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MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting
at the genus and species levels. Recently, there has been keen interest in using MALDI-
TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant
strains of bacteria. The purpose of this study was to enhance strain level resolution
for Campylobacter jejuni through the optimization of spectrum processing parameters
using a series of designed experiments. A collection of 172 strains of C. jejuni were
collected from Luxembourg, New Zealand, North America, and South Africa, consisting
of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains
resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains
resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to
cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16
strains (three biological replicates and three technical replicates per isolate, yielding a
total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance
detection of antibiotic resistance. The most optimal parameters were applied to the
larger collection of 172 isolates (two biological replicates and three technical replicates
per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic
resistance detection whenever either a curve based similarity coefficient (Pearson or
ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized
preprocessing parameters were applied. Increases in antimicrobial resistance detection
were scored using the jackknife maximum similarity technique following cluster analysis.
From the first four groups of antibiotic resistant isolates, the optimized preprocessing
parameters increased detection respective to the aforementioned groups by: (1) 5% (2)
9% (3) 10%, and (4) 2%. An additional second categorization was created from the
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collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive
to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance
detection was increased by 34%. These results suggest that spectrum processing
parameters, which are rarely optimized or adjusted, affect the performance of MALDI-
TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance

screening performance.

Keywords: MALDI-TOF MS, Campylobacter jejuni, antimicrobial resistance, antibiotic resistance, designed

experiments, spectrum processing

INTRODUCTION

MALDI-TOF MS has revolutionized the field of molecular
microbial diagnostics in recent years (Sauer and Kliem, 2010;
Welker, 2011; Welker and Moore, 2011; Kliem and Sauer, 2012).
This approach has been implemented in biomedical, veterinary
and environmental routine procedures for bacterial identification
at the genus, species, and sometimes at the subspecies level (e.g.,
Wieser et al.,, 2011; Croxatto et al., 2012; Koubek et al., 2012;
Lartigue, 2013; Sandrin et al., 2013; Randall et al., 2015). While
microbial identification using MALDI-TOF MS is rapid and
reliable, the taxonomic resolution obtained from the mass spectra
is not always sufficient, or the bioinformatics software pipeline
is not optimized or adapted, for typing the candidate bacteria
below the species level (Sandrin et al., 2013; Zhang et al., 2014).
However, some studies have shown that categorization of strains
of bacteria with respect to their membership in nucleic acid-
based subgroups, pathogenicity traits or antimicrobial resistance
(AMR) identification is indeed feasible, but depends on the level
of variability inside a given taxon as well as on the precise
identification of characteristic biomarkers using bioinformatics
tools (Sandrin et al., 2013). Fine-tuning of mass spectrum analysis
is evidently mandatory.

Rigorous analysis of spectra has permitted successful detection
of AMR (e.g., Hrabak et al., 2013; Kostrzewa et al., 2013; Pulido
et al,, 2013), but further development is needed to render
MALDI-based approaches a more routine, reliable, and effective
alternative to traditional methods. As has been shown in several
MALDI applications to discriminate bacterial strains (Mitchell
et al., 2015), high reproducibility is required for reliable AMR
detection. Although many portions of the MALDI-TOF MS
workflow such as sample preparation and data acquisition have
been optimized with regard to spectrum reproducibility and
method performance (e.g., Freiwald and Sauer, 2009; Goldstein
et al,, 2013), no standardization for mass spectrum processing
parameters has been proposed. Processing parameters are used to
calculate, define, and resolve acquired spectra into interpretable
data. Baseline subtraction, a common processing parameter,
establishes a baseline from the spectrum, leaving a clearer
picture of the remaining peaks. Another processing parameter,
smoothing, reduces background noise, and increases signal-
to-noise ratio. The manner in which the data are translated
by processing parameters may affect the ability of MALDI-
TOF MS-based fingerprinting to detect antibiotic resistance. In
addition, different software packages that use distinct spectrum
processing workflows and parameters are often used. Many of

these programs do not offer the ability to alter and optimize
spectrum processing parameters. Such optimization, though,
may be necessary to enhance method performance, particularly
with regard to resolving strain-level differences, such as AMR.

