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Coal bed methane (CBM) is generated primarily through the microbial degradation of

coal. Despite a limited understanding of the microorganisms responsible for this process,

there is significant interest in developing methods to stimulate additional methane

production from CBM wells. Physical techniques including hydraulic fracture stimulation

are commonly applied to CBM wells, however the effects of specific additives contained

in hydraulic fracture fluids on native CBM microbial communities are poorly understood.

Here, metagenomic sequencing was applied to the formation waters of a hydraulically

fractured and several non-fractured CBM production wells to determine the effect of

this stimulation technique on the in-situ microbial community. The hydraulically fractured

well was dominated by two microbial populations belonging to the class Phycisphaerae

(within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from

these phyla were absent or present at extremely low abundance in non-fractured

CBM wells. Detailed metabolic reconstruction of near-complete genomes from these

populations showed that their high relative abundance in the hydraulically fractured

CBM well could be explained by the introduction of additional carbon sources, electron

acceptors, and biocides contained in the hydraulic fracture fluid.

Keywords: coal bed methane, aminicenantes, OP8, phycisphaerae, methane, hydraulic fracturing, metagenomics

INTRODUCTION

Over the last decade, coal bed methane (CBM) has emerged as an important resource for meeting
rising global energy demands. It is anticipated that consumption of natural gas will grow by
1.5% each year until 2040, the fastest growth of any fossil fuel resource (U.S. Energy Information
Administration, 2013). CBM is generated through biotic and abiotic processes, however analysis
of methane isotopic compositions from CBM reservoirs worldwide suggest that the majority of
methane is derived from microbial activity, especially at shallow depths (Scott, 2002; Strąpoć et al.,
2011; Golding et al., 2013). Despite its economic importance, our understanding of the microbial
communities responsible for the conversion of coal to methane is limited, hampering our ability to
engineer strategies for stimulating native microbial communities to produce additional methane.

To extract CBM, a vertical well is drilled 200–1000m into a coal bed. Water and gas are
simultaneously extracted from the well and the gas is separated from the water at the surface.
In cases where the natural permeability of the coal does not allow for economical rates of
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extraction, stimulation techniques such as hydraulic fracture are
commonly applied. Hydraulic fracture involves the injection of
a fluid mixture into the well at high pressure to fracture the
coal (Australian Department of the Environment, 2014). The
hydraulic fracture fluid mix often contains biocides to inhibit the
growth of undesirable microorganisms, namely sulfate reducers,
whichmay cause corrosion of the well bore. Flow paths created by
the new fractures are held open by a proppant (e.g., sand, ceramic,
or walnut husks) contained in the fracturing fluid. A gelling
agent, typically a polysaccharide polymer, is commonly included
in the hydraulic fracture fluid to suspend the proppant to ensure
that it disperses evenly within the seam. In order to remove the
fracturing fluid from the well, a breaker (e.g., hydrogen peroxide,
diammonium peroxydisulfate, or a hemicellulase enzyme) is
added to the well to depolymerize the gelling agent. Once the
fracturing fluid is removed from the well, a production pump is
installed at the wellhead to begin dewatering of the CSG well.

Here, community profiles for 11 wells from across the
Surat Basin were subjected to metagenomic sequencing
and characterization to identify strategies to enhance
CBM production. One well, PK-28, had been subjected to
hydrofracture stimulation and showed clear differences in
community composition to the other wells sampled. The use of
additives such as gelling agents, breakers, and biocides in the
hydraulic fracture process is commonplace, but it is unknown
how these additives may affect CBM community structure. Sugar
polymer-based gelling agents and sulfate-based breakers may
enable the growth of microorganisms capable of using these
compounds, while additives such as biocides are likely to select
for specific microbial populations. Metabolic reconstruction
of microbial populations enriched in the PK-28 well strongly
suggest that this shift in community composition is the result of
exposure to hydrofracture fluid additives.

MATERIALS AND METHODS

Sample Collection
Biomass was collected from 11 previously characterized CBM
production wells in the Surat Basin, Australia for metagenomic
characterization (Evans et al., 2015). Water chemistry and
isotope measurements were also collected for comparison and
are described in detail by Baublys et al. (2015). Prior to
microbial sampling, temperature, pH, and conductivity were
measured using an Accumet multimeter (Fisher Scientific
model 13636AP85). When these readings stabilized (∼10–
20 min), between 10 and 50 l of production water were
filtered through two sequential 142 mm stainless steel filter
housings (#YY3014236, Millipore, MA, USA) containing a 20
µm polypropylene prefilter followed by a 0.22 µm nitrocellulose
filter. Both filters were folded aseptically, placed into separate
falcon tubes, and frozen on dry ice for transport back to the
laboratory.

DNA Extraction, Sequencing, and Binning
Metagenomic libraries were prepared using the Illumina Nextera
XT DNA Sample Preparation kit and sequenced on two-
fifths of a lane on the Illumina HiSeq2000 platform in

rapid mode (2 × 100 bp paired end; 500 bp fragment
size) producing an average of 4.1 Gb of paired-end data for
each sample. Adapter clipping and merging of overlapping
reads was performed using SeqPrep v2013-12-17 (https://
github.com/jstjohn/SeqPrep). Nesoni v0.99 (https://github.com/
VictorianBioinformaticsConsortium/nesoni) was used to remove
homopolymers, quality trim bases with a Phred score <20, and
discarding trimmed reads ≤30 bp. Assembly of the metagenome
was performed using CLC Genomics Workbench v6.5 using
default parameters.

Microbial community profiles for all metagenomes were
generated by identifying sequencing reads from the 16S rRNA
gene and mapping them to the Greengenes database using
CommunityM (https://github.com/dparks1134/CommunityM)
at a 97% threshold to define OTUs. Binning of the PK-
28 metagenome was carried out using DBB v1.0.0 (https://
github.com/dparks1134/DBB), which recruits scaffolds into
population genomes based on similarity in GC-content, coverage,
and tetranucleotide frequency. Genome completeness and
contamination were estimated using the CheckM v0.9.6 lineage-
specific workflow using default parameters (Parks et al., 2015).

