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Transmission usually refers to the movement of pathogenic organisms. Yet, commensal

microbes that inhabit the human body also move between individuals and environments.

Surprisingly little is known about the transmission of these endogenous microbes,

despite increasing realizations of their importance for human health. The health impacts

arising from the transmission of commensal bacteria range widely, from the prevention

of autoimmune disorders to the spread of antibiotic resistance genes. Despite this

importance, there are outstanding basic questions: what is the fraction of the microbiome

that is transmissible? What are the primary mechanisms of transmission? Which

organisms are the most highly transmissible? Higher resolution genomic data is required

to accurately link microbial sources (such as environmental reservoirs or other individuals)

with sinks (such as a single person’s microbiome). New computational advances enable

strain-level resolution of organisms from shotgun metagenomic data, allowing the

transmission of strains to be followed over time and after discrete exposure events.

Here, we highlight the latest techniques that reveal strain-level resolution from raw

metagenomic reads and new studies that are tracking strains across people and

environments. We also propose how models of pathogenic transmission may be applied

to study the movement of commensals between microbial communities.

Keywords: microbiome, metagenomics, models, biological, strain diversity, genotyping techniques, bacterial

genomics

Since the dawn of germ theory, epidemiology has focused on pathogens, their transmission routes
and the consequences of their dispersal. Only recently have we fully appreciated the diverse roles
of the thousands of microbial species that inhabit the human body. It is therefore sensible to
broaden our questions about transmission dynamics and transmission routes to encompass the
full range of commensal organisms. Recently, it has been suggested that diseases associated with
dysbioses, such as Crohn’s disease, rheumatoid arthritis andmultiple sclerosis, may be transmissible
(reviewed in Faith et al., 2015). There is also mounting evidence that the passive transmission
of commensal bacteria may carry health benefits: in preventing obesity (Mueller et al., 2015),
autoimmune disease (Olszak et al., 2012), and even certain cancers (Chen and Blaser, 2007; Hung
and Wong, 2009). New therapeutics involve intentionally transmitting entire gut communities to
treat recurrent Clostridium difficile infections (Kassam et al., 2013), and may ultimately be used
to treat a wider array of conditions. Despite advances in DNA sequencing that have enabled
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wide-scale characterizations of a large variety of microbial
communities, little is known about how non-pathogenic
microbes move between people and places.

For instance, we do not know what portion of the microbiome
is transmissible. Research has instead focused on what can
colonize, i.e., determining what factors impact colonization
(Sonnenburg et al., 2005; Vaishnava et al., 2008; Goodman et al.,
2009; Cullen et al., 2015), rather than what does colonize after
exposure. What role does the transfer of organisms play in
shaping either daily or punctuated shifts in our microbiomes?
Our ability to answer these question currently relies on data from
16S marker gene surveys which can resolve differences between
species. In some cases, coarse species-level data is sufficient
to observe commensal transmission within the microbiome.
In the gut, microbes associated with cured meat and cheese
appear after ingestion (David et al., 2014a), and exogenous
organisms repopulate the gut after acute gastrointestinal illness
(David et al., 2014b). Likewise, contact with inanimate objects
results in the transmission of commensals from our skin to
proximal environments (Costello et al., 2009; Fierer et al., 2010;
Lax et al., 2014). Perhaps unsurprisingly, infants are initially
colonized by their mothers’ skin and vaginal flora depending on
birth method (Dominguez-Bello et al., 2010), with potentially
long-term consequences for the infant (Munyaka et al., 2014).
These studies suggest that we can begin to distinguish between
exposure, transient and long-term colonization.

In addition to dynamics, by sampling broadly, we can
further determine the routes of transmission among commensal
organisms. Of the transmission routes that pathogens exploit—
vertical, airborne, sexual, vector-borne, food-based, water-borne
or healthcare-associated transmission—which ones are relevant
to commensals? Many studies have surveyed the microbes
present in each of these sources, but less research has focused
on measuring human exposures and examining the dynamics
of colonization. This will be easiest in cases involving discrete
exposure events, but transmission may alternatively be fluid,
that is to say that microbes are continually circulated within
our proximal environments. Understanding these dynamics
will assist future public health and environmental efforts to
promote the spread of beneficial bacteria, while thwarting
those that contribute to dysbioses. Measuring these impacts
will undoubtedly benefit from higher resolution, strain-level
distinctions, made possible by metagenomic whole microbiome
shotgun sequencing.

DETERMINING TRANSMISSION ROUTES
OF HUMAN-ASSOCIATED MICROBIOTA

In 1994, a gastroenterologist was brought to trial for intentionally
infecting his girlfriend with HIV-1 virus carried by one of
his patients. In order to prove the source of the girlfriend’s
infection, evidence was sought in the phylogenies of the virus’s
reverse transcriptase and envelope glycoprotein genes. Virus
recovered from her blood was nested within a clade of the
patient’s, and 28 additional HIV patients from the area were
all outgroups to this clade (Metzker et al., 2002). Only the less

mutagenic RT sequences were adequate in showing that the
strain present in the girlfriend was derived from the patient’s
HIV infection. This case is a good illustration of the evidence
needed to establish transmission: the phylogeny of a gene
that captures nested relationships, comprehensive sampling of
potential sources to improve the likelihood of observing a
direct transmission link, an organism that has an intermediate
level of within-host evolution, and a putative transmission
mechanism or discrete transmission event. While a transmission
link may be impossible to prove conclusively from genomic
data alone, these choices impact confidence in determining the
timing and directionality of microbial transmission (reviewed
in Pybus and Rambaut, 2009; Romero-Severson et al., 2014;
Figure 1).

