
ORIGINAL RESEARCH
published: 01 June 2016

doi: 10.3389/fmicb.2016.00691

Frontiers in Microbiology | www.frontiersin.org 1 June 2016 | Volume 7 | Article 691

Edited by:

Jae-Ho Shin,

Kyungpook National University,

South Korea

Reviewed by:

Abdur Rahim Khan,

Kyunpook National University,

South Korea

Emmanuel F. Mongodin,

University of Maryland School of

Medicine, USA

*Correspondence:

Jo Ann S. Van Kessel

joann.vankessel@ars.usda.gov

Specialty section:

This article was submitted to

Evolutionary and Genomic

Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 30 September 2015

Accepted: 26 April 2016

Published: 01 June 2016

Citation:

Haley BJ, Pettengill J, Gorham S,

Ottesen A, Karns JS and Van

Kessel JAS (2016) Comparison of

Microbial Communities Isolated from

Feces of Asymptomatic

Salmonella-Shedding and

Non-Salmonella Shedding Dairy

Cows. Front. Microbiol. 7:691.

doi: 10.3389/fmicb.2016.00691

Comparison of Microbial
Communities Isolated from Feces of
Asymptomatic Salmonella-Shedding
and Non-Salmonella Shedding Dairy
Cows
Bradd J. Haley 1, James Pettengill 2, Sasha Gorham 3, Andrea Ottesen 3, Jeffrey S. Karns 1

and Jo Ann S. Van Kessel 1*

1 Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of

Agriculture, Agricultural Research Service, Beltsville, MD, USA, 2Division of Public Health Informatics and Analytics, Center

for Food Safety and Nutrition, Office of Analytics and Outreach, U.S. Food and Drug Administration, College Park, MD, USA,
3Division of Microbiology, Center for Food Safety and Nutrition, Office of Regulatory Science, U.S. Food and Drug

Administration, College Park, MD, USA

In the United States Salmonella enterica subsp. enterica serotypes Kentucky and Cerro

are frequently isolated from asymptomatic dairy cows. However, factors that contribute

to colonization of the bovine gut by these two serotypes have not been identified. To

investigate associations between Salmonella status and bacterial diversity, as well as the

diversity of the microbial community in the dairy cow hindgut, the bacterial and archaeal

communities of fecal samples from cows on a single dairy farm were determined by

high-throughput sequencing of 16S rRNA gene amplicons. Fecal grab samples were

collected from two Salmonella-positive cows and two Salmonella-negative cows on five

sampling dates (n = 20 cows), and 16S rRNA gene amplicons from these samples

were sequenced on the Illumina MiSeq platform. A high level of alpha (within) and beta

diversity (between) samples demonstrated that microbial profiles of dairy cow hindguts

are quite diverse. To determine whether Salmonella presence, sampling year, or sampling

date explained a significant amount of the variation in microbial diversity, we performed

constrained ordination analyses (distance based RDA) on the unifrac distance matrix

produced with QIIME. Results indicated that there was not a significant difference in

the microbial diversity associated with Salmonella presence (P > 0.05), but there were

significant differences between sampling dates and years (Pseudo-F = 2.157 to 4.385,

P < 0.05). Based on these data, it appears that commensal Salmonella infections with

serotypes Cerro and Kentucky in dairy cows have little or no association with changes in

the abundance of major bacterial groups in the hindgut. Rather, our results indicated that

temporal dynamics and other undescribed parameters associated with them were the

most influential drivers of the differences in microbial diversity and community structure

in the dairy cow hindgut.
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INTRODUCTION

The microbial community of the gastrointestinal system of dairy
cows remains an understudied environment. Due to its potential
impact on animal health, nutrient uptake, productivity, potential
to serve as a reservoir of human and animal pathogens, as well
as overall animal health, there is a need to better understand
bovine gut microbial communities. Both human and animal
pathogens can be found in this environment in low to high
concentrations. This remains a public health issue in both
developed and developing nations where dairy cows represent a
significant food source providing both milk and meat. Further,
carriage by animals can result in continuous dissemination of
human and animal pathogens to the environment (Nightingale
et al., 2004; Travier et al., 2013), other animals (via direct
contact, environmental or wildlife carriage) (Wells et al., 2001;
Nightingale et al., 2004; Böhm et al., 2009; Spencer et al., 2015),
or food products at slaughter (Omisakin et al., 2003). Therefore,
it is important to better understand the potentially supportive or
inhibitive dynamic in the microbial communities in which these
pathogens are found.

