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Chironomids (Diptera: Chironomidae), also known as non-biting midges, are one of
the most abundant groups of insects in aquatic habitats. They undergo a complete
metamorphosis of four life stages of which three are aquatic (egg, larva, and pupa), and
the adult emerges into the air. Chironomids serve as a natural reservoir of Aeromonas
and Vibrio cholerae species. Here, we review existing knowledge about the mutual
relations between Aeromonas species and chironomids. Using 454-pyrosequencing
of the 16S rRNA gene, we found that the prevalence of Aeromonas species in
the insects’ egg masses and larvae was 1.6 and 3.3% of the insects’ endogenous
microbiota, respectively. Aeromonas abundance per egg mass remained stable during
a 6-month period of bacterial monitoring. Different Aeromonas species were isolated
and some demonstrated the ability to degrade the insect’s egg masses and to prevent
eggs hatching. Chitinase was identified as the enzyme responsible for the egg mass
degradation. Different Aeromonas species isolated from chironomids demonstrated the
potential to protect their host from toxic metals. Aeromonas is a causative agent of fish
infections. Fish are frequently recorded as feeding on chironomids. Thus, fish might be
infected with Aeromonas species via chironomid consumption. Aeromonas strains are
also responsible for causing gastroenteritis and wound infections in humans. Different
virulence genes were identified in Aeromonas species isolated from chironomids.
Chironomids may infest drinking water reservoirs, hence be the source of pathogenic
Aeromonas strains in drinking water. Chironomids and Aeromonas species have a
complicated mutual relationship.
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CHIRONOMIDS

Chironomids (Diptera; Chironomidae), also known as non-biting midges, are the most abundant
insects in freshwater habitats (Armitage et al., 1995). Members of the Chironomidae family are
opportunistic colonizers of all aquatic environments. They undergo a complete metamorphosis of
four life stages: eggs, larvae, pupae, and adults. Females of the genus Chironomus lay egg masses at
the interface between water and air, usually glued to water plants or rocks. Each egg mass contains
hundreds of eggs wrapped in a gelatinous matrix, composed mainly of glycoprotein and chitin
(Broza et al., 2000; Halpern et al., 2003; Laviad et al., 2016). The matrix protects the eggs and
is settled by various bacterial species (Halpern et al., 2007; Senderovich et al., 2008; Senderovich
and Halpern, 2012, 2013; Failla et al., 2015; Halpern and Senderovich, 2015). The larvae of
most Chironomus species pass through four stages that can be diagnosed by body length and
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diameter of the head box (Failla et al., 2015). Larvae at the
first stage are planktonic and attracted to light; when they find
a suitable place they settle and become benthic and no longer
respond to light (Oliver, 1971). The larvae transform into pupae
and the adults emerge into the air. Chironomid adults create
aerial swarms for mating, after which the females lay the egg
masses (Broza et al., 2005).

Chironomids are found worldwide, from Nepal glaciers at
an altitude of 6,600 m to Lake Baikal at a depth of 1,000 m.
They have also invaded the sea and are found on all coasts
to a depth of 30 m (Wolfram et al., 1999; Epler, 2001). The
estimated number of species in the Chironomidae family is
15,000–20,000 (Ali, 1995). Chironomids have the ability to
reproduce fast in large numbers, and can compete with other
benthic organisms for food (Demoor, 1992). Under certain
conditions, such as low dissolved oxygen levels in water,
chironomid larvae may be the only insects that can survive
at the bottom of the water habitat. They are successful in
aquatic environments with low nutrient resources and can
tolerate extreme environmental changes. Some species show the
ability to survive in extreme conditions of temperature, pH,
salinity, organic pollution, and heavy metal loads (Failla et al.,
2015).

Chironomids are inhabited by diverse bacterial species.
A significant number of their endogenous bacteria are closely
related to species known as toxicant degraders (Senderovich and
Halpern, 2012, 2013). More details can be found in a recent
review of chironomids’ microbiome (Halpern and Senderovich,
2015).