Can molecular epidemiology approaches, typically performed
on one species alone, be applied to the diverse communities
typical of the human microbiome? Although bacteria mutate
less frequently than viral genomes, molecular epidemiology
approaches have had some success in inferring the transmission
of bacterial pathogens. For example, this was done in the case of
the 2001 release of Bacillus anthracis in the mail system (Jernigan
et al., 2002), as well as in reconstructing the transmission
networks of several bacterial outbreaks (reviewed in Gardy et al.,
2011; Snitkin et al., 2012; Fricke and Rasko, 2014; Gilchrist et al.,
2015). More recently, they have been applied to identify strains of
two endogenous human gut bacteria,Methanobrevibacter smithii
and Bacteroides thetaiotaomicron shared between sets of twins
(Faith et al., 2013).

Finding signals of transmission within metagenomic data
may be made easier if there is more evolutionary divergence
between samples. In the absence of high mutation rates,
long-term carriage can result in greater within-host evolution,
making it easier to reconstruct phylogenies. Helicobacter pylori,
Mycobacterium tuberculosis and Burkholderia dolosa, a long-term
infection associated with cystic fibrosis, are several bacteria that
have accumulated an adequate number of mutations to track
transmission across individuals (Falush et al., 2001; Gardy et al.,
2011; Lieberman et al., 2011). Evidence that many commensal
microbes have long-term residence in the gut and skin, (Faith
et al., 2013; Schloissnig et al., 2013; David et al., 2014b; Oh
et al., 2014), possibly dating back to birth (Dominguez-Bello
et al., 2010), lends credence to applying molecular epidemiology
approaches to a range of bacterial species in the human
microbiome.

To attain the genomic resolution necessary to infer
transmission, these studies have all relied on whole genome
sequencing of cultured isolates. Applying this method to the
greater variety of bacteria in the human microbiome would
have limited scalability and would be restricted to culturable
organisms. Single-cell techniques offer a way to circumvent
culture limitations and the problems associated with genotyping
strains that arise from short-read sequencing (discussed below).
These can be technically challenging and costly, as hundreds of
single-cell genomes per individual sample would be required
to capture the diversity of strains of multiple species that are
routine sampled using untargeted metagenomic sequencing.
Rather, with short-read metagenomic sequencing, genomes of
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FIGURE 1 | Scenarios for molecular epidemiology approaches. (A)

Nesting of one individuals’ strain lineages within another’s supports

transmission from the host carrying the ancestral strain to the host carrying the

more recently diverged strain, as shown here of a putative transmission event

(shown in red) from person A to person B. (B) The loss of lineages can affect

our ability to determine directionality. Given the same phylogeny in (A), without

the gray lineages, it is unclear which person’s strains are ancestral. This can

occur due to the choice of gene or characterizing fewer strains in an individual

than what is present. (C) An outgroup helps distinguish transmission direction.

Without lineage (C), it is unclear whether (A) transmitted strains to (B) or vice

versa. The inclusion of appropriate control samples can help reduce the

likelihood of indirect transmission from an intermediate host or

(Continued)

FIGURE 1 | Continued

environmental source. In the 1994 case involving HIV, controls were chosen

from HIV-infected individuals in the same geography, although not necessarily

with the same risk factors (i.e., drug use, sexuality, hemophilia; Metzker et al.,

2002). (D) Phylogenetic distances may not reflect the timing of transmission.

An organism’s rate of evolution may depend on factors specific to the

individual, such as immunity, diet or genetics, which create different host

selective pressures. (E) The rate of evolution of the marker gene is important

to detect putative direct transmission. Long-term carriage of a microbe with

high rates of evolution may result in long branch-lengths, upon which it

becomes more difficult to exclude the possibility of indirect transmission.

many species may be acquired from a single sample, providing
the raw data to infer transmission networks.

Comprehensive, metagenomic data is inherently more
complex because it involves sequencing all bacterial, viral,
and eukaryotic (including human) DNA present in a sample
simultaneously, and the linkage of reads to each particular
genome is lost during this process. To make sense of a diverse set
of metagenomic reads, sequences must be aligned to reference
genomes or de novo assembled draft genomes. Previous efforts
to identify organisms this way have had mixed results: only
67% of culture-positive samples for Shiga-toxinogenic E. coli
O104:H4 were identified by alignments to a de novo assembled
genome of this organism (Loman et al., 2013). Disentangling
genotypes down to the strain-level may be more complicated
than this example for several reasons: genotyping strains from
many species requires adequate coverage of each species, which
may be hard to attain with the highly uneven distribution of
species in a sample; individuals typically carry a handful of closely
related strains within a species (Faith et al., 2013; Schloissnig
et al., 2013; Oh et al., 2014); recombination may occur between
closely related strains (Falush et al., 2001); and transmitted
organisms are likely to resemble organisms already present in
the gut (David et al., 2014b; Krebes et al., 2014). Yet, in order
to get closer to proving transmission, we need an organismal
resolution more fine-grained than species. The challenge will
be to unambiguously genotype strains present within each
individual.