Statistical Analysis
A heatmap showing the relative abundances of all OTUs present
at a minimum of 1% in at least one sample was generated
using STAMP (Parks et al., 2014). All statistical analyses were
performed in R v3.1.2 (R Core Team, 2013). Differences in
OTU composition were further explored through principal
components analysis of Hellinger transformed OTU relative
abundances (Legendre and Gallagher, 2001) using the CRAN
package vegan (Dixon, 2003).

Phylogenetic Identification of Population
Genomes
In order to determine the phylogenetic affiliation of each
metagenome bin, an approximate maximum-likelihood
phylogenetic tree was constructed using FastTree v2.1.7
(Price et al., 2010) from a concatenated set of 83 bacterial
single-copy marker genes (Soo et al., 2014) extracted from all
PK-28 population genomes ≥70% completeness with ≤10%
contamination as well as all IMG v4.0 genomes (Markowitz et al.,
2012). Single-copy marker genes were identified and extracted
from genomes using HMMER v3.1 (Finn et al., 2011). True
maximum-likelihood trees were then re-inferred with RAxML
(Stamatakis, 2006) including only IMG genomes of interest
from 100 bootstrap replicates, using the PROTGAMMAWAG
substitution model.

Maximum likelihood trees were also constructed with RAxML
from 16S rRNA gene sequences recovered from previous studies
using the GTRGAMMA substitution model. For one recovered
population, Aminicenantes-PK28, the 16S rRNA gene tree was
constructed for the Aminicenantes phylum from 100 bootstrap
replicates using near-full length (>1400 bp) 16S rRNA genes
recovered in previous studies (Rinke et al., 2013; Farag et al.,
2014; Gies et al., 2014; Sharon et al., 2015). The 16S rRNA
gene sequences obtained from Sharon et al. (2015) were mined
from ametagenome where anAminicenantes population genome
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was recovered, but the 16S rRNA gene and population genome
could not be linked (Sharon et al., 2015). Consequently, all
four recovered 16S rRNA gene fragments identified in the
metagenome were included in the tree. A 16S rRNA gene
fragment (∼250 bp) extracted from the Aminicenentates-PK28
population genome was placed into the full length reference tree
by parsimony insertion in ARB (Ludwig et al., 2004). Members
of the phylum Acidobacteria were used as an outgroup based on
a previous analysis showing this phylum to be a sister group to
the Aminicenantes (Rinke et al., 2013).

Population Genome Annotation and
Metabolic Reconstruction
Population genomes were annotated using Prokka v1.8
(Seemann, 2014) and IMG v4.1 (Markowitz et al., 2012). In
parallel, open reading frames (ORFs) were identified using
Prodigal v2.60 (Hyatt et al., 2010) and the resulting protein
sequences were compared to Uniref90 (Suzek et al., 2007), COG
(Tatusov et al., 2003), Pfam (Finn et al., 2014), and TIGRfam
(Haft et al., 2013) using BLASTP (Altschul et al., 1997) and
HMMER (Finn et al., 2011), respectively. Carbohydrate active
enzymes (CAZY) were identified with dbCAN (Yin et al.,
2012) using BLASTP (Altschul et al., 1997) with an e-value
cut-off of 1e−10 and a coverage fraction cut-off of 0.5. Peptidase
families were identified by searching sequences annotated
as peptidases against the MEROPS peptidase database using
BLASTP (Rawlings et al., 2014). A sequence was assigned to the
protein family of its best hit as long as the hit had an e-value
threshold of ≤1e−20.

RESULTS

CBM Formation Water Sampling and
Community Profiling from Metagenomes
Metagenomic datasets averaging 4.1 ± 0.6 Gb of paired-
end data were generated for formation waters collected from
11 CBM wells located in the Surat Basin, Queensland,
Australia (Figure 1; Table 1). One of these wells, PK-28, had
been subjected to hydraulic fracture stimulation in September
of 2011. The hydraulic fracture fluid was injected and
removed after ∼2 weeks. However, no gas or water was
extracted from PK-28 well until July 2013, approximately 4
months prior to sampling. In order to identify differences
in the microbial community composition of the hydraulically
fractured and non-fractured wells, community profiles for
each formation water sample were generated by classifying
16S rRNA gene sequences from the metagenomic datasets
(Figure 2). Operational taxonomic units (OTUs) from the
actinobacterial order OPB41 (2–30%) and methanogens from
the Euryarchaeotal family Methanobacteriaceae (0–39%) were
typically dominant in all wells. In contrast, the PK-28
microbial community was dominated by OTUs belonging to the
Planctomycetes class Phycisphaerae (9%), the candidate phylum
Aminicenantes order OPB95 (11%), the actinobacterial order
OPB41 (10%), and hydrogenotrophic methanogens from the
family Methanobacteriaceae (11%). Comparison of the PK-28

TABLE 1 | CBM wells sampled from the Surat Basin.

Site ID Site name Latitude Longitude

AG-13 Argyle 13 −26.9134 150.4656

AG-31 Argyle 31 −26.8991 150.4606

BB-3 Ben Bow 3 −26.4411 149.3893

BV-3 Bellevue 3 −26.7275 150.3090

BV-9 Bellevue 9 −26.7104 150.2720

BS-19 Berwyndale South 19 −26.8675 150.3086

BS-36 Berwyndale South 36 −26.8546 150.3103

CD-8 Codie 8 −27.0061 150.3916

CX-10 Coxon Creek 10 −26.3686 149.0963

PK-28 Pickanjinnie 28 −26.5821 149.1209

WP-3 Washpool Creek 3 −26.6407 149.2323

community composition to that of the other wells using
principal components analysis showed that PK-28 clustered
away from the other wells, indicating that its overall microbial
community was atypical compared to the rest of the basin
(Figure 3). The difference in the PK-28 community composition
was primarily driven by the Aminicenantes and Phycisphaerae
populations. The Aminicenantes were identified only in wells
BB-3, WP-3, and BV-9 while the Phycisphaerae were identified
in all wells other than WP-3 and BV-9. However, they only
reached an abundance of >0.1% in PK-28. Wells WP-3 and
AG-13 also appeared to be somewhat atypical compared to
the rest of the basin (Figure 3). These wells showed higher
abundances of thermophilic populations from the family
Thermodesulfovibrionaceae and genus Methanothermobacter, as
well as a higher abundance of the class OPB41.