Salmonella enterica subsp. enterica serotypes Cerro and
Kentucky are frequently isolated from feces of asymptomatic
dairy cows in the United States. These serotypes are infrequent
pathogens of humans, however, recent human salmonellosis
cases attributed to these two serotypes have been reported
(Bonalli et al., 2012; Centers for Disease Control Prevention,
2013). While other Salmonella serotypes such as Dublin,
Newport, and Typhimurium can cause severe disease in cows
(Poppe et al., 1998; Tsolis et al., 1999; Cobbold et al., 2006;
Cummings et al., 2009a,b), which may be subsequently treated
with antibiotic therapy, S. Cerro and S. Kentucky infections
generally go unnoticed. Infected cows may potentially enter
the food supply resulting in an increased risk to humans via
consumption of contaminated products.

Previous work from a single commercial dairy farm in
Pennsylvania demonstrated that both S. Cerro and S. Kentucky
were repeatedly isolated from cows over a 6-year period (Van
Kessel et al., 2012). During this time the prevalence of each
serotype in fecal grab samples ranged between 0 and 90%
indicating a wide variability of the within-herd prevalence of
these serotypes (VanKessel et al., 2012). These serotypes have also
been detected frequently in cross sectional surveys of other dairy
herds, but their prevalence was low (Huston et al., 2002; USDA,
2011; Loneragan et al., 2012). Regardless of prevalence among
individuals within a herd, it is becoming more apparent that S.
Cerro and S. Kentucky are successful at establishing residency
within the bovine gut.

Recent advances in microbial community analysis have
demonstrated that the microbiome plays a role in the modulation
of colonization by an infectious bacterium (Chang et al., 2008;
Koch and Schmid-Hempell, 2011; Reeves et al., 2011; Buffie
and Pamer, 2013; Britton and Young, 2014). The host microbial
community may prevent colonization by a pathogen or enhance
the susceptibility of the host to colonization and infection,
and colonization may ultimately alter the intestinal microbial
community profile of the host (Hopkins and Macfarlane, 2002;

Aebischer et al., 2006; Stecher et al., 2007; Nelson et al.,
2012; Britton and Young, 2014). To date, several microbial
community analyses of the bovine gastrointestinal tract using
high-throughput sequencing have been conducted (Dowd et al.,
2008; Callaway et al., 2010; Durso et al., 2010; Shanks et al.,
2011; Rice et al., 2012; Rudi et al., 2012; Kim et al., 2014;
Mao et al., 2015; Myer et al., 2015; Kim and Wells, 2016).
However, differences in management practices between farms,
environmental pressures, and even bovine genetics suggest a
greater diversity exists than what has been reported. Further,
the relationship between commensal Salmonella serotypes and
the bovine hindgut microbial community has not been well-
described. The objectives of this study were to further expand
our understanding of the microbial community of the dairy cow
hindgut and potentially identify the microbial interactions that
influence presence/absence of commensal Salmonella serotypes.
We profiled the prokaryotic community, using 16S rRNA gene
sequencing, from feces of 20 lactating dairy cows from a typical
commercial dairy operation in south-central Pennsylvania, USA.
Of these 20 cows, 10 were shedding S. enterica serotypes Cerro or
Kentucky and 10 were not. Furthermore we provided a valuable
baseline description of the microbial community structure of the
hindgut of 20 dairy cows.

MATERIALS AND METHODS

Sample Collection and Processing
Fecal grab samples were collected from lactating dairy cows
on a commercial dairy farm in south-central Pennsylvania,
USA. Animal sampling procedures were approved by The
Pennsylvania State University Institutional Animal Care and Use
Committee (Protocol #44324). Samples were transported to the
laboratory in Beltsville, MD in sterile 50 ml conical tubes on ice
(ca. 3 h), stored over night at 4◦C, and processed the following
day for S. enterica as previously described (Van Kessel et al.,
2012). To determine whether cows were shedding S. enterica,
traditional microbiological methods were conducted. Briefly,
fecal samples were mixed with buffered peptone water (BPW)
and homogenized. An aliquot of the fecal/BPW mixture was
preserved for further analysis at –80◦C. Samples were enriched
in tetrathionate broth (BD Diagnostics, Sparks, MD) and struck
onto XLT4 agar (XLT4 agar base with XLT4 supplement; BD
Diagnostics) for isolation and incubated at 37◦C overnight.
Presumptive S. enterica colonies were transferred onto XLT4
plates, Brilliant Green, and L-Agar (Lennox Broth Base with
1.5% agar; Gibco Laboratories, Long Island, NY) and incubated
at 37◦C for 24 h. Colonies exhibiting the Salmonella phenotype
were confirmed using the invA-PCR method of Rahn et al.
(1992) as described by Malorny et al. (2003) and serogroups
were molecularly determined using the methods of Herrera-
León et al. (2007) with modifications by Karns et al. (2015).
Enriched biomass was also tested for the presence of Salmonella
using the real time PCR method described in Van Kessel et al.
(2011).

Samples were selected for the current study to represent 10
cows that were shedding Salmonella and 10 cows that were
identified as Salmonella negative (Table 1). Cows were selected
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TABLE 1 | Sample ID, collection date, and Salmonella status of samples

collected from dairy cows.