ACHIEVING STRAIN-LEVEL ACCURACY

Metagenomic data is more appropriate for strain-calling than
16S rRNA amplicon data. The main reason is that metagenomic
sequencing requires relatively few rounds of DNA amplification,
compared to 16S amplicon sequencing, thus reducing the chance
that PCR and sequencing errors are mistaken as genuine single
nucleotide polymorphisms (SNPs). Although there are various
computational methods available to address this issue with 16S
amplicons, they usually carry the unintended consequence of
a loss of resolution (Edgar et al., 2011; Quince et al., 2011;
Schloss et al., 2011; Bokulich et al., 2013; Preheim et al., 2013).
There is a cost to attaining higher resolution data. The main
challenge in defining strains from short-read sequencing is that
SNP frequencies in the genome that can be used to distinguish
between recently diverged strains do not appear more than

Frontiers in Microbiology | www.frontiersin.org 3 May 2016 | Volume 7 | Article 712

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Brito and Alm Tracking Strains in the Microbiome

once per 100–250 bp, which is the typical read length of
ubiquitous high-throughput short-read sequencers. Therefore,
metagenomic sequencing requires far more reads per sample to
attain adequate coverage and depth of a genome required for
phasing and distinguishing between strains. Also, rather than
using standard analytical pipelines that exist for 16S, such as
QIIME (Caporaso et al., 2010), there are no universally accepted
methods for strain-level characterization from metagenomic
data.

There have been several proposed strain-calling methods
(Table 1), though most of these methods stop short of actually
genotyping strains and instead focus on shared genomic features
across samples, with the exception of ConStrains method which
results in strain genotypes and their abundances (Luo et al.,
2015). These methods generally rely on aligning reads to
reference genomes, although this may be insufficient for unique
samples for which reference genomes do not yet exist. Several
methods overcome this limitation, enabling de novo assembly of
genomes across metagenomic samples (Boisvert et al., 2012; Pell
et al., 2012; Howe et al., 2014; Cleary et al., 2015). The Latent
Strain Analysis method (Cleary et al., 2015) is notable because
species of very low abundance (as low as 0.00001% in one case)
distributed across many samples can be successfully assembled.

Both assembly- and alignment-based methods for genotyping
strains require high depth and even coverage of each genome
or DNA segment being analyzed. This is easily attainable for
bacteria-rich samples such as the gut, where the predominance
of bacteria results in relatively little human DNA. Conversely,
in bacteria-poor environments that may be important for the
study of transmission, such as the skin, a large fraction of the
DNA sequenced, upwards of 90%, is from human cells (Human
Microbiome Project Consortium, 2012). A greater amount of
sequencing is therefore required to achieve adequate coverage
of bacterial genomes. Additionally, the right-skewed abundance
distributions of bacteria in some human body sites, such as
the gut, contributes to this problem, such that large increases
in sequencing depths are required to adequately cover lowly
abundant organisms (Ni et al., 2013; Wendl et al., 2013).
Since the costs associated with increased sequencing may soon
cease to be a limiting factor and out-of-bag computational
methods will become available, strain-level analysis may become
as commonplace as marker gene analysis is today.

Newer sequencing approaches that produce longer read
lengths may alleviate the need for such high sequencing
depth and may allow for strain comparisons that utilize larger
genomic regions than outlined in Table 1 or even full genomes.
The minION, made by Oxford Nanopore Technologies, has
provided strain-level data in outbreak settings, specifically of
Ebola (Quick et al., 2015) and Salmonella enterica serovar
Enteritidis (Quick et al., 2016) that was used for transmission
mapping. It has yet to be used to simultaneously examine the
transmission of the numerous members of complex bacterial
communities. Other experimental alternatives achieve synthetic
long read lengths by manipulating amplification protocols to
provide additional linkage information. For example, single
kb-length molecules can each be sorted into a well, sheared,
identically barcoded, and later assembled into one high fidelity
scaffold (Kuleshov et al., 2014). Although this approach is lower
throughput, it has been has been used together with short-
read sequencing to improve scaffolding of highly-fragmented
assemblies that can arise from de novo sequencing (Sharon et al.,
2015). Proximity ligation is another experimental manipulation
that uses Hi-C sequencing, i.e., intra-genome crosslinking,
to link read-pairs arising from a single DNA molecule and
has also been successfully used to genotypes strains within
complex microbiome samples (Beitel et al., 2014; Burton
et al., 2014). Although these technologies have been used
on a very limited number of samples, they hold tremendous
promise for achieving high confidence genotypes required
to deconvolve chains of microbial transmission in complex
communities.