PK-28 Population Genome Binning
De novo assembly of the paired-end data for PK-28 produced
52,312 scaffolds ≥500 bp with an N50 value of 3831 bp. A total
of 11 population genomes with ≥70% completeness and ≤10%
contamination were obtained by partitioning scaffolds based
on GC-content, tetranucleotide frequency, and coverage
(Table 2). These genomes span the majority of dominant
populations identified in the 16S rRNA gene community
profile, with the exception of Caldiserica. The coverage of the
population genomes generally matched the expected relative
abundances, with coverage being highest for members of the
family Methanobacteriaceae, followed by the Phycisphaerae
and Aminicenantes. The Aminicenantes (Aminicenantes-
PK28), and Phycisphaerae (Phycisphaerae-PK28) population
genomes were targeted for detailed metabolic characterization
to determine why these microorganisms were enriched in the
hydraulically fractured well. Both the Aminicenantes-PK28 and
Phycisphaerae-PK28 population genomes have been deposited
in IMG under IDs 2593339135 and 2593339136 respectively.

Phylogenetic Placement of
Phycisphaerae-PK28 Population Genome
The approximate maximum-likelihood phylogenetic tree
constructed with FastTree placed Phycisphaerae-PK28 (Table 2)
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FIGURE 1 | Map of the Surat Basin (Queensland, Australia) showing the locations of CBM production wells sampled for metagenomic sequencing.

Map modified from Hamilton et al. (2014).

within the Planctomycetes phylum next to Phycisphaerae
mikurensis (Fukunaga et al., 2009). A true maximum likelihood
tree inferred using all IMG Phycisphaerae genomes confirms this
placement (Figure 4A). In order to more precisely determine
its taxonomic affiliation, a 16S rRNA gene tree was constructed
(Figure 4B) from the full-length rRNA gene sequence from
Phycisphaerae-PK28 and additional Planctomycete sequences
obtained from the Greengenes database (Desantis et al., 2006).
This analysis placed Phycisphaerae-PK28 in the candidate order
MSBL9.

Phylogenetic Placement of
Aminicenantes-PK28 Population Genome
The approximate maximum-likelihood phylogenetic tree
constructed with FastTree placed Aminicenantes-PK28 within
the candidate phylum Aminicenantes (Figure 5A). Three
Aminicenantes genomes have been sequenced to date (Rinke
et al., 2013; Sharon et al., 2015), but there are no cultured
representatives of this lineage. Previous phylogenetic analysis

of the Aminicenantes using 16S rRNA gene sequences (>800
bp in length) identified several putative subgroups within the
candidate phylum, including four proposed classes and eight
orders (Farag et al., 2014). Reconstruction of this phylogeny
with the addition of 16S rRNA gene sequences from the three
publically available Aminicenantes genomes revealed that these
genomes belong to two distinct orders, HMMV and SHA-124,
within the class OP8-1 (Figure 5B). Parsimony insertion of a 16S
rRNA gene fragment from the Aminicenantes-PK28 population
genome places it within the order OPB95, within the proposed
class OP8-1.

Carbon Metabolism
Differences in the PK-28 well community could result from
the introduction of additional carbon sources in the hydraulic
fracture fluid, enriching microorganisms best able to utilize the
foreign organic matter. The vast majority of fluid is made up of
water and inorganic proppant. In addition, the galactomannan
polymer guar was used as a gelling agent. In order to determine
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TABLE 2 | Phylogenetic identification of population genomes and estimates of genome completeness and contamination.

Population genome Phylum Lowest taxonomic classification % Completeness % Contamination # Scaffolds Genome size % GC Coverage

ID (Mbp)

0 Planctomycetes c__Phycisphaerae 95.5 0 31 2.9 55.3 373

1 Ignavibacteriae p__Ignavibacteriae 96.9 2.2 73 3.1 41.6 36

2 Firmicutes f__Peptococcaceae 91.1 0.5 36 2.0 62.3 113

3 Aminicenantes p__Aminicenantes 88.0 2.5 73 2.5 53.5 301

5 Actinobacteria p__Actinobacteria 79.6 1.1 41 1.5 67.8 177

6 Euryarchaeota g__Methanothermobacter 92.4 1.4 52 1.6 50.0 31

8 Euryarchaeota f__Methanobacteriaceae 100 0 18 1.5 40.6 450

9 Proteobacteria c__Deltaproteobacteria 76.7 6.3 170 2.2 64.9 42

10 Euryarchaeota g__Methanothermobacter 90.5 1.6 44 1.6 49.2 67

11 Proteobacteria f__Methanomicrobiaceae 78.1 0.7 44 1.5 57.5 175

12 Firmicutes o__Clostridiales 85.3 8.4 130 1.7 48.6 15

whether the introduction of the galactomannon contributed to
the enrichment of the Aminicenantes and Phycisphaerae groups,
the presence of genes for the utilization of galactomannon as
a carbon substrate were examined (Figures 6, 7). All genes
required for the endo-hydrolysis of the mannan backbone
of galactomannan (endo-βi-mannanase) were identified in
Phycisphaerae-PK28 (Figure 6), but not Aminicenantes-PK28
(Figure 7), and included representatives of glycosyl hydrolase
(GH) families 5 and 76. In contrast, genes for the hydrolysis of
terminal mannose residues (i.e., β-mannosidase) were identified
in both population genomes, including GH families 2 and
113. The presence of β-galactosidases from GH family 2 in
both population genomes, and GH 16 in Phycisphaerae-PK28,
suggests that both Aminicenantes-PK28 and Phycisphaerae-
PK28 are able to cleave the galactose side groups from
guar.