Sample ID Date Salmonella status MG-RAST accession

CFSANAZA0001 Jan-06 NEG 4681773.3

CFSANAZA0002 Jan-06 POS 4681767.3

CFSANAZA0003 Jan-06 POS 4681782.3

CFSANAZA0004 Jan-06 NEG 4681780.3

CFSANAZA0005 Mar-06 NEG 4681779.3

CFSANAZA0006 Mar-06 POS 4681764.3

CFSANAZA0007 Mar-06 NEG 4681765.3

CFSANAZA0008 Mar-06 POS 4681770.3

CFSANAZA0009 Dec-08 NEG 4681778.3

CFSANAZA0010 Dec-08 NEG 4681772.3

CFSANAZA0011 Dec-08 POS 4681771.3

CFSANAZA0012 Dec-08 POS 4681781.3

CFSANAZA0013 Dec-09 NEG 4681769.3

CFSANAZA0014 Dec-09 NEG 4681766.3

CFSANAZA0015 Dec-09 POS 4681777.3

CFSANAZA0016 Dec-09 POS 4681776.3

CFSANAZA0017 Mar-12 NEG 4681768.3

CFSANAZA0018 Mar-12 NEG 4681774.3

CFSANAZA0019 Mar-12 POS 4681775.3

CFSANAZA0020 Mar-12 POS 4681763.3

as Salmonella-positive if S. enterica was detected in their feces
by traditional culture analysis and real-time PCR detection of
the invA gene. Cows negative for Salmonella for both assays
were chosen as Salmonella-negative cows. Matching samples
(Salmonella-negative, Salmonella-positive) were selected from
samples collected in January 2006, March 2006, December
2008, December 2009, and March 2012. Sampling dates were
selected from archived samples to capture the appropriate
number of Salmonella-shedding and non-shedding cows to
conduct the analysis. Total DNA was extracted from preserved
fecal grab samples using a QIAamp Fast DNA Stool Mini
Kit (Qiagen, Hilden, Germany) and DNA was evaluated for
quality using a Nanodrop 2000 (Thermo Fisher Scientific,
Waltham, MA) and a Qubit 2.0 (Thermo Fisher Scientific,
Waltham, MA).

16S rRNA Gene Tailed Amplicon
Sequencing
16S rRNA gene amplicon sequencing was performed according
to the Illumina “Overview of tailed amplicon sequencing approach
with MiSeq” protocol (http://www.Illumina.com). This two-step
PCR utilizes sequence-specific primers and the Nextera DNA
Index Kit (Illumina, San Diego, CA). Sequence-specific primers
(IDT Inc., Coralville, Iowa) were designed according to low
diversity amplicon specifications. Adapter overhang sequences
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG and
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG were
added to the 5′ end of the forward and reverse primers,
respectively. These 5′-primer regions are complementary to
sequences within the Nextera DNA indices thus permitting the

addition of a unique sample index and P5/P7 adapters to make
the template compatible for hybridization to the flow cell.

Sequence-specific primers targeting the V4 hypervariable
region of the 16S rRNA gene used for the first round of PCR
were as follows: F515—5′ GTGCCAGCMGCCGCGGTAA 3′ and
R806—5′ GGACTACHVGGGTWTCTAAT 3′ of Caporaso et al.
(2012). Emerald Green GT PCR Master Mix (Takara Bio Inc.
Otsu, Shiga, Japan) was used to generate amplicons. Negative
controls with no template were run alongside sample DNA.
Thermocycler settings used for PCR were as follows: 95◦C 3
min, 94◦C 1 min, 56◦C 1 min, 72◦C 1 min, cycle 29 times,
72◦C 5 min, 4◦C forever. PCR samples were run on a 2%
agarose E-gel R© (Invitrogen, Carlsbad, CA) with a 100 bp ladder
(Invitrogen, Carlsbad, CA). Clean PCR product was obtained
using AMPure XT R© Beads (Beckman Coulter Inc. Brea, CA) to
remove fragments smaller than 100 bases.

Two microliters of product from the first round of PCR was
used as template for the second round of PCR. One microliter
of each index N50X and N70X was added to the PCR reaction.
Each sample had a different combination of N50X and N70X
indices and there were no repeats. PCR was performed using
the same thermocycler settings from the first round of PCR.
Product obtained from the second round of PCR was cleaned
using AMPure XT R© beads and sample DNA concentration
was determined using the Qubit R© High-Sensitivity Assay (Life
Technologies, Grand Island, NY).

Samples were then diluted to 2 nM DNA with EB buffer
(Qiagen, Hilden, Germany) and pooled. Six hundred microliters
of the combined sample at a concentration of 5 pM was
loaded onto a MiSeq V2 500 cycle cartridge (Illumina, San
Diego, CA). Twenty samples were sequenced on the MiSeq V2
platform.