FRONTIERS OF MICROBIAL
TRANSMISSION STUDIES IN HEALTH AND
THE ENVIRONMENT

We are now in an age where it is possible to engineer the
microbiome to achieve therapeutic outcomes and modify our
environments. Live bacterial therapeutics are already being used
to treat Clostridium difficile infections (Kassam et al., 2013;
Olle, 2013), and bioengineered therapeutics are on the horizon.
Synthetic strains could be modified for a variety of applications
within the human body, for enzyme replacement, disease

TABLE 1 | Methods for strain characterization from metagenomic data.

DNA regions Considerations

SNPs within core or species-specific genes (Schloissnig et al.,

2013; Oh et al., 2014; Ahn et al., 2015; Luo et al., 2015)

Methods either resolve genotypes or examine co-occurrences of SNPs. Genes may have different

rates of evolution. Alignments may be difficult in the presence of closely related species.

Non-overlapping 1 kb windows (Franzosa et al., 2015) Windows may contain a mix of horizontally transferred and core genomes. Limited phylogenetic

analysis.

Copy-number variations of genes (Greenblum et al., 2015) Rates of mutation may be harder to estimate.

Junctions of horizontally transferred regions and core genome

(Raveh-Sadka et al., 2015)

Co-occurrence of transferred regions may change rapidly. Assembly may be difficult at repetitive

regions common at HGT junctions. HGT may obscure phylogenetic patterns useful for inferring

transmission.

CRISPR spacer comparisons (Raveh-Sadka et al., 2015) Rates of spacer acquisition may be harder to estimate. Identifying source of mobile element may be

difficult.
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prevention, and diagnostic capabilities; or in the environment,
for hazardous material remediation, pest control, and drought
prevention. High confidence strain-tracking will be essential
to gauge the dispersal of artificially introduced organisms. A
handful of studies are beginning to track microbial strains, for
example, after intentional inoculation. These include monitoring
the infant gut microbiome throughout its development (Sharon
et al., 2013); examining the donor and recipients of fecal
microbiome transplants; and examining transmission in close-
knit agrarian communities as part of the Fiji Community
Microbiome Project (www.FijiCOMP.org).

Beyond characterizing strains within isolated samples,
longitudinal strain-level data would allow us to approach the
question posed earlier in this review: how does transmission
impact daily or punctuated shifts in our microbiomes? While it
may be straightforward to measure the impacts of transmission
after a discrete event, in cases where transmission is continuous
between source and sink, estimating rates of dispersal and
transfer will be nontrivial. Mathematical models originally
intended to capture animalmovements or pathogen transmission
may be adapted to account for the strain dynamics within diverse
microbial communities. Metapopulation models, for example,
describe environmental niches as “islands” between which
organisms can migrate (Levins, 1969; Hanski, 1998). In the
simplest of such models, unoccupied islands become occupied by
the influx of bacteria from occupied islands, and extinction events
in occupied islands may leave them unoccupied (Figure 2A).
In the case of the human microbiome, these “islands” could
be different individuals or body sites (Costello et al., 2012).
Ecological disease models are similar to metapopulation models,
though rather than colonizing islands, individuals are infected
(Figure 2B). They differ in that individuals may transition
from susceptible (S) to infected (I) classes, but may also
transition to recovered classes (R) where they are no longer
susceptible (Anderson and May, 1979). These SIR models
come in a wide range of flavors and can be deterministic,
stochastic, agent-based or spatially explicit, but they generally
monitor the status of infected or uninfected units. Although
infection will differ than colonization, these models provide
analytical frameworks to start testing transmission rates and
mechanisms.

Alternatively, there are models which account for the
abundances of organisms within individuals or across a
landscape, rather than their mere presence. Within-host
pathogen models build upon the SIR model framework and
track the abundances of a small number of strains resulting
from mutation and local selection, as from immune pressure
(Grenfell et al., 2004; Mideo et al., 2008; Figure 2B). Within-
host and population-based SIR models can be nested as
these dynamics may interact at different levels (reviewed
in Mideo et al., 2008). Environmental fate-and-transport
models similarly model pathogen abundances across landscape
features and can incorporate environmental conditions that
impact dispersal (reviewed in Brookes et al., 2004; Benham
et al., 2006; Figure 2C). Fate-and-transport models may also
be linked to SIR models to quantify bacterial exposures
(Eisenberg et al., 2002). There is ample opportunity to apply

A

B

C

FIGURE 2 | Modeling bacterial transmission. (A) Metapopulation models.

Change in island occupancy, by a microbe perhaps, is modeled as a function

of migration (m) and an extinction rate (e). Other considerations such as a

distance-based probability of infection may modify m.

dP

dt
= mP (1− P)− eP

(B) Susceptible-Infected-Resistant (SIR) models (with or without strain

dynamics). Susceptible (S) individuals may become infected (I) and can

recover and become immune. SIR models are similar to metapopulation

models in that infection rate (β) is akin to migration between islands, as

recovery (γ ) is akin to extinction in the metapopulation model. Variations may

include demographic processes, infection processes (latency, carriage), and

alternative hosts or vectors.

dS

dt
= −βSI

(Continued)
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FIGURE 2 | Continued
dI

dt
= βSI− γ I

dR

dt
= γ I

SIR models that incorporate within-host evolution of specific strains typically

are nested models that account for individuals’ infection composition.