Hydrolysed mannose and galactose residues are likely to
be fed into glycolysis. For example, hexokinase and mannose-
6P-isomerase in both microorganisms can be used to convert
mannose to fructose-6P, an intermediate in glycolysis. In
Aminicenantes-PK28, metabolism of galactose follows the
Leloir pathway, whereby β-D-galactose is converted to UDP-
glucose by galactose mutarotase, galactokinase, galactose-1-
phosphate uridylyltransferase, and UDP-galactose-4-epimerase.
Although neither galactose-1-phosphate uridylyltransferase or
UDP-galactose-4-epimerase were identified in Phycisphaerae-
PK28, the presence of galactose mutarotase and galactokinase,
as well as a sodium/galactose symporter, suggest that a route
similar to the Leloir pathway is used to degrade galactose. In
both microorganisms, the pyruvate generated through glycolytic
degradation of mannose and galactose may be converted to
acetyl-CoA by the action of pyruvate-ferredoxin oxidoreductase
for use in a number of biosynthetic reactions. Alternatively,
the presence of pyruvate-formate lyase in Phycisphaerae-
PK28 suggests that pyruvate may instead be converted to
formate. Although no specific mechanism for generating
formate was found in Aminicenantes-PK28, putative genes
for formate dehydrogenase (i.e., hydrogenase-3 and formate
hydrogenylase) were identified and could be used to convert

formate to hydrogen and carbon dioxide as terminal products of
fermentation.

Alternative Sugar Substrates
In general, both Aminicenantes-PK28 and Phycisphaerae-
PK28 appear to be adapted to utilizing a variety of complex sugar
polymers. An analysis of glycosyl hydrolases (GHs), carbohydrate
binding modules (CBMs), carbohydrate esterases (CEs), and
polysacharaide lyases (PLs) in all PK28 population bins
revealed that both Aminicenantes-PK-28 and Phycisphaerae-
PK28 contained higher proportions of carbohydrate active
enzymes compared to other members of the PK-28 microbial
community, suggesting that they are highly adapted to utilizing
sugar polymers as a carbon and energy source (Table 3).
Aminicenantes-PK28 and Ignavibacteriae-PK28 (population
genome 1) also devoted a high proportion of their genome
to carbohydrates degradation. However, Ignavibacteriae-PK28
was not present at high proportion in the PK-28 microbial
community (∼1.5%).

Several genes encoding pectin-degrading enzymes were
identified in both Aminicenantes-PK28 and Phycisphaerae-PK28,
although the carbohydrate substrate range of Phycisphaerae-
PK28 appeared to be more diverse. In both microorganisms,
genes encoding polygalacturonases from GH family 28
were identified that could be used to cleave pectin into
galacturonate monomers. However, in Phycisphaerae-PK28,
multiple rhamnogalacturonan and pectate lyases from families
1, 9, and 10 were also identified that could be used to degrade
alternative forms of pectin. Although it is unclear how
Aminicenantes-PK28 processes the galacturonate residues
released from pectin cleavage, the presence of genes encoding
5-keto-4-deoxyuronate isomerase (kduL), 2-dehydro-3-deoxy-
D-gluconate 5-dehydrogenase (kduD), 2-keto-3-deoxygluconate
kinase (kdgk), and 2-keto-3-deoxy-6-phosphogluconate aldolase
(kdpg) in Phycisphaerae-PK28 suggest that galacturoate is likely
to be converted to 2-dehydro-3-hydroxy-D-gluconate for use
in the pentose phosphate pathway. Additionally, the presence
of endo-acting xylanases from GH family 43, as well as β-
xylosidases capable of cleaving terminal xylose residues, suggest
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FIGURE 4 | Maximum likelihood phylogenetic trees showing the placement of Phycisphaerae-PK28 within the phylum Planctomycetes using (A) a

concatenated set of 83 bacterial single-copy marker genes and (B) 16S rRNA gene sequences from Phycisphaerae-PK28 and members of the phylum

Planctomycetes. These analyses place Phycisphaerae-PK28 into the order MSBL9 within the class Phycisphaerae. NCBI accession numbers and IMG genome IDs

are listed to the right of each sequence. In both trees, white, gray, and black circles represent nodes with 70–80%, 80–90%, and >90% bootstrap support values

respectively. For the concatenated marker gene tree, members of the phyla Chlamydiae, Fibrobacter, and Chlorobi were used to root the tree.
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FIGURE 5 | Maximum likelihood phylogenetic trees constructed from (A) 83 bacterial single-copy marker genes and (B) near-full length 16S rRNA gene

sequences obtained from the sequence read archive (Farag et al., 2014), as well as from sequenced genomes from Rifle Creek (Sharon et al., 2015)

and Sakinaw Lake (Gies et al., 2014). Only 16S rRNA gene sequences >1400 bp were included in order to ensure overlap in alignment with the short fragment

from Aminicenantes-PK28. A dashed line is used to indicate that this sequence was inserted by maximum parsimony. This analysis places Aminicenantes-PK28 into

the order OPB95 within the class OP8-1. White, gray, and black circles represent nodes with 70–80%, 80–90%, and >90% bootstrap support values respectively.
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used: fumC, fumarate hydratase; sdh, succinate dehydrogenase; scs, succinyl-CoA synthetase; ogdc, oxoglutarate dehydrogenase complex; idh, isocitrate

dehydrogenase; can, citrate hydro-lyase; cs, citrate synthase; ass1, argininosuccinate synthase; otc, ornithine transcarbamylase; arg, arginase; asl, argininosuccinate

lyase; pfor, pyruvate-ferrodoxin oxidoreductase; mdh, malate dehydrogenase; pfl, pyruvate-formate lyase; rnf, Rnf electron transport complex; ast, aspartate

transaminase; gs, glutamate synthetase; gldh, glutamate dehydrogenase; gcs, glycine cleavage system; shmt, serine hydroxmethyltransferase; argB, acetylglutamate

kinase; argC, N-acetyl-glutamate semialdehyde dehydrogenase; argD, N-acetylornithine aminotransferase; argJ, arginine biosynthesis bifunctional protein; sat, sulfate

adenylyltransferase; cysC, adenylylsuflate kinase; cysH, phosphoadenylylsufate reductase; and sir, assimilatory sulfite reductase.

that Phycisphaerae-PK28 is able to hydrolyse xylan. Xylose
monomers liberated from this process can be converted by
xylose isomerase (xylA), hexokinase, and ribulose-3P-epimerase
(rpe) to D-ribulose-5P, an intermediate in the pentose phosphate
pathway that can be directed into glycolysis.