Aeromonas

Members of the genus Aeromonas belong to the family
Aeromonadaceae in the order Aeromonadales (Martin-Carnahan
and Joseph, 2005). Aeromonas species are Gram-negative rods
and facultative anaerobes, and can be isolated from a variety
of sources such as water and sewage, from various aquatic
environments and clinical tissue samples from human or animals,
from food sources such as meat, poultry, seafood and vegetables,
and from chironomids (Janda and Abbott, 1998; Halpern et al.,
2007; Pérez-Valdespino et al., 2009).

Aeromonas species have been associated with human disease
for more than 50 years and are recognized as important causes
of intestinal and extra-intestinal illnesses in humans, including
gastroenteritis and septicemia in immune-compromised
persons, serious wound infections in healthy individuals
and in patients undergoing medicinal leech therapy, and a
number of less well described illnesses such as peritonitis,
meningitis, endocarditis, and infections of the eye, joints, and
bones (Janda and Abbott, 1998, 2010; Figueras, 2005; Parker
and Shaw, 2011; Igbinosa et al., 2012; Senderovich et al.,
2012).

The following species are the most abundant in clinical
samples: Aeromonas caviae (29.9%), A. dhakensis (25.5%),
A. veronii (22%), and A. hydrophila (18%; Figueras and Beaz-
Hidalgo, 2015). Among others, less frequently isolated clinical

species are A. schubertii, A. simiae, A. diversa, A. taiwanensis, A.
sanarellii, A. media, and A. salmonicida (Janda and Abbott, 2010;
Beaz-Hidalgo et al., 2012; Senderovich et al., 2012; Latif-Eugenín
et al., 2016).

Aeromonas IN CHIRONOMIDS

Rouf and Rigney (1993) were the first to identify
Aeromonas species from chironomid larvae. Following these
findings, different Aeromonas species were identified from
chironomid egg masses: A. caviae (punctata), A. culicicola, A.
dhakensis (aquariorum), A. hydrophila, A. media, A. salmonicida,
A. sanarellii, A. schubertii, A. taiwanensis, and A. veronii
(Halpern et al., 2007; Senderovich et al., 2008; Figueras
et al., 2011; Halpern, 2011; Beaz-Hidalgo et al., 2012; Laviad,
2012; Senderovich and Halpern, 2012, 2013; Halpern and
Senderovich, 2015; Laviad et al., 2016; Supplementary Table
S1). Except A. culicicola, all these species have a clinical
record (see the list in the previous paragraph). Aeromonas
was also identified from chironomid egg masses and larvae
by culture-independent methods like cloning and 454-
pyrosequencing of the 16S rRNA gene (Senderovich and
Halpern, 2012, 2013; Supplementary Table S1). Figueras et al.
(2011) re-identified 23 A. caviae egg masses isolates from
Senderovich et al. (2008) as A. aquariorum. This species
was later re-identified as A. dhakensis (Beaz-Hidalgo et al.,
2013).

PATHOGENICITY POTENTIAL OF
Aeromonas ISOLATES FROM
CHIRONOMIDS

Aeromonas possess a multifactorial virulence potential
which enables them to colonize, invade, and infect
different hosts. Among the virulence factors are structural
components that act as adhesins (i.e., flagella, outer membrane
proteins, etc.), secreted toxins (hydrolytic lipases, proteases,
haemolysins, and enteorotoxins), interactions of different
types of secretion systems (e.g., Type III secretion system
[TTSS]), iron acquisition mechanisms, and quorum-
sensing molecules which modulate expression of the
virulence genes (Janda and Abbott, 2010; Senderovich et al.,
2012).

Some of the chironomid Aeromonas isolates were scanned
for the presence of virulence genes (Supplementary Table S2).
Abundances of the following genes were studied: pla/lipH3/apl-
1/lip (genes for phospholipase); ahpB (gene for elastase); alt, act,
ast (cytotoxic and cytotonic enterotoxins genes); fla (gene for
flagellin); ascF-ascG, and aexT (TTSS genes). All the studied
A. dhakensis isolates were negative for the ast gene, 50% were
positive for act, the majority of isolates were positive for ahpB,
alt, ascF, pla/lipH3/apl-1/lip, and fla (93, 96.4, 85.7, 82, and
53.5%, respectively) and only one isolate was positive for aexT
(Supplementary Table S2; Senderovich et al., 2008; Figueras et al.,
2011; Shaked, 2011). A. sanarellii and A. taiwanensis (8 and
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3 isolates respectively) that were scanned for virulence genes
proved positive for ahpB and fla genes and negative for ast,
act, and alt genes. The majority were positive for pla/lipH3/apl-
1/lip genes. As for the TTSS genes, all A. sanarellii isolates
were negative for the aexT gene and 25% were positive for
the ascF gene. Two out of the three A. taiwanensis isolates
were positive for both ascF and aexT genes (Beaz-Hidalgo
et al., 2012; Supplementary Table S2). The results shown in
Supplementary Table S2 demonstrate that Aeromonas isolates
from chironomids present pathogenicity potential for humans
and animals.