(C) Landscape fate-and-transport (F&T) models. F&T models estimate

microbial abundances rather than a dichotomous infection status. The models

stem from traditional advection-dispersion equations. Landscape features

such as the surface porosity or water flow can be incorporated.

∂C

∂x
= D

∂2C

∂2x
− ν

∂C

∂x

these techniques toward understanding microbiome-related
transmission.

How can microbiome data be incorporated into transmission
models? First, models designed for one microbial organism must
be adapted to account for many. Parameterizing such models
may be challenging given the broad differences in transmission
observed between even closely related strains (Lee et al., 2013).
Second, models of microbial communities may need to account
for microbial interactions. Models of multiple pathogens show
that complex dynamics can result from pathogen interactions
(Rohani et al., 2003), and there are examples to suggest that
this will be true for commensal organisms as well (David
et al., 2014b; Hsiao et al., 2014; Seedorf et al., 2014). Lastly,
we will also need to transform such models to accommodate
compositional data. SIR models of more than one pathogen
typically assume that measurements of each pathogen are
independent (Rohani et al., 2003). Whereas counting microbes
is technically challenging, microbial community measurements

often reflect relative abundances of bacteria rather than absolute
abundances. Although there are some methods that can escape
this limitation (Friedman and Alm, 2012; Kurtz et al., 2015),
we still lack principled methods to normalize time series
compositional data. Figuring out how to incorporate multiple
species into models of microbial transmission will be challenging
but is a next logical step in our understanding of these
communities.

In the near future, we predict that strain-tracking will become
increasingly important, whether for epidemiology, forensics,
environmental monitoring, or diagnostics. Metagenomics is
currently the most straightforward and affordable data that
can be used to track strains, and will likely be the primary
source of those data in the near term. Despite the widespread
availability of metagenomic sequencing, off-the-shelf methods to
identify and evaluate the distribution of strains are still needed.
In time, refinements will be made to determine what study
design, sample preparation and sequencing depth are needed to
substantiate claims of specific transmission chains. When that
time comes, we may be able to quantify the role of commensal
transmission in Crohn’s disease, autoimmune disease, obesity
and other microbiome-linked pathologies.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

We would like to thank the Neil and Anna Rasmussen
Foundation for their support.

REFERENCES

Ahn, T.-H., Chai, J., and Pan, C. (2015). Sigma: strain-level inference of genomes

from metagenomic analysis for biosurveillance. Bioinformatics 31, 170–177.

doi: 10.1093/bioinformatics/btu641

Anderson, R. M., and May, R. M. (1979). Population biology of infectious diseases:

part I. Nature 280, 361–367.

Beitel, C. W., Froenicke, L., Lang, J. M., Korf, I. F., Michelmore, R. W., Eisen,

J. A., et al. (2014). Strain- and plasmid-level deconvolution of a synthetic

metagenome by sequencing proximity ligation products. PeerJ. 2:e415. doi:

10.7717/peerj.415

Benham, B. L., Baffaut, C., Zeckoski, R. W., Mankin, K. R., Pachepsky, Y. A.,

Sadeghi, A. M., et al. (2006). Modeling bacteria fate and transport in watersheds

to support TMDLs. Trans. ASABE 49, 987–1002. doi: 10.13031/2013.21739

Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., and Corbeil, J. (2012). Ray

Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13,

R122. doi: 10.1186/gb-2012-13-12-r122

Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R.,

et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina

amplicon sequencing. Nat. Methods 10, 57–59. doi: 10.1038/nmeth.2276

Brookes, J. D., Antenucci, J., Hipsey,M., Burch,M. D., Ashbolt, N. J., and Ferguson,

C. (2004). Fate and transport of pathogens in lakes and reservoirs. Environ. Int.

30, 741–759. doi: 10.1016/j.envint.2003.11.006

Burton, J. N., Liachko, I., Dunham, M. J., and Shendure, J. (2014). Species-level

deconvolution of metagenome assemblies with Hi-C-based contact probability

maps. G3 4, 1339–1346. doi: 10.1534/g3.114.011825

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.

D., Costello, E. K., et al. (2010). QIIME allows analysis of high-

throughput community sequencing data. Nat. Methods 7, 335–336. doi:

10.1038/nmeth.f.303

Chen, Y., and Blaser, M. J. (2007). Inverse associations of Helicobacter

pylori with asthma and allergy. Arch. Intern. Med. 167, 821–827. doi:

10.1001/archinte.167.8.821

Cleary, B., Brito, I. L., Huang, K., Gevers, D., Shea, T., Young, S., et al.