Amino Acid Metabolism
Oligopeptide transporters are present in both Aminicenantes-
PK28 and Phycisphaerae-PK28, and both microorganisms appear
to be able to utilize select amino acids, such as glycine (glycine
cleavage system), glutamate (glutamate dehydrogenase, gldh; and
glutamine synthetase, gs), and aspartate (aspartate transaminase,
ast). Additionally, genes encoding multiple proline transporters
(ABC-type and proline permease) were also identified in
Aminicenantes-PK28. The presence of genes encoding pyrroline-
5-carboxylate reductase (pcra) and aspartate transaminase (ast)
suggest that proline is converted to glyoxylate and pyruvate. In
Phycisphaerae-PK28, nearly all of the 21 peptidases identified
were linked to cell signaling or the modification/maturation of
specific proteins, rather than peptide degradation. In contrast,
36 of the 80 peptidases identified in Aminicenantes-PK28 are

associated with the degradation of oligopeptides, including
representatives from peptidase families M3, M14, M20, M28,
M55, S14, S16, S41, S46, C1B, C69, and T1B. Interestingly, five
genes encoding representatives of peptidase family M23 used
to degrade the cell walls of other bacteria were identified in
Aminicenantes-PK28, which suggests a possible role in peptide
scavenging from dead cells.

Nitrogen, Sulfur, and Oxygen Metabolism
In order to determine whether Aminicenantes-PK28 or
Phycisphaerae-PK28 could carry out either aerobic or anaerobic
respiration, the presence of genes for oxidative phosphorylation
(electron transport cytochromes), dissimilatory sulfate and
sulfite reduction (dissimilatory sulfite reductase; dsr), and
dissimilatory nitrate and nitrite reduction (dissimilatory nitrate,
nar; or nitrite reductase, nrf ) were examined. The absence
of these genes suggests that neither Aminicenantes-PK28 nor
Phycisphaerae-PK28 is able to respire using these electron
acceptors. However, genes for assimilatory acquisition of
sulfur and nitrogen acquisition were identified. For example,
genes for assimilatory sulfate reduction were present in both
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microorganisms, including sulfate adenylyltransferase (sat),
adenylylsuflate kinase (cysC), phosphoadenylylsufate reductase
(cysH), and a putative assimilatory sulfite reductase (sir).
Although sulfate may be present in low concentrations in
coal strata, peroxidisulfate was also introduced as a breaker
to depolymerize the guar gelling agent and may contribute
to the cell sulfur pool. The presence of a full operon for an
iron-molybdenum nitrogenase (nif ) was identified, as well as a
nitrogenase-associated rnf electron transport complex, suggests
that Phycisphaerae-PK28 is able to fix nitrogen.

Effect of Biocide
Kathon, a mixture of 5-chloro-2-methyl-4-isothiazolin-3-
one and 2-methyl-4-isothiazolin-3-one, was included in the
fracturing fluid to inhibit microbial growth. The chemical
mechanism of this biocide is complex, but is known to
act by disrupting the cell membrane, cleave thiol bonds,
generate free radicals, and inactivate a number of key

metabolic enzymes, including pyruvate dehydrogenase,
2-oxoglutarate dehydrogenase, succinate dehydrogenase,
NADH dehydrogenase, lactate dehydrogenase, and alcohol
dehydrogenase (Williams, 2007). Of these enzymes,
Aminicenantes-PK28 and Phycisphaerae-PK28 appear to
contain only genes for 2-oxoglutarate dehydrogenase.

Water Chemistry and Isotopic Analysis
Geochemical parameters with the potential to influence
microbial community structure were measured (Table 4) as part
of a larger investigation into the geochemistry of Surat Basin
CBM production waters (Baublys et al., 2015). Some wells were
sampled at multiple time points as part of a time series, with
one time point paired with samples for microbial analysis. Few
systematic trends were evident across the basin, but carbonate
tended to be lower in wells located in the western Surat Basin
(avg. 1031) compared to the east (avg. 1787). The pH of the
wells ranged from 7.6 in well WP-3 to 8.67 in CX-10. Most wells
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TABLE 3 | Summary of the total number of carbohydrate-active enzymes in each population genome, including glycosyl hydrolases, carbohydrate

esterases, polysaccharide lyases, and enzymes containing carbohydrate binding modules.

Population genome ID Lowest taxonomic classification Glycosyl hydrolases Carbohydrate binding modules

Total GH hits % GH ORFs Total CBM hits % CBM ORFs Total ORFs

0 c__Phycisphaerae 113 4.69 39 1.62 2410

1 p__Ignavibacteriae 89 3.15 24 0.85 2822

2 f__Peptococcaceae 9 0.47 10 0.52 1908

3 p__Aminicenantes 42 2.12 15 0.76 1981

5 p__Actinobacteria 4 0.27 3 0.20 1472

6 g__Methanothermobacter 1 0.06 1 0.06 1637

8 f__Methanobacteriaceae 2 0.13 0 0 1593

9 c__Deltaproteobacteria 12 0.61 1 0.05 1972

10 g__Methanothermobacter 1 0.06 0 0 1676

11 f__Methanomicrobiaceae 0 0 1 0.06 1589

12 o__Clostridiales 8 0.45 12 0.67 1796

Population genome ID Lowest taxonomic classification Carbohydrate esterases Polysaccharide lyases