ANTIBIOTIC RESISTANCE IN Aeromonas
ISOLATES FROM CHIRONOMIDS

Resistance to β-lactamase antibiotics is a characteristic of
Aeromonas species. The expression of chromosomally
encoded β-lactamases is associated with resistance activity
against a variety of β-lactam antibiotics like penicillin
and cephalosporin (Janda and Abbott, 2010; Carvalho
et al., 2012). Beaz-Hidalgo et al. (2012), who studied
the antibiotic resistance of chironomid egg masses
A. taiwanensis and A. sanarellii isolates, found that all
strains were resistant to β-lactam antibiotics: Ampicillin
(the first “broad spectrum” penicillin), Cefalotin (a first-
generation cephalosporin), and Ertapenem. Most strains
(∼75%) were also resistant to Amoxicillin–clavulanic acid
(Amoxicillin with β-lactamase inhibitor). All strains showed
sensitivity to 12 of the 19 tested antibiotics (Amikacin,
Aztreonam, Cefepime, Cefotaxime, Ceftazidime, Ciprofloxacin,
Gentamicin, Piperacillin–tozobactam, Tigecycline, Tobramycin,
Trimethoprim–sulfamethoxazole, and Imipenem; Beaz-Hidalgo
et al., 2012).

Aeromonas PREVALENCE IN
CHIRONOMIDS

The abundance of Aeromonas per chironomid egg mass
was monitored over a 6-month period (Shaked, 2011). Egg
masses were collected from the Tivon waste stabilization
pond (WSP) in northern Israel; abundance was studied by
culturable and molecular methods. Aeromonas was isolated
and identified from chironomid egg masses by means of
a selective m-Aeromonas agar medium. Aeromonas colony-
forming units (cfu) were counted per egg mass. Real-time
PCR assay was used in parallel by amplifying a fraction
of the 16S rRNA gene region with primers specific to the
genus Aeromonas (Aer66f/Aer613r), according to Yu et al.
(2008). The number of Aeromonas per egg mass obtained
by the molecular method was usually ten times higher than
the culturable cfu number. Aeromonas numbers stayed steady
through almost the entire sampling period, demonstrating that
Aeromonas is a stable resident in chironomids (Table 1).
Furthermore, 454-pyrosequencing of the 16S rRNA gene showed
that Aeromonas sp. comprised 1.6 and 3.3% of the egg masses and

TABLE 1 | Abundance of Aeromonas in chironomid egg masses collected
from the Tivon WSP.

Samplinga Aeromonas (cfu/egg
mass) culturable

method

No. of
Aeromonas/egg mass
real-time PCR method

1 (0) 2.17 × 103 9.35 × l04

2 (12) 2.47 × l03 1.30 × l04

3 (25) 5.59 × l03 1.02 × l04

4 (40) 3.61 × l03 1.62 × l04

5 (65) ND 1.71 × l04

8 (112) ND 1.06 × l04

9 (118) 2.78 × l02 1.10 × l04

10 (122) 2.92 × l03 2.20 × l04

11 (127) 3.97 × l03 1.41 × l04

12 (133) ND 8.58 × l03

13 (140) 4.38 × l03 1.97 × l04

15 (154) 2.87 × l03 5.31 × l03

16 (160) 2.33 × l02 5.40 × l03

17 (167) 4.51 × l03 1.88 × 104

Chironomid egg masses were sampled between April and September, 2009.
Numbers in the table are the average of three egg masses, three repeats for
each (data from Shaked, 2011). Comparison of Aeromonas cfu/egg mass and
estimated Aeromonas numbers were estimated by real-time PCR technology using
the number of copies of the 16S–23S rRNA intergenic region, according to Kong
et al. (1999). aNumbers in parentheses indicate day of sampling. Date of the first
sampling was April 1, 2009. ND, Not detectable.

the larvae microbiota, respectively (Senderovich and Halpern,
2013).