(2015). Detection of low-abundance bacterial strains in metagenomic

datasets by eigengenome partitioning. Nat. Biotechnol. 33, 1053–1060. doi:

10.1038/nbt.3329

Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I.,

and Knight, R. (2009). Bacterial community variation in human body

habitats across space and time. Science 326, 1694–1697. doi: 10.1126/science.

1177486

Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M., and Relman,

D. A. (2012). The application of ecological theory toward an understanding

of the human microbiome. Science 336, 1255–1262. doi: 10.1126/science.12

24203

Cullen, T. W., Schofield, W. B., Barry, N. A., Putnam, E. E., Rundell, E. A., Trent,

M. S., et al. (2015). Gut microbiota. Antimicrobial peptide resistance mediates

resilience of prominent gut commensals during inflammation. Science 347,

170–175. doi: 10.1126/science.1260580

David, L. A., Materna, A. C., Friedman, J., Campos-Baptista, M. I., Blackburn, M.

C., Perrotta, A., et al. (2014a). Host lifestyle affects human microbiota on daily

timescales. Genome Biol. 15, R89. doi: 10.1186/gb-2014-15-7-r89

Frontiers in Microbiology | www.frontiersin.org 6 May 2016 | Volume 7 | Article 712

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Brito and Alm Tracking Strains in the Microbiome

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E.,

Wolfe, B. E., et al. (2014b). Diet rapidly and reproducibly alters the human gut

microbiome. Nature 505, 559–563. doi: 10.1038/nature12820

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G.,

Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of

the initial microbiota across multiple body habitats in newborns. Proc. Natl.

Acad. Sci. U.S.A. 107, 11971–11975. doi: 10.1073/pnas.1002601107

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).

UCHIME improves sensitivity and speed of chimera detection. Bioinformatics

27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M., and Colford, J. M. Jr.,

(2002). Disease transmissionmodels for public health decisionmaking: analysis

of epidemic and endemic conditions caused by waterborne pathogens. Environ.

Health Perspect. 110, 783–790. doi: 10.1289/ehp.02110783

Faith, J. J., Colombel, J.-F., and Gordon, J. I. (2015). Identifying strains that

contribute to complex diseases through the study of microbial inheritance.

Proc. Natl. Acad. Sci. U.S.A. 112, 633–640. doi: 10.1073/pnas.1418781112

Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H.,

Goodman, A. L., et al. (2013). The long-term stability of the human gut

microbiota. Science 341:1237439. doi: 10.1126/science.1237439

Falush, D., Kraft, C., Taylor, N. S., Correa, P., Fox, J. G., Achtman, M., et al.

(2001). Recombination and mutation during long-term gastric colonization by

Helicobacter pylori: estimates of clock rates, recombination size, and minimal

age. Proc. Natl. Acad. Sci. U.S.A. 98, 15056–15061. doi: 10.1073/pnas.251396098

Fierer, N., Lauber, C. L., Zhou, N., McDonald, D., Costello, E. K., and

Knight, R. (2010). Forensic identification using skin bacterial communities.

Proc. Natl. Acad. Sci. U.S.A. 107, 6477–6481. doi: 10.1073/pnas.10001

62107

Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B.

J. M., et al. (2015). Identifying personal microbiomes usingmetagenomic codes.

Proc. Natl. Acad. Sci. U.S.A. 112, E2930–E2938. doi: 10.1073/pnas.1423854112

Fricke, W. F., and Rasko, D. A. (2014). Bacterial genome sequencing in the

clinic: bioinformatic challenges and solutions. Nat. Rev. Genet. 15, 49–55. doi:

10.1038/nrg3624

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic

survey data. PLoS Comput. Biol. 8:e1002687. doi: 10.1371/journal.pcbi.1002687

Gardy, J. L., Johnston, J. C., Ho Sui, S. J., Cook, V. J., Shah, L.,

Brodkin, E., et al. (2011). Whole-genome sequencing and social-network

analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739. doi:

10.1056/NEJMoa1003176

Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A. Jr., and Hewlett, E. L.

(2015). Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev.

28, 541–563. doi: 10.1128/CMR.00075-13

Goodman, A. L., McNulty, N. P., Zhao, Y., Leip, D., Mitra, R. D., Lozupone,

C. A., et al. (2009). Identifying genetic determinants needed to establish

a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289. doi:

10.1016/j.chom.2009.08.003

Greenblum, S., Carr, R., and Borenstein, E. (2015). Extensive strain-level copy-

number variation across human gut microbiome species. Cell 160, 583–594.

doi: 10.1016/j.cell.2014.12.038

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mumford,

J. A., et al. (2004). Unifying the epidemiological and evolutionary dynamics of

pathogens. Science 303, 327–332. doi: 10.1126/science.1090727

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41–49. doi: 10.1038/

23876

Howe, A. C., Jansson, J. K., Malfatti, S. A., Tringe, S. G., Tiedje, J. M., and

Brown, C. T. (2014). Tackling soil diversity with the assembly of large,

complex metagenomes. Proc. Natl. Acad. Sci. U.S.A. 111, 4904–4909. doi:

10.1073/pnas.1402564111

Hsiao, A., Ahmed, A. M. S., Subramanian, S., Griffin, N. W., Drewry, L. L., Petri,