Total CE hits % CE ORFs Total PL hits % PL ORFs Total ORFs

0 c__Phycisphaerae 17 0.71 13 0.54 2410

1 p__Ignavibacteriae 15 0.53 7 0.25 2822

2 f__Peptococcaceae 6 0.31 0 0 1908

3 p__Aminicenantes 10 0.50 0 0 1981

5 p__Actinobacteria 2 0.14 1 0.07 1472

6 g__Methanothermobacter 2 0.12 0 0 1637

8 f__Methanobacteriaceae 0 0 0 0 1593

9 c__Deltaproteobacteria 2 0.10 0 0 1972

10 g__Methanothermobacter 0 0 0 0 1676

11 f__Methanomicrobiaceae 0 0 0 0 1589

12 o__Clostridiales 4 0.22 0 0 1796

The total number of gene hits to each category is shown, as well as the percentage of all open reading frames (ORFs) devoted to that carbohydrate active enzyme (CAZY) category.

showed temperature values of ∼35◦C, with wells AG-13, AG-31,
WP-3, and PK-28 reaching above 40◦C. Conductivity showed
more variability, ranging from 4.40 mS in AG-13 to 13.41 mS
in WP-3, indicating substantially higher salinity in that well.
Consistent with this finding, WP-3 also shows the highest levels
of sodium, chloride, potassium, magnesium, and total iron. As
described by Baublys et al. (2015), trends within the isotopic
data (Table 5) are primarily reflective of the region from which
the water is derived. Consistent with the injection of additional
water and carbon into the well, PK-28 shows a younger water
age than any other well and a higher percentage of modern
carbon.

DISCUSSION

Stimulation of additional biogenic methane from CBM
production wells is likely to require a detailed understanding
of the in situ microbial communities. Although a number
of studies have characterized the microbial communities
present in unperturbed CBM production wells, this is the
first study to examine a CBM microbial community after

hydraulic fracture stimulation. Clear differences in community
composition were identified between PK-28 and wells that had
not been exposed to hydraulic fracture additives. Metagenomic
analysis revealed strong links between potential carbon
substrates introduced in the hydraulic fracturing fluid and
the metabolism of the dominant bacterial populations. These
findings suggest that hydraulic fracturing has a marked
effect on the composition and metabolism of CBM microbial
communities.

Themost significant compositional difference between PK-28,
the hydraulically fractured well, and the 10 other CBM
production wells was the presence of representatives from
the bacterial candidate phylum Aminicenantes (11%) and class
Phycisphaerae (9%) within the phylum Planctomycetes. These
were present at <0.5% relative abundance in all non-fractured
wells. Metabolic reconstruction of the Aminicenantes-PK28 and
Phycisphaerae-PK28 genomes revealed the presence of genes
for the degradation of galactomannon (i.e., guar), a common
additive in hydraulic fracture fluid. Orem et al. (2014) have
shown that the organic constituents of hydraulic fracture fluid
can persist in the coal bed for several months after the fluids have
been removed. Therefore, as water had only been extracted from

Frontiers in Microbiology | www.frontiersin.org 11 June 2016 | Volume 7 | Article 731

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Robbins et al. Microbes Enriched by CBM Hydrofracture Additives

TABLE 4 | Water chemistry CBM production waters.

Site Date pH Conductance Temperature HCO3 Cl Ca Mg Na K F Total Total Total Dissolved Depth

ID sampled (mS) (◦C) N P Fe Fe (m)

AG-13* 11/27/2013 8.21 4.40 41.3 2121 443 3 <1 1020 4 4.6 0.9 0.03 0.70 0.08 261–615

AG-31 5/08/2013 8.29 5.5 44.5 1841 799 4 1 1140 5 4.1 0.7 0.04 0.35 <0.05 265–604

AG-31* 11/27/2013 8.24 5.02 32.1 1865 790 4 1 1150 5 3.8 0.9 0.02 0.46 0.18 265–604

BB-3* 11/25/2013 7.85 7.97 36.0 980 1730 12 4 1530 86 2.1 1.0 0.04 4.48 0.37 515–835

BV-3 5/07/2013 8.15 8.05 37.8 1390 1720 7 3 1680 7 2.8 1.2 0.04 0.59 0.17 172–480

BV-3* 11/28/2013 8.28 8.18 36.1 1402 1650 7 3 1670 6 2.6 1.0 0.02 0.26 0.05 172–480

BV-9 5/07/2013 8.28 5.52 36.4 1512 1020 5 2 1140 5 2.6 1.2 0.04 5.12 <0.05 189–527

BV-9* 11/28/2013 8.36 5.72 35.0 1500 1040 5 2 1270 5 2.4 0.8 0.03 2.26 <0.05 189–527

BS-19 5/06/2013 8.36 3.46 35.3 1280 510 2 1 762 3 4.9 0.8 0.03 1.64 <0.05 362–566

BS-19* 11/27/2013 8.43 3.65 34.4 1317 540 2 <1 825 3 4.5 0.5 0.03 1.86 0.44 362–566

BS-36 5/06/2013 8.39 5.11 36.1 1963 745 3 1 1140 4 4.2 1.6 0.08 1.54 0.07 309–617

BS-36* 11/27/2013 8.49 5.30 36.5 1951 770 3 <1 1210 4 3.9 0.8 0.03 4.79 0.63 301–672

CD-8* 5/08/2013 8.49 4.61 30.2 2353 330 2 1 1000 4 4.9 0.4 0.05 2.28 0.41 460–804

CX-10* 11/25/2013 8.67 3.46 31.4 1256 539 3 <1 782 15 0.6 0.6 0.03 3.35 <0.05 200–442

PK-28* 11/25/2013 8.00 5.58 44.5 947 1260 9 1 1200 6 3.7 1.0 0.02 1.02 0.67 603–820

WP-3 3/24/2011 7.6 13.41 32.3 861 4280 38 9 2740 67 – – – – – 704–978

WP-3* 11/25/2013 7.90 7.00 42.9 939 1540 15 3 1400 31 3.9 1.4 0.02 36.0 0.06 704–978

Reproduced with permission from Baublys et al. (2015). All concentrations are listed in mg/L. An asterisk indicates that the measurements were taken at the same time as samples for

microbial analysis.

the well for∼4 months, after having been allowed to incubate for
2 years, it is likely that galactomannan polymer still resided in the
well (Struchtemeyer and Elshahed, 2012). In addition, estimates
for the doubling time of microbes present in the deep subsurface
biosphere under energy-starved conditions range from a few
years to several millennia (Hoehler and Jørgensen, 2013; Onstott
et al., 2014), suggesting that the microbial community structure
of the well is likely to remain largely static for years after the
galactomannan is removed.

