EHEC O:H serotypes and the presence of
EHEC virulence genes.

DNA microarrays have also been developed for molecular
serotyping of E. coli (Liu and Fratamico, 2006; Ballmer et al.,
2007; Geue et al., 2014; Lacher et al., 2014). One microarray
method to identify E. coli serogroups involved spotting O-group-
specific wzx or wzy gene oligonucleotides or PCR products onto
the chip and hybridized with labeled PCR products of the entire
O-AGCs (Liu and Fratamico, 2006). Lacher et al. (2014) reported
on the use of an FDA-ECID (E. coli identification) microarray for
O- and H-typing of E. coli. The ECID chip was designed based on
>250 E. coli genomes and incorporates over 40,000 E. coli genes,
including O- and H-group-specific genes, and approximately
9800 single nucleotide polymorphisms (SNPs). Antibody-based
microarrays have also been developed to detect important non-
O157 STEC serogroups (Gehring et al., 2013; Hegde et al., 2013).
Although this method is rapid and has the potential to be used
for high throughput screening, the utilization of this method is
dependent on the availability of antibodies with good specificity.

The commercial introduction of next-generation sequencing
technologies has made it possible to perform routine WGS of
E. coli and other bacteria relatively rapidly and at affordable
costs (Franz et al., 2014). Since WGS typing has discriminatory
power superior to other typing methods, it has the potential
to revolutionize bacterial subtyping. A MLST webserver was
designed to determine sequence types (STs) of bacteria using
WGS data. STs were determined from uploaded preassembled
complete or partial genome sequences or short sequence reads
obtained from different sequencing platforms (Larsen et al.,
2012). Based on SNPs observed from WGS data, Norman
et al. (2015) identified unique STEC O26 genotypes in human
and cattle strains. These isolates had similar virulence gene
profiles and did not cluster in separate polymorphism-derived
genotypes, and thus human and cattle strains could not be
distinguished within the phylogenetic clusters. An approach
based on targeted amplicon sequencing for SNP genotyping
was used to determine the relationship of stx-positive and stx-
negative E. coli O26:H11 strains from cattle compared to the
genomes of human clinical isolates (Ison et al., 2016). Joensen
et al. (2015) described SerotypeFinder, a publicly available
web tool hosted by the Center for Genomic Epidemiology,
Denmark, which enables WGS-based serotyping of E. coli. Typing
is based on wzx, wzy, wzm, and wzt, as well as flagellin-
associated genes. Similar to SerotypeFinder, the VirulenceFinder
tool can be used to determine virulence genes in E. coli
to determine different pathogenic groups (Joensen et al.,
2014).

Whole genome sequencing typing has the potential to be
the new “gold-standard” for pathogen subtyping. However,

some challenges need to be addressed before standardization
and full implementation of this technology. The bioinformatic
analyses required to analyze enormous amounts of sequence
data generated by WGS are necessitating the development of
analysis pipelines to enhance the assembly, annotation, and
interpretation of the data, which will require a coordinated
international approach (Franz et al., 2014; Oulas et al., 2015).
Currently, the following databases for WGS and advanced
detection are available: the 100K Genome Project1, GenomeTrakr
Network2, Global Microbial Identifier3, and Advanced Molecular
Detection4. These databases are creating a vast resource of
microbial genome information for WGS-based surveillance of
microbial pathogens. Furthermore, detailed analysis of WGS
data can determine the E. coli O- and H-type and provide
information on the resistome (antibiotic resistance gene profile)
of the isolate, and the presence of specific virulence genes,
prophages, and plasmids, as well as other genetic information
important to identify E. coli pathotypes as well as utility in
evolutionary studies. The advantages of WGS approaches are
being recognized by academic, government, industry, and the
private sector for addressing regulatory and public health needs.
However, as we move toward the use of these genetic approaches
for non-culture-based detection, characterization, subtyping,
trace backs, and outbreak investigations, it will be critical to
establish bioinformatics pipelines that are capable of analyzing
and handling the large amounts of data that are generated.
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