Quality Filtering of 16S rRNA Gene
Sequencing Reads
For each sample, paired end reads were Merged using the
program FLASH (Magoč and Salzberg, 2011) with the default
settings (e.g., a minimum of 10 bp overlap) except for the
maximum overlap expected which was increased from 65 to 500
bp to better accommodate our 251 bp read length. We then
combined the file with merged reads and only the read 1 file;
we chose to use just the “not combined” read 1 file because read
1 tends to be of higher quality than read 2 and by not using
both “not combined” files we minimize inaccurately estimating
abundance. We used the program SolexaQA to quality filter
the reads with a probability cutoff value of a basecall being
an error of 0.05. To further quality filter the reads, we also
filtered the sequences for primers using Trimmomatic v0.33
(Schmieder et al., 2010) and removed the following: any reads
<100 bp; reads assigned to PhiX using custom scripts and
BLAST; chimeric sequences using QIIME v1.8 (Caporaso et al.,
2010a) with usearch (Edgar et al., 2011); and sequences assigned
to chloroplast or mitochondrial genomes using mothur v1.33
(Schloss et al., 2009). The above filtering steps reduced the
average number of reads per sample by ∼13% from 138,295 to
120,080.
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Taxonomic Assignment and Detecting
Differences in Microbial Diversity
We used the program QIIME v1.8 and the
pick_open_reference_otus.py method to estimate microbial
diversity. This included using the Greengenes taxonomy
(v13_8_99; McDonald et al., 2012) as the reference database,
PyNast (Caporaso et al., 2010b) to align sequences and FastTree
(Price et al., 2010) to construct a phylogenetic tree that was
then used to estimate UniFrac (Lozupone and Knight, 2005)
distances. With these distances we then performed tests to
detect differences in microbial diversity among the samples and
different treatments (e.g., Salmonella status, sampling year, and
sampling date).

We used three different approaches to investigate the
differences in microbial diversity among the hindgut samples.
The first approach was to use the weighted (i.e., incorporates
estimates of abundance) UniFrac distance matrix with the
ordination technique, PCoA, implemented in QIIME to
determine whether samples associated with the same group
(year, date, Salmonella_status) clustered close to one another
in multivariate space. The second approach was to use the
constrained ordination technique distance-based redundancy
analysis (db-RDA) to explicitly test whether the different factors
(Salmonella status, sampling year, sampling date) explained a
significant fraction of the variation within the distance matrix,
which was implemented using the R package vegan called
by QIIME with the compare_categories.py script. The third
approach was to investigate if specific taxa significantly differed
in abundance between the factors, which again was performed
using QIIME (the group_signficance.py script). We chose the

Kruskal–Wallis test as it is a non-parametric implementation of
analysis of variance under which the assumptions of normality
are relaxed (e.g., homoscedasticity). We defined the core
microbiome as those genus-level taxa identified at least once in
all samples for each group [all 20 samples, or all samples within
a sample collection date (4 per date for 5 dates)]. Sequence
data have been made publically available in MG-RAST under
accession numbers 4681763.3 to 4681782.3.

RESULTS

Trends in Microbial Community
Composition
After filtering for quality, length, and removal of chimera
sequences as well as those similar to the PhiX control, chloroplast
and mitochondrial nucleic acids, analyzed sequences ranged
between 2.79 × 104 and 3.04 × 105 (mean = 1.2 × 105, median
= 1.06 × 105; Table 2). Rarefaction plots and Good’s coverage
statistic (both performed in QIIME) indicated that additional
sequencing was unlikely to result in an increase in the diversity
we observed (Figure 1; Table 2).

Taxa composition of fecal samples collected from different
cows on the same dairy farm over time varied across the 6 years
and within the same sampling period (Figure 2). For all but six
samples, Firmicutes was the most abundant phylum detected
(Figure 2 and Supplementary Table 1). For the six samples
in which Firmicutes were not the most abundandant taxa,
Proteobacteria taxa were most abundant, with Firmicutes as the
second most abundant group. Bacteroidetes and Actinobacteria
were also frequently detected in all samples. Previous studies

FIGURE 1 | Rarefaction plot showing the increase in alpha diversity (as measured by Chao 1) with increasing sequencing depth per sample.
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FIGURE 2 | Community profiles of the core phyla of the hindguts of individual cows. The X-axis shows individual cows and the Y-axis shows percentage of

hits to a particular phylum. In this figure Salmonella-status is based on results of traditional culture-based methods.

have shown that taxa within Proteobacteria are well-represented
in the bovine hindgut, but at concentrations typically <5%
of the community (Durso et al., 2010, 2012), however, others
have shown the concentration of these organisms to be higher
in various sections of the bovine gastrointestinal tract (Mao
et al., 2015). In this study Proteobacteria was the most abundant
phylum in six samples, comprising from 40 to 84% of all
annotated taxa. Since this is much higher than what has been
previously observed in the bovine hindgut (Dowd et al., 2008;
Patton et al., 2009; Durso et al., 2010, 2012; Mao et al., 2015)
we labeled these samples “atypical communities” and statistical
analyses were conducted both including and excluding these six
samples.