The issues regarding the ever-increasing bacterial resistance
to large categories of antimicrobial compounds are particularly
of public health concern for the world’s leading bacterial gastro-
enteritis agent Campylobacter (World Health Organization
[WHOJ, 2013). The species Campylobacter jejuni is recognized
as the major food- and waterborne pathogen inside this taxon,
and is a major threat to public health (Kaakoush et al., 2015;
Wagenaar et al, 2015). AMR in Campylobacter is steadily
increasing (e.g., Luangtongkum et al., 2009; Ge et al., 2013;
Tovine, 2013; Wieczorek and Osek, 2013). Of particular concern
is also the increasing incidence of AMR of Campylobacter
spp. other than C. jejuni, whose disease potential is not fully
appreciated at present (Lastovica, 2006; Lastovica et al., 2014).
Campylobacter easily undergoes DNA transformation by foreign
exogenous DNA resulting in many different antibiotic-resistant
strains (Bae et al., 2014). Also, antibiotic resistance mutations in
C. jejuni continue to develop (Iovine, 2013). For example, a single
mutation in the gyrase subunit A (gyrA) gene, resulting in an
amino acid substitution, is sufficient for conferring resistance to
quinolones (Wang et al., 1993; Payot et al., 2006).

In diagnostic and clinical microbiology, as well as
epidemiological surveillance, the need for implementation
of early and precise information retrieval concerning AMR
has been raised (Laxminarayan et al., 2013). This could greatly
improve treatment of infectious diseases and help limit the
spread of multiple resistant strains of harmful bacteria. In
this context, the evolution toward microbial characterization,
and more specifically AMR prediction through whole-genome
sequencing (WGS) has been described in recent years including
the identification of AMR-specific signatures in Campylobacter
(e.g., Didelot et al., 2012; Zhao et al., 2016). But also, the potential
of various MALDI-TOF MS applications for the prediction
of AMR mechanisms has been identified (Hrabdk et al., 2013;
Kostrzewa et al, 2013). Most importantly, the use of mass
spectrometry toolkits for the diagnosis of AMR in Campylobacter
is emerging (Wieser et al, 2011; Lartigue, 2013; Schubert
and Kostrzewa, 2015), and a new microbial typing method
relying on mass spectrometry-based phyloproteomics (MSPP),
permitting biomarker, and genetic features characterization in
Campylobacter, has recently been published (Zautner et al,
2015). Still, the MALDI-TOF MS-based workflow remains in the
need of optimization and simplification of robust, reliable and
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reproducible workflows, especially regarding data handling after
automated routine acquisition of mass spectra.

Consequently, the overarching objective of this study was
to determine whether MALDI-TOF mass spectrum processing
parameters could be optimized to enhance the detection of
antibiotic resistance in clinically relevant environmental, animal,
and human isolates of C. jejuni. Therefore, 172 isolates of
C. jejuni were collected from four continents, some of which
share antibiotic resistances within four different groups (Table 1).
Special emphasis was put on C. jejuni resistance to beta-
lactams, as this antibiotics group is considered among the
most important and widespread treatment with resistance issues
(Wieser et al., 2011; Lartigue, 2013; Schubert and Kostrzewa,
2015). A designed experiments approach was employed (Zhang
et al., 2014), in which spectrum processing parameters were
varied to optimize detection of AMR. Translation of the genetic
and phenotypic characteristics of C. jejuni might identify useful
and straightforward information collection in a global One
Health context (Maloy and Atlas, 2014). Our results suggest that
a designed experiments approach allows optimization of mass
spectrum analysis and enhances detection of AMR in C. jejuni.