W. A., et al. (2014). Members of the human gut microbiota involved in recovery

from Vibrio cholerae infection. Nature 515, 423–426. doi: 10.1038/nature13738

Human Microbiome Project Consortium (2012). Structure, function and

diversity of the healthy human microbiome. Nature 486, 207–214. doi:

10.1038/nature11234

Hung, I. F. N., and Wong, B. C. Y. (2009). Assessing the risks and benefits of

treatingHelicobacter pylori infection. Ther. Adv. Gastroenterol. 2, 141–147. doi:

10.1177/1756283X08100279

Jernigan, D. B., Raghunathan, P. L., Bell, B. P., Brechner, R., Bresnitz, E. A.,

Butler, J. C., et al. (2002). Investigation of bioterrorism-related anthrax, United

States, 2001: epidemiologic findings. Emerging Infect. Dis. 8, 1019–1028. doi:

10.3201/eid0810.020353

Kassam, Z., Lee, C. H., Yuan, Y., and Hunt, R. H. (2013). Fecal microbiota

transplantation for Clostridium difficile infection: systematic review and meta-

analysis. Am. J. Gastroenterol. 108, 500–508. doi: 10.1038/ajg.2013.59

Krebes, J., Didelot, X., Kennemann, L., and Suerbaum, S. (2014). Bidirectional

genomic exchange between Helicobacter pylori strains from a family in

Coventry, United Kingdom. Int. J. Med. Microbiol. 304, 1135–1146. doi:

10.1016/j.ijmm.2014.08.007

Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., et al.

(2014). Whole-genome haplotyping using long reads and statistical methods.

Nat Biotechnol. 32, 261–266. doi: 10.1038/nbt.2833

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J.,

and Bonneau, R. A. (2015). Sparse and compositionally robust inference

of microbial ecological networks. PLoS Comput. Biol. 11:e1004226. doi:

10.1371/journal.pcbi.1004226

Levins, R. (1969). Some demographic and genetic consequences of environmental

heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240. doi:

10.1093/besa/15.3.237

Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M.,

Scott, N. M., et al. (2014). Longitudinal analysis of microbial interaction

between humans and the indoor environment. Science 345, 1048–1052. doi:

10.1126/science.1254529

Lee, S. M., Donaldson, G. P., Mikulski, Z., Boyajian, S., Ley, K., and Mazmanian, S.

K. (2013). Bacterial colonization factors control specificity and stability of the

gut microbiota. Nature 501, 426–429. doi: 10.1038/nature12447

Lieberman, T. D., Michel, J.-B., Aingaran, M., Potter-Bynoe, G., Roux, D., Davis,

M. R., et al. (2011). Parallel bacterial evolution within multiple patients

identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280. doi:

10.1038/ng.997

Loman, N. J., Constantinidou, C., Christner, M., Rohde, H., Chan, J. Z.-M., Quick,

J., et al. (2013). A culture-independent sequence-basedmetagenomics approach

to the investigation of an outbreak of Shiga-toxigenic Escherichia coliO104:H4.

JAMA 309, 1502–1510. doi: 10.1001/jama.2013.3231

Luo, C., Knight, R., Siljander, H., Knip, M., Xavier, R. J., and Gevers, D.

(2015). ConStrains identifies microbial strains in metagenomic datasets. Nat.

Biotechnol. 33, 1045–1052. doi: 10.1038/nbt.3319

Metzker, M. L., Mindell, D. P., Liu, X.-M., Ptak, R. G., Gibbs, R. A., and Hillis, D.

M. (2002). Molecular evidence of HIV-1 transmission in a criminal case. Proc.

Natl. Acad. Sci. U.S.A. 99, 14292–14297. doi: 10.1073/pnas.222522599

Mideo, N., Alizon, S., and Day, T. (2008). Linking within- and between-host

dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol.

Evol. 23, 511–517. doi: 10.1016/j.tree.2008.05.009

Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., and Dominguez-Bello,

M. G. (2015). The infant microbiome development: mom matters. Trends Mol.

Med. 21, 109–117. doi: 10.1016/j.molmed.2014.12.002

Munyaka, P. M., Khafipour, E., and Ghia, J.-E. (2014). External influence of early

childhood establishment of gut microbiota and subsequent health implications.

Front. Pediatr. 2:109. doi: 10.3389/fped.2014.00109

Ni, J., Yan, Q., and Yu, Y. (2013). How much metagenomic sequencing is enough

to achieve a given goal? Sci. Rep. 3, 1968. doi: 10.1038/srep01968

Oh, J., Byrd, A. L., Deming, C., Conlan, S., NISC Comparative Sequencing

Program, Kong, H. H., et al. (2014). Biogeography and individuality

shape function in the human skin metagenome. Nature 514, 59–64. doi:

10.1038/nature13786

Olle, B. (2013). Medicines from microbiota. Nat. Biotechnol. 31, 309–315. doi:

10.1038/nbt.2548

Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., et al. (2012).