Genes for the endo-hydrolysis of galactomannon (i.e.,
endo-mannases) were identified in the Phycisphaerae-PK28
genome, indicating that it is primarily responsible for the
depolymerization of guar into short oligosaccharides monomers.
These genes were identified in only one other member of the
PK-28 community, Ignavibacteriae-PK28, and it is unclear why
this microorganism is not more abundant. However, we can
speculate that Ignavibacteriae-PK28 was more susceptible to the
biocide. The presence of β-galactosidases and β-mannosidases
in the Aminicenantes-PK28 and Phycisphaerae-PK28 genomes
suggest that both microorganisms are able to use mannose
and galactose produced by galactomannan degradation. In
Aminicenantes-PK28, a putative phosphotransferase system for
the uptake of mannose was identified that could be used to
absorb mannose into the cell. No such system was identified
in Phycisphaerae-PK28. The application of a peroxidisulfate
breaker to partially hydrolyse the gelling agent in the hydraulic
fracture fluid prior to removal from the well was likely to
release free mannose and galactose monomers for consumption,
as well as cell sulfur for Phycisphaerae-PK28. The presence of
genes encoding pyruvate-formate lyase in Phycisphaerae-PK28,
and formate dehydrogenase in Aminicenantes-PK28, suggests

that formate, hydrogen, and carbon dioxide are major end
products of fermentation. This would provide an avenue for
a syntrophic association with the dominant hydrogenotrophic
methanogens in the PK-28 community belonging to the family
Methanobacteriaceae. In support of this hypothesis, a previous
16S rRNA gene amplicon based analysis of the water column
of Sakinaw Lake (Canada) showed a statistical correlation
between the Aminicenantes and hydrogenotrophic members
of the order Methanomicrobiales (Gies et al., 2014). The
unique ability of Aminicenantes-PK28 and Phycisphaerae-PK28
to ferment galactomannon in syntrophic association with a
hydrogenotrophic methanogen, may have provided a selective
advantage allowing these rare microorganisms to become
enriched. Further support for the role of Aminicenantes and
Phycisphaerae-PK28 in in-situ galactomannan degradation could
be generated through the establishment of enrichment cultures
seeded with CBM formation waters growing on galactomannan
as a carbon substrate, potentially containing Kathon as a selective
agent.

The ability to utilize a diverse array of polysaccharides,
including guar-like polysaccharides, has been identified as a
defining feature of Planctomycetes which are found in a variety
of environments, including fresh and marine waters, hot springs,
soils, and hydrocarbon contaminated environments (Yakimov
et al., 2006; Abed et al., 2010, 2011; Lage and Bondoso, 2011;
Tekere et al., 2013). Metabolic analysis of Phycisphaerae-PK28
showed that in addition to galactomannon, it has the potential
to hydrolyse the xylose polymer xylan, as well as pectin.
The ability to utilize complex sugars has been demonstrated
previously in members of the Planctomycetes present within
macroalgae-associated biofilms, and more specifically within
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TABLE 5 | Isotopic analysis of CBM production waters.

Water stabel isotopes Gas stable isotopes Water age and tracer data

Site ID δ
18O-H2O δ

2H-H2O iδ13C-CH4 δ
13C-CO2 δ

2H-CH4 1
13CCO2-CH4 1

2HH20-CH4 δ
13CDIC

13C age pMC

AG-13 – – −52.9 – −233 – – – – –

AG-13* −8.0 −49 −53.8 10.4 −216 64.2 167 13.4 >50,080 0.196

AG-31 −8.0 −50 −52.9 – −226 – 176 14 50,700 0.182

AG-31* −8.2 −51 −52.8 9.0 −212 61.8 161 11.7 52,200 0.151

BB-3* −7.9 −48 −50.1 – −216 – 168 16.8 45,860 0.331

BV-3 −8.4 −51 −51.3 – −230 – 179 14.7 43,200 0.462

BV-3* −8.6 −54 −51.7 – −223 – 169 15.7 >49,720 0.205

BV-9 −8.8 −54 −50 – −231 – 177 23.4 47,900 0.257

BV-9* −9.0 −56 −50.4 10.8 −220 61.2 164 19.7 54,201 0.117

BS-19 −7.4 −46 −56.6 – −234 – 188 18.2 43,650 0.437

BS-19* −7.6 −50 −57 – −223 – 173 13.3 53,250 0.132

BS-36 −8.3 −51 −53.6 – −226 – 175 18.8 51,550 0.163

BS-36* −8.4 −53 −53.8 9.6 −215 63.4 162 13.9 53,840 0.123

CD-8* −7.4 −47 −49.9 – −224 – 177 15.1 45,900 0.330

CX-10* −7.2 −43 −44.5 11.0 −217 55.5 174 25.9 52,490 0.145

PK-28* −7.4 −45 −49.5 6.2 −209 55.7 164 14.6 36,800 1.020

WP-3 −7.8 −47 – – – – – – – –

WP-3* −7.6 −46 −49.4 10.0 −216 59.4 170 14.2 47,680 0.264

Reproduced with permission from Baublys et al. (2015). An asterisk indicates that the measurements were taken at the same time as samples for microbial analysis.

the Phycisphaerae (Lage and Bondoso, 2014). For example,
Algisphaera agarilytica, isolated from the surface of macroalgae,
was shown to use agar, a galactose polymer, as a carbon source
(Yoon et al., 2014), and Tepidisphaera mucosa, isolated from a
hot spring, was shown to utilize pectin, galactomannon (i.e., locus
bean gum), xylose, and galactose, but not xylan (Kovaleva et al.,
2014). The Phycisphaerae-PK28 genome is consistent with these
previous observations for members of the Phycisphaerae.