Within the Firmicutes, Proteobacteria, and Bacteroidetes
phyla, Clostridia, Gammaproteobacteria, and Bacteroidia were
the dominant classes, respectively. However, within each of
these groups taxonomic trends differed noticeably between
samples (Supplementary Table 1). The family with the highest
median abundance within the Gammaproteobacteria class was
the Succinivibrionaceae of the Aeromonadales order (median
abundance= 0.09%, range= 0.01–1.3%). TheMoraxellaceae had
the highest mean abundance within the Gammaproteobacteria
group, but this was mostly reflective of the high abundance of
this family in the six atypical communities (range = 40–84%),
and not reflective of their abundance within the other 14 samples
(range = 0.008–0.20%). Within this family, Psychrobacter spp.

were the most abundant genera and this group was driving
the overabundance of Proteobacteria. It should be noted
that Psychrobacter spp. were detected in all samples, while
Acinetobacter spp. were detected in only seven samples (range =
0–0.008%). Twelve families were identified within the Clostridia,
seven (Ruminococcaceae, Lachnospiraceae, Clostridiaceae,
Mogibacteriaceae, Peptostreptococcaceae, Veillonellaceae, and
the Christensenellaceae) of which were found in all samples
(Supplementary Table 1). Of these, the Ruminococcaceae had
the highest median detection frequency (median = 23%, range
= 3–40%) but were not the most frequently detected member
of the Clostridia class in each sample. Within the Bacteroidia
class (Bacteroidetes phylum), 12 families were identified within
the samples. Of these, eight were detected in all samples.
These were Bacteroidaceae, Paraprevotellaceae, Rikenellaceae,
Porphyromonadaceae, Prevotellaceae, and the uncultured
families S24-7, RF16, and p-2534-18B5. In the Prevotellaceae
family the only genus detected was Prevotella, often detected in
beef cattle in high abundance (Durso et al., 2010, 2012). This
genus was detected in all samples, but at a median percentage of
only 0.08% of sequences. Other studies have similarly noticed a
lower abundance of Prevotella spp. in dairy cows than in beef
cows (Dowd et al., 2008; Durso et al., 2010).

Enterobacteriaceae were detected in all but one sample and at
very low levels of abundance (median= 0.02%, range= 0–2.9%).
Within this family unclassified members were the most abundant
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taxa. Salmonella spp. were detected in three samples that were
Salmonella culture-negative, three samples that were Salmonella
culture positive, but were not detected in seven samples that were
Salmonella culture-positive.

Core Microbial Communities
In an attempt to describe core members of the hindgut
community we identified the taxa observed in all cows. Out
of a total of 21 detected phyla, only nine were identified in all
cows. These were Verrucomicrobia, Tenericutes, Spirochaetes,
Proteobacteria, Firmicutes, Euryarchaeota, Cyanobacteria,
Bacteroidetes, Actinobacteria (Supplementary Table 1). There
were 11 classes of a total of 41 detected in all animals. One
hundred thirty three different families were identified in all
20 samples. Of these, 30 were determined to be core families
of the study farm hindgut microbiome. Of these, five could
not be classified past the Order level and three were grouped
into not-well-described families such as Bacteroidales S24-7,
p-2534-18B5, and RF16 families.

Of the 253 identified genera, 46 were identified in all samples.
However, only 26 could be classified in known genera while
20 grouped in undefined genera within known families. The
number of core genera per sampling period varied as well, with
61 categories (including those that could only be typed to the
family level) in January 2006, 75 in March 2006, 81 in December
2008, 75 in December 2009, and 60 in March 2012. When only
sequences that could be assigned to a known genus were counted
the core genera at each time point was 35 (January 2006), 42
(March 2006), 46 (December 2008), 41 (December 2009), and 32
(March 2012; Figure 3).

Comparison of Salmonella-Status and
Dates Of Isolation
To qualitatively investigate the differences in microbial diversity
among samples within groups (year, date, and Salmonella status)

FIGURE 3 | Number of core genera per sampling date. Red bars are

total genera categories and blue bars are number of classified genera.