Microbial exposure during early life has persistent effects on natural killer T

cell function. Science 336, 489–493. doi: 10.1126/science.1219328

Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J. M., and Brown,

C. T. (2012). Scaling metagenome sequence assembly with probabilistic

de Bruijn graphs. Proc. Natl. Acad. Sci. U.S.A. 109, 13272–13277. doi:

10.1073/pnas.1121464109

Preheim, S. P., Perrotta, A. R., Martin-Platero, A. M., Gupta, A., and Alm,

E. J. (2013). Distribution-based clustering: using ecology to refine the

Frontiers in Microbiology | www.frontiersin.org 7 May 2016 | Volume 7 | Article 712

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Brito and Alm Tracking Strains in the Microbiome

operational taxonomic unit. Appl. Environ. Microbiol. 79, 6593–6603. doi:

10.1128/AEM.00342-13

Pybus, O. G., and Rambaut, A. (2009). Evolutionary analysis of the dynamics

of viral infectious disease. Nat. Rev. Genet. 10, 540–550. doi: 10.1038/

nrg2583

Quick, J., Ashton, P., Calus, S., Chatt, C., Gossain, S., Hawker, J., et al. (2015). Rapid

draft sequencing and real-time nanopore sequencing in a hospital outbreak of

Salmonella. Genome Biol. 16:114. doi: 10.1186/s13059-015-0677-2

Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., et al.

(2016). Real-time, portable genome sequencing for Ebola surveillance. Nature

530, 228–232. doi: 10.1038/nature16996

Quince, C., Lanzen, A., Davenport, R. J., and Turnbaugh, P. J. (2011).

Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38.

doi: 10.1186/1471-2105-12-38

Raveh-Sadka, T., Thomas, B. C., Singh, A., Firek, B., Brooks, B., Castelle, C. J.,

et al. (2015). Gut bacteria are rarely shared by co-hospitalized premature

infants, regardless of necrotizing enterocolitis development. Elife 4, 1–25. doi:

10.7554/eLife.05477

Rohani, P., Green, C. J., Mantilla-Beniers, N. B., and Grenfell, B. T. (2003).

Ecological interference between fatal diseases. Nature 422, 885–888. doi:

10.1038/nature01542

Romero-Severson, E., Skar, H., Bulla, I., Albert, J., and Leitner, T. (2014). Timing

and order of transmission events is not directly reflected in a pathogen

phylogeny.Mol. Biol. Evol. 31, 2472–2482. doi: 10.1093/molbev/msu179

Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M., Tap, J., Zhu, A., et al.

(2013). Genomic variation landscape of the human gut microbiome. Nature

493, 45–50. doi: 10.1038/nature11711

Schloss, P. D., Gevers, D., and Westcott, S. L. (2011). Reducing the effects of PCR

amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE

6:e27310. doi: 10.1371/journal.pone.0027310

Seedorf, H., Griffin, N. W., Ridaura, V. K., Reyes, A., Cheng, J., Rey, F. E., et al.

(2014). Bacteria from diverse habitats colonize and compete in the mouse gut.

Cell 159, 253–266. doi: 10.1016/j.cell.2014.09.008

Sharon, I., Kertesz, M., Hug, L. A., Pushkarev, D., Blauwkamp, T. A., Castelle, C. J.,

et al. (2015). Accurate, multi-kb reads resolve complex populations and detect

rare microorganisms. Genome Res. 25, 534–543. doi: 10.1101/gr.183012.114

Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A., and

Banfield, J. F. (2013). Time series community genomics analysis reveals rapid

shifts in bacterial species, strains, and phage during infant gut colonization.

Genome Res. 23, 111–120. doi: 10.1101/gr.142315.112

Snitkin, E. S., Zelazny, A. M., Thomas, P. J., Stock, F., NISC Comparative

Sequencing Program Group, Henderson, D. K., et al. (2012). Tracking

a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae

with whole-genome sequencing. Sci. Transl. Med. 4:148ra116. doi:

10.1126/scitranslmed.3004129

Sonnenburg, J. L., Xu, J., Leip, D. D., Chen, C.-H., Westover, B. P., Weatherford, J.,

et al. (2005). Glycan foraging in vivo by an intestine-adapted bacterial symbiont.

Science 307, 1955–1959. doi: 10.1126/science.1109051

Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L., and Hooper, L. V.

(2008). Paneth cells directly sense gut commensals and maintain homeostasis

at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. U.S.A. 105,

20858–20863. doi: 10.1073/pnas.0808723105

Wendl, M. C., Kota, K., Weinstock, G. M., and Mitreva, M. (2013). Coverage

theories for metagenomic DNA sequencing based on a generalization of

Stevens’ theorem. J. Math. Biol. 67, 1141–1161. doi: 10.1007/s00285-012-0586-x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Brito and Alm. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 May 2016 | Volume 7 | Article 712

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	Tracking Strains in the Microbiome: Insights from Metagenomics and Models
	Determining Transmission Routes of Human-associated Microbiota
	Achieving Strain-level Accuracy
	Frontiers of Microbial Transmission Studies in Health and the Environment
	Author Contributions
	Funding
	References