MATERIALS AND METHODS

Campylobacter jejuni Strains and Culture

Conditions

A collection of 16 C. jejuni isolates were used as a model system
for the designed experiments and a total of 172 C. jejuni strains
from various geographical and animal host origins were used
in application of the model spectrum processing parameters
(Table 1).

Antibiotic resistance profiles were established by a non-
exhaustive series of phenotypic and genomic attribute tests of the
C. jejuni isolate collection, depending on specific culture media
used and availability of whole genome sequence data (WGS)
of the strains. Genomics-based AMR potential of part of the

TABLE 1 | Characteristics of the Campylobacter jejuni isolates used in this
study.

C. jejuni isolate collection

Number of strains 172
Geographic origin Luxembourg, New Zealand, South Africa,

USA

Alpaca, bovine, chicken, feral swine, goat,
goose, human, milk product, ovine,
raccoon, surface water, turkey, vole,
wastewater, wildfow!

Sources

Antibiotic resistance profiles
(phenotypically or
genotypically confirmed
resistances)

Group 1 (65 isolates): Cefoperazone
Group 2 (26 isolates): Beta-lactams,
cefoperazone

Group 3 (5 isolates): Beta-lactams,
cefoperazone, tetracycline

Group 4 (76 isolates): Cefoperazone,
teicoplanin, amphotericin B, cephalotin

collection was obtained through screening using the ResFinder
bioinformatics platform' (Zankari et al., 2012).

For each strain, chocolate agar plates (Remel Microbiology
Products, Lenexa, KS, USA) were inoculated with stock
suspensions stored at —80°C in FBP medium (Gorman and
Adley, 2004), and incubated for 40 = 4 h at 42°C under
microaerobic conditions in gastight jars (2.5 L, Remel) using
CampyGen 2.5 L gaspacks (Remel). For biological replicates, the
same stock suspension was streaked onto two to three separate
chocolate agar plates on different days.

Sample Preparation

A previously described protein extraction sample preparation
method was employed with minor modifications (Freiwald and
Sauer, 2009). Briefly, cells from 40 + 4 h cultures were pelleted
by centrifugation (17,000 x g for 5 min) and washed with
sterile double-distilled water (ddH,O) (Millipore Corp.; Bedford,
MA, USA). Cells were re-suspended in sterile ddH,O, and
the cell density of each suspension was adjusted to 0.8 £ 0.1
ODgpo. Each 1 mL cell suspension was pelleted by centrifugation
(17,000 x g for 5 min), and the supernatant was carefully
removed. Cell pellets were inactivated by resuspension in 800 L
of absolute ethanol and 300 wL sterile ddH,O. Inactivation was
verified by streaking a loopful of the inactivated suspension onto
chocolate agar and verification of absence of colony formation
after 72 h of incubation under the conditions described above.
Each sample was centrifuged (17,000 x g for 5 min), and
the resulting supernatant was discarded. A washing step with
1 mL ddH,O was performed on each cell pellet. Twenty-five
microliters of 70% formic acid (Sigma-Aldrich, St. Louis, MO,
USA) and 25 pL acetonitrile (Alfa Aesar, Ward Hill, MA,
USA) were mixed with the pellet by vortexing thoroughly.
Each sample was centrifuged (17,000 x g for 5 min), and the
supernatant containing the protein extract was transferred into
a sterile 1.5 mL microcentrifuge tube. Protein extract (1.0 pL)
was pipetted onto a polished steel 96-well MALDI target plate
(Bruker Daltonics, Billerica, MA, USA) and allowed to air-dry
for 10 min. Samples were spotted onto predetermined, randomly
distributed locations on the target plate. After the sample had
dried, it was overlaid with 1.0 pL of a-cyano-4-hydroxycinnamic
acid (ACROS, Fair Lawn, NJ, USA) matrix prepared in 50%
acetonitrile and supplemented with 2.5% trifluoroacetic acid
(ACROS, Fair Lawn, NJ, USA). Each isolate was spotted in three
technical replicates per biological replicate.