In contrast, very little is known about the ecology of the
Aminicenantes, as no cultured representatives exist for direct
characterization andmetabolic analysis of three publicly available
genome sequences has been extremely limited (Rinke et al., 2013;
Gies et al., 2014; Sharon et al., 2015). Efforts to isolate the
Aminicenantes or genomically characterize representative taxa
are hampered by their low abundance in most communities.
Previous analysis of over 3100 16S rRNA gene amplicon datasets
mined fromNCBI’s sequence read archive (SRA) showed that the
Aminicenantes were present in a quarter of all datasets, but they
did not exceed 1% relative abundance in >99% of the data sets
examined (Farag et al., 2014). Although present at low relative
abundance, the Aminicenantes were identified frequently in fresh
water, marine, and hydrocarbon-impacted environments, leading
researchers to speculate on their role in these environments
(Farag et al., 2014). Limited metabolic reconstruction of an
Aminicenantes genome recovered from an acetate contaminated
aquifer (Rifle, Colorado, U.S.A) revealed that it contained several
glycosyl hydrolases (Sharon et al., 2015), but no investigation
of the function of those genes was conducted. It was concluded
that the Rifle Creek Aminicenantes may degrade carbon through
either fermentation or aerobic respiration based on the presence
of genes involved in aerobic respiration (respiratory Complex I,

II, and III). This microorganism is also proposed to participate in
hydrogenmetabolism and assimilatory sulfite reduction. Analysis
of a separate Aminicenantes genome recovered from Sakinaw
Lake (Canada) revealed a partial set of genes for the Wood-
Ljungdahl pathway (Gies et al., 2014). The authors speculated
that the Sakinaw Lake Aminicenantes is capable of using this
pathway in reverse to consume acetate and generate CO2 in
syntrophic association with a hydrogenotrophic methanogen. In
contrast to these previous findings, the population genome of
Aminicenantes-PK28 does not indicate that it has the ability
to perform aerobic respiration or produce CO2 via the Wood-
Ljungdahl pathway. Instead, Aminicenantes-PK28 appeared to
be capable only of anaerobic carbohydrate and amino-acid
fermentation, producing CO2 through the oxidation of formate.
Interestingly, a broad range of peptidase families were identified
inAminicenantes-PK28, suggesting that amino acid fermentation
may be a key feature of its metabolism. For example, peptidases
from family M23 capable of lysing the cell walls of other bacteria
were identified in Aminicenantes-PK28 and may indicate that
this microorganism acts as a scavenger of dead cells in CBM
formation waters.

In this study, we have shown compelling evidence that specific
additives within the hydraulic fracture fluid are responsible
for a major shift in community composition which favors the
enrichment of microorganisms from the rare biosphere that are
able to utilize galactomannan. The observed enrichment of novel
representatives of the class Phycisphaerae and candidate phylum
Aminicenantes may also be coupled to their ability to work in
syntrophic association with hydrogenotrophic methanogens and
to the introduction of specific biocides into the well. It is possible
that Aminicenantes and Phycisphaerae-PK28 are resistant to the

Frontiers in Microbiology | www.frontiersin.org 13 June 2016 | Volume 7 | Article 731

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Robbins et al. Microbes Enriched by CBM Hydrofracture Additives

Kathon biocide used in PK-28. Their resistance may result from
the lack of genes known to be targeted by this biocide. Although
both microorganisms possess 2-oxoglutarate dehydrogenase,
other pathways may be used to accommodate its inhibition.
For example, aspartate transaminase could be used to generate
oxaloacetate for use in the TCA cycle. In addition, the unique
cell wall structure of members of the phylum Planctomycetes
(Fuerst and Sagulenko, 2011; Devos, 2014) may confer resistance
to membrane disruption by Kathon. However, it is also possible,
and perhaps more likely, that neither microorganism is biocide
resistant, and instead may have simply recolonized the seam after
the Kathon had degraded or dispersed to a low concentration. In
this case, microorganisms best able to efficiently utilize guar as a
carbon substrate would recolonize more quickly.

In addition to PK-28, wells WP-3, and AG-13 also appeared
to cluster away from the other wells (Figure 3), indicating that
they harbor atypical microbial communities compared to the
rest of the Surat Basin. Neither of these wells were subjected
to hydrofracture stimulation and neither showed enrichment
in either Phycisphaerae or Aminicenantes lineages. Instead,
both wells showed enrichment in thermophilic members of
the bacterial family Thermodesulfovibrio and archaeal genus
of methanogens Methanothermobacter, as well as members
of the class OPB41 from the Actinobacteria. The observed
enrichment in Thermodesulfovibrio and Methanothermobacter
in wells with considerably higher than average temperatures
(>40◦C) is consistent with the optimum growth range
of these lineages (Henry et al., 1994; Wasserfallen et al.,
2000). Therefore, it is likely that these wells are atypical
because their temperature is conducive to the enrichment
of thermophiles. Additionally, WP-3 displayed a number of
geochemical parameters such as pH, conductivity, and total iron
that could be responsible for the observed microbial community
shift. Additional basin-wide surveys are needed to identify the
geochemical factors that govern CBM microbial community
structure.

This study provides a basis for understanding how specific
additives commonly used in hydraulic fracture fluid may alter
CBM microbial communities. However, it is important to
note that the findings of this study are specific to the set of
additives used and may not be applicable to all CBM wells.
Further, only one hydrofractured well was available for sampling.
Therefore, examination of additional hydraulically fractured
CBM production wells will be necessary to confirm these findings
and determine how the microbial community will be affected
under different stimulation scenarios. A longitudinal study is
also warranted to document the community composition before
and for several months after hydraulic fracture stimulation
to determine if the community is capable of returning to an
unperturbed state.
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