The Y-axis shows the number of genera detected and the X-axis shows the

sampling date. Four cows were sampled at each date.

a principal coordinate analysis (PCoA) was conducted. The
PCoA results showed that a large percentage (59%) of the
variation in the data could be explained by the first axis
(Figures 4, 5). Generally, there appear to be two groups that
are differentiated along that axis. However, when looking at the
distribution of points in multivariate space with respect to group
membership it is difficult to determine the cause of the large
amount of variation. For example, there is little differentiation
among samples that tested positive for Salmonella and those
that did not. There also does not appear to be a pattern of
differentiation among samples based on sample date; different
years are found in close proximity to one another. PCoA axis 2
explained only 13% of the variation and there are no apparent
differences among samples that correspond to the groups (year,
date, Salmonella-status; Figures 4, 5). One noticeable trend is
that samples with atypical communities were found in close
proximity to each other in the PCoA analysis (Figures 4, 5).

There were no taxa identified in the Salmonella-positive
samples that were not present in the Salmonella-negative
samples, and vice versa, suggesting that presence of Salmonella
was not associated with loss or absence of a specific group,
or that our methods did not provide the resolution to
discern this. Further, although based on a Kruskal–Wallis test
the abundance of several OTUs were significantly different
between Salmonella culture-positive samples and Salmonella
culture-negative samples (α = 0.05), those results were not
significant based on either the FDR or Bonferroni methods
that account for multiple comparisons (Supplementary Table 2).
This was true when the samples with atypical communities
(i.e., those with extremely high abundance of Proteobacteria)
were removed (Supplementary Table 3) and when Salmonella
culture-negative but Salmonella 16S rRNA-positive were grouped
together with Salmonella culture-positive samples (n = 13
Salmonella-positive samples and 7 Salmonella-negative samples;
Supplementary Tables 4, 5). When samples were looked at by

FIGURE 4 | Principal Coordinate Analysis (PCoA) plot based on

UniFrac distances with samples color-coded by Salmonella-negative

(Blue) and -positive (Red).
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FIGURE 5 | Principal Coordinate Analysis (PCoA) plot based on

UniFrac distances with samples color-coded by sampling year (Blue,

2006; Black, 2008; Pink, 2009; Orange, 2012).

date and year of collection the abundances of OTUs were
again not significant after the FDR or Bonferroni corrections
for multiple comparisons despite being significant at α = 0.05
(Supplementary Tables 6–9).

When a statistical test of significance was applied to the
eigenvalues of the unifrac distance matrix using a distance-based
redundancy analysis (db-RDA), we did not find evidence for a
difference in microbial communities among Salmonella culture-
positive and Salmonella culture-negative samples (Pseudo-F=
0.709, P = 0.523; Table 3). Because some of the Salmonella
culture-negative samples were positive for the S. enterica 16S
rRNA gene we grouped all Salmonella culture-positive and S.
enterica 16S rRNA gene-positive (but culture-negative) samples
together and re-ran the db-RDA. Similarly, no significant
differences in diversity were observed between these groups
(Pseudo-F = 0.629, P = 0.567). We further ran both of the
previous analyses excluding the atypical microbiome samples
and again did not observe any significant differences in diversity
between Salmonella-positive and Salmonella-negative samples
(Pseudo-F = 0.868, P = 0.536; and Pseudo-F = 0.971, P = 0.418,
respectively). However, we did detect a significant difference
among samples based on sampling date and year with the atypical
communities included (Pseudo-F = 3.299, P < 0.05; and Pseudo-
F = 4.385, P < 0.05) and excluded (Pseudo-F = 2.157, P < 0.05;
and Pseudo-F = 2.799, P < 0.05; Table 3). These results appear
to be driven primarily by the distinctiveness of the samples from
2006 and 2012; samples from 2008 and 2009, while distinct from
those from 2006 and 2012 are not distinct from one another
(Figure 6).

DISCUSSION

The microbial community of the colon has evolved as a diverse
consortium of microorganisms and each member inhabits
a specific niche in this environment. The dynamics of the

population can be impacted by changes in the diet or health
of the animal and potentially by the introduction of non-
native microbes that impact the resident flora by competing
for resources or altering the characteristics of the environment.
However, our analysis did not identify any differences in
abundance of taxa or diversity of communities between dairy
cows shedding S. Kentucky or S. Cerro at the time of sample
collection and those that were not detected shedding these
serotypes. These data suggest no major shifts in the community
structure associated with the presence/absence of these frequent
dairy cow-associated serotypes.

One model of bacterial modulation of the intestinal
microbiome is that infection causes an immune response, such
as inflammation, by the host (Lupp et al., 2007; Stecher et al.,
2007). This in turn may alter the microbial community structure,
most likely by selecting for those microorganisms that can
withstand the pressures of the inflammation response or benefit
directly from chemical changes produced by the host response.
The two serotypes isolated from cows in this study encode
virulence factors that are involved in mammalian infection, but
their interactions with the bovine intestinal epithelium are not
well-understood. In a cell-culture assay with human intestinal
Caco-2 cells S. Cerro was shown to exhibit reduced invasiveness
compared to other highly pathogenic serotypes such as S.
Typhimurium and S. Newport (Rodriguez-Rivera et al., 2014). It
is not known if an immune response is elicited from the bovine
host during an S. Cerro and S. Kentucky infection; however,
cows typically do not demonstrate observable symptoms of an
infection when shedding these two serotypes suggesting that no
immune response is elicited. In contrast, S. Typhimurium, a
known pathogen of cows, causes observable signs of an infection
and induces a host inflammation response in mammals, a process
that has been shown to alter the resident microbiota of the
mammalian host (Stecher et al., 2007).