MALDI-TOF MS Data Acquisition

MALDI-TOF MS analyses were performed using a Bruker
Microflex LRF MALDI-TOF mass spectrometer (Bruker
Daltonics) equipped with a nitrogen laser (A = 337 nm) under
the control of FlexControl software (v. 3; Bruker Daltonics).
Each spectrum was obtained in a linear, positive ion mode and
calibrated externally using ACTH (1-17) (2094.427 Da), ACTH
(18-39) (2466.681 Da), insulin oxidized B (3494.651 Da), insulin
(5734.518 Da), cytochrome C (12360.974 Da), and myoglobin
(16952.306 Da). Data acquisition was performed automatically in

'https://cge.cbs.dtu.dk//services/ResFinder/
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TABLE 2 | (A) Factors and levels used in the designed experiments for processing
MALDI-TOF MS spectra of the C. jejuni collection.

Processing steps
(factors)

Processing options (levels)

Baseline Subtraction 1:
Binned Baseline

Binned Baseline, Monotone Minimum, Moving Bar,
Rolling Disk

Smoothing: Kaiser Gaussian, Kaiser window, Moving Average,

Window Savitzky-Golay
Baseline Subtraction 2: Binned Baseline, Monotone Minimum, Moving Bar,
Moving Bar Rolling Disk

Similarity Coefficient Dice, Pearson, Ranked Pearson

TABLE 2 | (B) Factors and levels used in the designed experiments approach with
center points for highest scoring in predicted settings.

Processing options (factors) Processing settings (levels)

Binned Baseline Bin Size of 4, 77, 150
Window Size of 1, 21, or 40

Bar Width of 3, 102, or 201

Kaiser Window
Moving Bar

steps of 100 shots for a total of 500 shots. Laser power was set to
the necessary minimum power for ionization of selected samples
before starting the analyses. The signal-to-noise threshold was
set at two, the minimum intensity threshold at 100, and the
maximum number of peaks to 500. Peak width was set at 10 m/z
and a height of 80%.

Spectrum Cluster Analysis

Mass spectra were exported from FlexAnalysis (version 3.0;
Bruker Daltonics) as .txt files and imported into BioNumerics
(version 7.1; Applied Maths, Sint-Martens-Latem, Belgium).
Spectra were initially pre-processed using the default program
settings (Baseline Subtraction, 1; Rolling Disk, 200). For cluster
analysis, spectra were compared pairwise using the Pearson
correlation coefficient. The Dice similarity coefficient, in which
lists of peaks containing only binary values (present or absent)
were generated from spectra, was also evaluated. A dendrogram
was generated using the unweighted pair group method with
an arithmetic mean (UPGMA) algorithm. Multidimensional
scaling (MDS) analysis was performed as previously described to
visualize the similarity between spectra (Goldstein et al., 2013).
Jackknife analysis was performed as described previously using
maximum similarities to quantify rates of correct classification
with regard to AMR (Giebel et al., 2008).

Processing Steps and Settings Selection:
Designed Experiments

Processing steps chosen as factors were based on those commonly
cited in literature and an initial descriptive analysis of their
effects on the response (jackknife score). These were found to
be important in prior work in our lab, because of their ability to
affect number of peaks and spectrum quality. The steps chosen
were baseline subtraction, smoothing, and similarity coefficient.
The levels, or different methods of baseline subtraction,
smoothing, and similarity coefficient, were considered categorical
variables, and each step was considered as a categorical variable

(Table 2A). The highest scoring levels from each category were
then selected and further optimized based on their numerical
settings (Table 2B).