EGG MASS DEGRADATION BY
Aeromonas sp.

The gelatinous matrix that surrounds the egg masses consists
mainly of glycoprotein and chitin (Halpern et al., 2003;
Laviad et al., 2016). Vibrio cholerae degrade chironomid egg
masses and prevent the eggs from hatching (Broza and
Halpern, 2001) by secreting Haemagglutinin/Protease (HAP;
Halpern et al., 2003).

Senderovich et al. (2008) screened 1,100 bacterial isolates
(other than V. cholerae) and found that 43 isolates were
able to degrade the egg masses. Most of these isolates were
identified as Aeromonas species. Laviad et al. (2016) examined
the ability of 129 Aeromonas chironomid egg mass isolates to
degrade the egg masses. Only 5% of them demonstrated this
ability. The egg mass degrading factor of A. dhakensis was
identified as a chitinase, and not a protease as was found for
V. cholerae (Laviad et al., 2016). In fact, it then became clear
that A. dhakensis secreted chitinase constitutively while most
Aeromonas strains secrete chitinase inductively (Laviad et al.,
2016). Aeromonas species that were found to degrade the egg
masses constitutively are presented in Figure 1. Interestingly,
most chironomid A. dhakensis isolates (>70%) were chitinase-
constitutive, hence could degrade the egg masses without
induction in the presence of chitin (Figueras et al., 2011; Laviad
et al., 2016).
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Neighbor-joining phylogenetic tree derived from rpoD gene sequences representing all Aeromonas isolates that showed the ability to degrade the
egg masses constitutively (meaning without chitin induction). The tree shows the relation of egg-mass degrading Aeromonas isolates to known Aeromonas
species. The sequence alignments were performed with the CLUSTAL W program in MEGA 6 software. Numbers at nodes indicate bootstrap values (percentages of
1000 replicates). Bar 0.05 substitutions per nucleotide position. Isolates marked black were published in Senderovich et al. (2008) and Figueras et al. (2011). Isolates
marked gray were isolated from egg masses and adults in India (Laviad, 2012). Unmarked isolates are from Laviad et al. (2016). All the type strains are from the NCBI
data base.

THE ABILITY OF Aeromonas TO
PROTECT ITS HOST FROM TOXIC
METALS

Chironomids are known to be tolerant of extreme environments,
including contamination by heavy metals. Chironomid larvae
can be bioaccumulators of mercury at high concentrations of
the metal (Chetelat et al., 2008). Accumulation of various metals
(lead, chromium, cadmium, copper, arsenic, iron, nickel, and
manganese) by chironomids was found related to the presence
of the metals in the sediment (Desrosiers et al., 2008). The
mechanism that enables chironomids to survive in these extreme
environments is not completely understood. Senderovich and
Halpern (2012, 2013) demonstrated that 40 and 25% of the
total bacterial communities in the egg masses and the larvae,
respectively, were related to species possessing detoxification
abilities. In addition, they screened isolates from egg masses
and larvae for their ability to detoxify chromium, copper,
lead, and zinc. They also used the Koch postulates to prove
that endogenous bacteria can help chironomids to survive in
environments with toxic chromium and lead. Some of these metal
detoxification isolates belonged to the following Aeromonas
species: A. caviae, A. dhakensis, A. hydrophila, A. veronii, and
A. taiwanensis. They were found to be resistant to some or all
the following metals Pb(NO3)2, K2CrO4, CuSO4, ZnCl2, Ni, and
Co in concentrations between 1 and 10 mM (Senderovich and
Halpern, 2012, 2013).