Other models of microbial interaction in the gut include
indirect interaction through resource competition, direct
interaction between cells via secretion of antimicrobial
compounds by one cell to interfere with the life cycle of another
cell, or resource partitioning (Fredrickson and Stephanopoulos,
1981; Hibbing et al., 2010; Reeves et al., 2011; Russell et al., 2011).
Based on the abundance profiles of fecal samples in this study,
the hindgut is dominated by Firmicutes, and Bacteroidetes. This
profile is typical of the mammalian intestinal tract (Ley et al.,
2008). It is unlikely that the introduction of S. Kentucky or S.
Cerro into this environment would result in a dramatic change
in the abundance of the established core phyla. However, we
also did not observe a consistent change in the less frequently
detected taxa among all Salmonella-positive cows indicating
that these salmonellae are not outcompeting or displacing
other resident organisms in the gut. Interestingly, a previous
study of significantly less sequencing depth and conducted on
a Salmonella-endemic cattle herd similarly was unable to detect
taxa that either prevented or resulted in Salmonella colonization
of the bovine gut (Patton et al., 2009). The results of our study
confirm this.

The lack of statistically noticeable differences in the microbial
communities in the hindgut of cows shedding these S. Cerro
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TABLE 3 | Results of the db-RDA tests for significant differences among samples in microbial diversity.

Description Results

Salmonella status Salmonella Culture Positive vs. Salmonella Culture Pseudo-F: 0.709 (1, 18 Degrees of Freedom)

Negative Significance: 0.523

All Salmonella Positive vs. Salmonella Culture Pseudo-F: 0.629 (1, 18 Degrees of Freedom)

Negative Significance: 0.567

All Salmonella Positive vs. Salmonella Culture Pseudo-F: 0.971 (1, 12 Degrees of Freedom)

Negative (excluding atypical community samples) Significance: 0.418

Salmonella Culture Positive vs. Salmonella Culture Pseudo-F: 0.868 (1, 12 Degrees of Freedom)

Negative (excluding atypical community samples) Significance: 0.536

Date/Year Date Pseudo-F: 3.299 (4, 15 Degrees of Freedom)

Significance: 0.01

Year Pseudo-F: 4.385 (3, 16 Degrees of Freedom)

Significance: 0.004

Date (excluding atypical community samples) Pseudo-F: 2.157 (4, 9 Degrees of Freedom)

Significance: 0.004

Year (excluding atypical community samples) Pseudo-F: 2.799 (3, 10 Degrees of Freedom)

Significance: 0.002

Significance is based on 999 permutations.

FIGURE 6 | Constrained analysis of principal coordinates (db-RDA)

showing sample relationship by isolation year. Large labels indicating the

sampling year are positioned at the centroid for that level. Minor adjustments

to the positions of individual sample labels were made to increase readability.

or S. Kentucky supports the postulation that these serotypes
can be commensal members of the bovine hindgut community.
This is further evidenced by both the frequent occurrence of
these serotypes among dairy herds and the absence of clinical
symptoms in infected cows (Huston et al., 2002; Fossler et al.,
2004; Van Kessel et al., 2012). There is, however, anecdotal

evidence of some strains of S. Kentucky infections resulting
in mild infections (data not shown) and S. Cerro has been
recovered from cows with clinical signs of gastrointestinal
distress (Cummings et al., 2010). Further, all S. Kentucky strains
isolated from this study farm were ST152 isolates, while the
distantly related S. Kentucky ST198 isolates are more frequently
isolated from human clinical cases and encode different putative
virulence factors which may result in different ecological
interactions/associations in the bovine hindgut (Haley et al.,
unpublished data). These previously identified symptomatic
infections caused by S. Cerro and S. Kentucky may be due to
the expression of non-conserved virulence mechanisms found
in a small subset of the global population of these serotypes,
co-infections with one of many other bovine pathogens, or
individual host susceptibility to infections by these serotypes.
This needs to be further investigated.