Statistical Analyses

Each of the two/three biological replicates contained three
technical replicates. Each set of biological replicates was
composed of sixty runs of calculations with varying processing
step settings. All 180 experimental runs were carried out in 3 days
in random order, and grouped into blocks by both day and
biological replicate. Blocking, or grouping together, based on the
aforementioned variables, helped to reduce sources of variability
and increase precision (Montgomery, 2012). The datasets were
subjected to analysis of main effects, interaction of factors, best,
and worst combination of settings, significant factors affecting
spectrum qualities, and post hoc tests on factors. Main effects
and interactions of factors on reproducibility were analyzed based
on analysis of variance (ANOVA) and t-tests using a 5% level
of significance. Post hoc tests were performed using Tukey’s test
(Minitab Inc., PA, USA).

Parameter Optimization

An optimized setting for preprocessing parameters and
similarity coefficient was determined using ANOVA. The
optimized setting was applied to each dataset. The jackknife
score (response) from each dataset was reported using either
the default settings or optimized preprocessing settings with
combinations of three different similarity coefficients: Dice,
Pearson, and ranked Pearson. Jackknife analysis was used as
described previously (Goldstein et al., 2013) to evaluate the
extent to which MALDI-TOF MS profiles were assigned
to particular AMR categories. Differences in spectrum
quality and jackknife scores before and after optimization
were identified using t-tests with a 5% level of significance.
A second dendrogram and MDS were visualized following
optimization. Both optimal and default preprocessing settings
were applied to larger sets of C. jejuni. In addition, varying
similarity coeflicients, and jackknife scores were used to
measure the effectiveness of each processing parameter
combination.

RESULTS

A total of 172 different strains of C. jejuni were analyzed for
this study. The sample collection was representative of diverse
environments and hosts from four continents (Table 1). The
MALDI-TOF MS profile of each strain was constituted using
two sets of biological replicates, and each biological replicate was
analyzed using three technical replicates (LX-32 is an exception
due to the corruption of a single spectrum in biological replicate
B2). Thus, the total number of spectra generated for this analysis
was 1,031 spectra.

Within the strain collection, a model set of 16 C. jejuni
isolates was used for optimizing spectrum preprocessing methods
at levels below the species. Organisms for the model set were
selected based on (i) their genetic fingerprints, considering six
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FIGURE 1 | MALDI-TOF MS spectra-based clustering of the Campylobacter jejuni reference strain collection conforming to the genetic fingerprints.
Spectra are represented as pseudo-gels. Calculations and clustering were obtained using default settings in the BioNumerics 7.1. Genomic profiles are expressed as
Clonal Complexes (CC) obtained through the standardized Multi-Locus Sequence Typing (MLST) method of Jolley and Maiden (2010).
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TABLE 3 | Effect of MALDI-TOF MS spectrum processing parameters on
AMR detection in strains of C. jejuni.

Antibiotic Preprocessing Similarity Score
resistance group coefficient

1 Default Dice 89+5
2 Default Dice 87 +6
3 Default Dice 73+9
4 Default Dice 93+ 3
1 Default Pearson 98 + 1
2 Default Pearson 97 £ 3
3 Default Pearson 100 £ 5
4 Default Pearson 100 £ 1
1 Default Ranked 85+ 14
2 Default Ranked 73+6
3 Default Ranked 73 +28
4 Default Ranked 98+ 2
1 Optimized Dice 92+5
2 Optimized Dice 88+7
3 Optimized Dice 80+9
4 Optimized Dice 96 + 3
1 Optimized Pearson 99+ 0
2 Optimized Pearson 98+ 3
3 Optimized Pearson 97 +5
4 Optimized Pearson 100+ 0
1 Optimized Ranked 97 +£3
2 Optimized Ranked 97 +4
3 Optimized Ranked 100+ 0
4 Optimized Ranked 100 £ 1

Scores represent mean (+SD) jackknife values calculated using maximum
similarities.

major Clonal Complexes (CCs) obtained through MLST analysis
and represented by one to four isolates each (with varying host
sources and origins), and (ii) their respective MALDI-TOF MS
spectrum profiles with regard to shared base peaks and varying
degrees of peak intensity (Figure 1). For the model set, we

utilized three biological replicates with three technical replicates
each and generated a total of 144 spectra.