Aeromonas DISPERSAL

Aeromonas species cause disease in a variety of invertebrates
and vertebrates including fish, birds, frogs, and domestic animals
(Pérez-Valdespino et al., 2009). Eight of 21 disease outbreaks in
ornamental fish were linked to Aeromonas species (Hettiarachchi
and Cheong, 1994). Aeromonas can cause various fish diseases
such as septicemia, ulcerative, hemorrhagic frunculosis, etc.
These diseases result in financial loss in the aquaculture
sector. The most important species that cause fish diseases are
A. salmonicida and A. hydrophila (Beaz-Hidalgo and Figueras,
2012). Chironomid egg masses and larvae are part of some fish
species’ diet. Fish species that consume chironomid egg masses
and/or larvae may acquire Aeromonas from the insect.

In a survey conducted between 1982 and 1984, Shane et al.
(1984) found 20 A. hydrophila isolates in 15 different bird species.
A. hydrophila was also found to be the agent of high mortality in
waterfowl (Korbel and Kösters, 1989).

Halpern et al. (2008) and Senderovich et al. (2010) suggested
that fish that live on a diet that includes chironomids may

be infected with V. cholerae (whose natural reservoirs are
also chironomids). V. cholerae can be further transferred from
the fish to waterbirds that consume fish; likewise Aeromonas
may be transmitted from chironomids to waterbirds through
fish. Furthermore, chironomids can survive the gut passage
in waterbirds (endozoochory; Green and Sanches, 2006) and
can even be attached directly to the bird’s feet and feathers
(epizoochory; Frisch et al., 2007). Thus, Aeromonas can be
transmitted via chironomids to fish and waterbirds.

CONCLUDING REMARKS

Chironomid egg masses and larvae inhabit different Aeromonas
species. They are found in persistent numbers in the egg masses
through all seasons of the year. Their abundance in the insects’
egg masses and larvae is 1.6 and 3.3% from the endogenous
microbiota respectively. Aeromonas species degrade chironomid
egg masses and can prevent eggs from hatching by secreting
chitinase. However, most Aeromonas species produce this
enzyme inductively, meaning that it is induced in the presence
of chitin (which is one of the egg mass components). About
5% of Aeromonas chironomid isolates degrade the egg masses
constitutively—and interestingly, most of these constitutive
degrading isolates belong to the species A. dhakensis. Aeromonas
species that inhabit chironomids are able to protect their host
from toxic metals. So on one hand Aeromonas species may have a
role in controlling chironomid populations (by degrading the egg
masses), but on the other they may protect the insect from toxic
heavy metals.

Aeromonas species identified from chironomids are human
or fish pathogens and contain various virulent genes. As
chironomids may infest drinking water supply systems, they may
disseminate Aeromonas species to humans. It is also probable that
Aeromonas species are transmitted from chironomids to fish and
waterbirds, and thereby are globally dispersed.

UNRESOLVED QUESTIONS AND
FUTURE RESEARCH

1. Most A. dhakensis isolates were chitinase constitutive.
Does this ability to degrade chironomid egg masses
give A. dhakensis a relative advantage over other
Aeromonas species in proliferating in the egg mass
niche? In a study in India (Laviad, 2012), this
species proved the most abundant of Aeromonas
species in egg masses and adults (53.4 and 66.7%,
respectively).
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2. A whole genome sequence of A. dhakensis strain (Wu et al.,
2012) revealed that a gene encoding a metalloprotease is
located between two chitinase genes (Laviad et al., 2016).
These three genes seem to fit in the same operon, therefore
may be transcribed under the same control. In V. cholerae
a metalloprotease was found responsible for egg mass
degradation. Does this metalloprotease also have a role in
egg mass degradation activity in Aeromonas? If so, does it
act synergistically with chitinase? Moreover, does chitinase
play a part in degradation of the egg masses by V. cholerae?

3. Do Aeromonas species protect their host from toxicants
other than heavy metals? For example, Aeromonas was
found to degrade carbamyl (an insecticide; Hamada et al.,
2015).

4. What are the interactions between the different Aeromonas
species that inhabit chironomid egg masses?

5. Both Aeromonas species and V. cholerae are constantly
present in the chironomid niche, usually at a rate of at least
5 to 1 in favor of the Aeromonas species (Senderovich and
Halpern, 2013). What are the interactions between these
two egg mass degrading bacteria species?
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