Interestingly, temporal dynamics may be a significant
determinant of diversity given that within this study microbial
communities differed among samples based on sampling
dates/years. Potential explanations for the importance of
sampling time include changes in diet, the surrounding
environment, or other not-yet-determined drivers of microbial
community change. Several of these factors, specifically
management factors would potentially impact all members of
the herd and therefore their influence may result in similar
hindgut community shifts. Diet, for example, has been observed
to influence the community structure of the gut (Callaway
et al., 2009; Wu et al., 2011; Wells et al., 2013; Kim et al.,
2014) and changes in feed source and diet composition may
result in structural shifts in the gut community across the herd.
However, this relationship has not been observed in all bovine
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fecal community structure studies (Rudi et al., 2012). Although
at each time point the gut communities of different cows were
determined, other studies have shown similar changes over time
in animals and non-animal environments (Jones et al., 2010;
Caporaso et al., 2011; Rudi et al., 2012; Ottesen et al., 2015).
This, coupled with the observed change in the core taxa by
sampling date, indicates the dairy cow hindgut community is
somewhat dynamic while retaining a smaller core set of taxa that
remain relatively stable over time. Further work will need to be
conducted to determine what influences this fluidity and the
introduction or extinction of taxa within a herd.

Another aim of this study was to describe the composition
of the herd hindgut community as well as the core community
of this environment at several taxonomic levels. The microbial
community profiles of the cows in this study were consistent
with those of other mammals in which high levels of Firmicutes
and Bacteroidetes, and lower levels of Proteobacteria for most
samples, were observed indicating a general trend at higher
taxonomic levels that may be conserved among mammals (Ley
et al., 2008). Results of this study are, for the most part, consistent
with those of others studies of the bovine gastrointestinal tract
(Dowd et al., 2008; Patton et al., 2009; Callaway et al., 2010;
Durso et al., 2010; Shanks et al., 2011; Rice et al., 2012; Kim
et al., 2014; Mao et al., 2015; Myer et al., 2015; Kim and
Wells, 2016). Although general trends were observed, variations
in the abundance of the most frequently detected taxa were
observed among animals. For example, there was a wide variation
in the Firmicutes:Bacteroidetes ratio, a common metric used
in gut health analyses and the core communities found in
the hindgut changed slightly over time. For the most part,
changes in the abundance of taxa could not be attributed to
any group/treatment (such as date, year, or Salmonella status),
indicating that differences in taxon abundance occurred within
the individual, not the group. Further, six cows were observed
to have high levels of Proteobacteria (specifically Psychrobacter
spp.) compared to other taxa. It is not clear why some samples
had particularly high counts of Psychrobacter spp. compared to
others on the farm and compared to similar studies investigating
the microbial communities of beef cattle. These organisms
have been detected in the non-culturable portion of the rumen
microbiome (Creevey et al., 2014) as well as the nasopharyngeal
environment of feedlot cattle (Holman et al., 2015), cow manure
compost (Zhao et al., 2013), and raw milk (Delbès et al., 2007;
Quigley et al., 2013), so they appear to be ubiquitous in the dairy
farm environment. However, it is not known whether the high
levels of Psychrobacter spp. in a few individuals in this study
were due to overgrowth in the more aerobic sections of the
gut, or sampling bias, sample contamination from another body
part of the cow or the surrounding environment. All cows were
sampled following the same protocols, by the same investigators
with sterile gloves, and for the purposes of this study only
the hindgut was sampled via the rectum. A previous study by
Brulc et al. (2009) described the rumen microbiome of a single
cow, out of a study of three cows, in which ca. 75% of the
16S rRNA gene reads were Psychrobacter spp. We are not able
to draw any conclusions as to why these individual cows had
high Proteobacteria concentrations. Further work would need

to be conducted to determine how often the colonic microbial
community of cows has high levels of Psychrobacter spp. and the
impact that management practices, such as feed, or presence of
other genetic components have on this and other organisms.

Although detected in most samples, Enterobacteriaceae were
a relatively small family within the microbial community. This
is likely an issue of sequencing depth and/or potential PCR bias
rather than true presence/absence. Salmonellawas rarely detected
even in cows from which Salmonella isolates were obtained.
The isolates were obtained through selective enrichment and,
although not guaranteed, Salmonella concentrations in the
feces were low. It is possible that those serotypes that cause
symptomatic infections in cows cause shifts within the gut
population and have an increased concentration of detectable
Salmonella-cells compared to those of asymptomatic cows.
Further studies should be conducted to further evaluate this in
dairy cows.

Overall, results show similarities in the community taxa
profiles of dairy and beef cattle with some differences possibly
due to differing management practices and diet that are varied
over time. Other studies have demonstrated that cohabitating
cows have noticeably different hindgut community structures
(Durso et al., 2010) indicating that individual animal attributes
may greatly influence this community. Results of our work
demonstrate the same trend for dairy cows within the same herd.
The absence of significant shifts in the hindgut communities
in the presence of S. Cerro or S. Kentucky provides further
evidence of these serotypes, which are frequently isolated from
asymptomatic cows in the United States, as being commensal
members of the bovine hindgut with little observable impact on
the microbial population within the community.
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