Relying on the example of the model set of isolates (excluding
isolate LX-41 whose CC affiliation was not confirmed), it could
be demonstrated that MALDI-TOF MS-based clustering of
C. jejuni, based on peak mass and intensity ranges within the
spectrum, was concordant with the genotype profiles expressed
as CCs (Figure 1). All strains, except two isolates from CC-45,
clustered together with their genetically closest neighbors from
the same CC. Genetic diversity information on Campylobacter
isolates could therefore be transcribed through MALDI-TOF MS
fingerprinting profiles. This highlighted the potential of mass
spectrometry for clonality prediction inside bacterial taxa. Then,
characteristic traits such as AMR can individually be screened
within each isolate, following optimization in the bioinformatics
workflow for spectrum processing and MS-based clustering and
typing.

In this context, we subsequently analyzed our model set
of C. jejuni using the initial designed experiments approach
for enhancing AMR detection and strain clustering into their
respective groups of AMR (Table 1). The parameters for
optimization were split into factors and then their individual
components were referred to as levels (Tables 2A,B). The most
optimal combination of the four parameters was found to be
the following: (i) Binned Baseline (Bin Size of 77), (ii) Kaiser
Window (Window Size of 33), (iii) Moving Bar (Bar Width of
129), and (iv) ranked Pearson similarity coefficient.

Following the model set analysis, these optimized parameters
were applied to all spectra from the collection. Increases in rates
of correct classification with regard to AMR, when switching
from default settings to optimized settings, were observed
(Table 3). Considering all four groupings of antibiotic-resistant
C. jejuni, we observed a 5% increase in group 1, a 9% increase
in group 2, a 10% increase in group 3, and finally, a 2%
increase in group 4. Overall, use of optimized settings yielded
a significant 7% increase (t-test, p = 0.05) in detection of
AMR when compared to use of default settings. In each of the
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FIGURE 2 | Multidimensional scaling (MDS) representation of MALDI-TOF mass spectra of 172 isolates (516 spectra) of beta-lactam resistant (red)
and sensitive (green) strains of C. jejuni using (A) default spectrum processing settings and (B) optimized processing settings defined in the
designed experiments approach in this study. The ranked Pearson correlation coefficient was used to quantify similarity in both the default and optimized cases.

antibiotic resistance groups, the Pearson correlation coefficient
outperformed the Dice similarity coefficient (p = 0.0002). In
only one instance was there a decrease in the rate of correct
classification when using optimized settings. When the settings
for group 3 were swapped from default to optimal with the
Pearson coefficient, we observed a decrease from 100 to 97%
(Table 3).

We also performed a direct comparison between default
processing settings and the optimized processing settings when
applied to isolates exhibiting beta-lactam resistance (Figure 2;
Table 4). The MDS representing optimized parameters shows
tighter grouping compared to the default parameter MDS, thus
representing an increase in AMR detection, and here specifically
beta-lactam resistance. Use of optimized spectrum processing
settings increased the rate of correct classification from 63.5 to
95.7%.

DISCUSSION

Workflows to rapidly characterize bacteria using MALDI-TOF
MS typically include four components: (i) culturing, (ii) sample
preparation, (iii) data acquisition, and (iv) data analysis (Sandrin
et al., 2013). Each of the first three components of this common
workflow have been shown previously to affect the ability of
MALDI-TOF MS to reliably and accurately characterize bacteria
at the strain level (Schumaker et al., 2012; Goldstein et al., 2013).
Results presented here show clearly that the fourth component
of this workflow, data analysis (spectrum processing parameters),
affects the ability of MALDI-TOF MS to detect AMR in C. jejuni.
To our knowledge, this work represents the first report of
enhancing MALDI-TOF performance to detect AMR in C. jejuni
through optimization of spectrum processing parameters.

Designed experiments have been used previously to enhance
MALDI-TOF MS-based characterization of bacteria (Zhang et al.,
2014). In that work, the third component of the MALDI-TOF
MS workflow, data acquisition, was enhanced by systematically
adjusting parameters (e.g., threshold base peak, S-N resolution,
etc.) in an algorithm commonly used for automated spectrum
acquisition. Similar to our work here applying designed
experiments to data analysis, Zhang et al. (2014) reported
increases in method performance (reproducibility) with
optimization afforded by designed experiments. Furthermore,
Zhang et al. (2014) reported that optimized data acquisition
parameters obtained with one bacterium (Pseudmonas
aeruginosa) were useful in increasing reproducibility of
spectra of other bacteria (Klebsiella pneumoniae and Serratia
marcescens). Further research is warranted to determine whether
the optimized settings we identified here to enhance detection
of AMR in C. jejuni, will enhance detection of AMR in other
bacteria. Currently, the necessity for adapting the settings of
variables and parameters for each individual microorganism or

TABLE 4 | Optimized spectrum preprocessing parameters enhance
beta-lactam-resistance detection in C. jejuni.

Preprocessing Similarity coefficient Score
Default Dice 86+5
Default Pearson 97 £3
Default Ranked 74 +£18
Optimized Dice 89+8
Optimized Pearson 98 + 2
Optimized Ranked 98+ 3

Scores represent mean (+SD) jackknife values calculated using maximum
similarities.
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taxon is rigorously being evaluated, but in that case optimization
is facilitated with the use of the designed experiments approach
described here.

Following spectrum processing (i.e., baseline subtraction,
smoothing, etc.), the similarity of processed spectra is often
quantified using previously described similarity coefficients
including the Dice similarity coefficient, the Pearson correlation
coefficient, or the ranked Pearson correlation coefficient
(Dieckmann et al., 2008; Schmidt et al., 2009; Sandrin et al., 2013).
Each of these coeflicients has been used previously to compare
spectra and characterize diverse bacteria using MALDI-TOF MS.
Our work here suggests that the Dice correlation coefficient
underperforms in comparison to Pearson correlation coefficients,
particularly the ranked Pearson correlation coefficient. This
is in accordance with our prior work with Enterococcus
(Giebel et al, 2008), in which we reported the importance
of considering peak intensity information, which is included
in the Pearson correlation coeflicient calculations but not
the Dice coeflicient. For this reason, future efforts to detect
AMR using MALDI-TOF MS should use correlation coeflicients
that include peak intensity, such as the Pearson correlation
coefficient.

Most likely in complement to current tools for Campylobacter
fingerprinting, MALDI-TOF MS spectra indeed reflect the
genetic diversity (Zautner et al., 2013), but more importantly
reflect the actual genetic expression profile and AMR potential
of the strain candidates upon isolation and culture. The
designed experiments approach described here appears in this
way as a convenient bioinformatics tool for the optimization
of information retrieval from MALDI-TOF MS spectra.
BioNumerics currently represents the most versatile and flexible
routinely used software package for screening optimal processing
variable values and parameters such as described in Table 2.

Within the next steps, further AMR profiling of
Campylobacter based on MALDI-TOF MS should be undertaken,
in order to obtain more complete AMR profiles in the
future. Using extended bioinformatics and proteomics tools,
AMR signature identification is likely to be pursued, e.g., by
characterizing specific beta-lactamase biomarker(s) within the
resistant C. jejuni mass spectra (Sparbier et al., 2012; Kostrzewa
et al, 2013). Here, bottom-up and top-down proteomics
approaches could be deployed in order to complement and
supplement existing tools (e.g., Fagerquist et al., 2005, 2009;
Sandrin et al, 2013). Also, further comparisons with AMR
prediction through WGS data or MSPP phyloproteomics
screening will certainly be fruitful (Zankari et al., 2012; Zautner
etal., 2015).

The features and potential of MALDI-TOF MS will
continue to contribute to significant scientific and technological
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