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INTRODUCTION

Asthma is a complex respiratory condition that involves interplay between genetic predisposition,
environmental, and immunological factors (Edwards et al., 2012). It is considered to be one of the
most common chronic diseases, affecting ∼300 million people (Masoli et al., 2004), and causing
an estimated 250,000 deaths annually (Bateman et al., 2008). Furthermore, because of an increased
Westernized lifestyle and urbanization in developing countries, it is estimated that by 2025 the
global burden of asthma will increase by 100 million people (Masoli et al., 2004).

An increase in the occurrence of allergic diseases, including asthma, was initially attributed to
the “hygiene hypothesis,” suggesting that a reduced exposure to microbes during the first years
of life plays a role in the development of allergic diseases (Strachan, 1989, 2000). Although this
hypothesis is widely accepted, studies showed that reducedmicrobial exposure cannot fully account
for the increased prevalence of asthma, rhinitis, or neurodermitis (Mallol, 2008; Brooks et al.,
2013; Kramer et al., 2013). Alternative hypotheses or reformulations of the “hygiene hypothesis”
(Hunter, 2012), such as the “microbiota hypothesis” (Wold, 1998), the “old friends hypothesis”
(Rook, 2012), the “microbial deprivation hypothesis” (Bloomfield et al., 2006), the “biodiversity
hypothesis” (Hanski et al., 2012) and the “disappearing microbiota hypothesis” (Blaser and Falkow,
2009; Taube and Müller, 2012) soon followed; all of which mainly postulate that dysbiosis of the
human gastro-intestinal tract (GIT) microbiome may contribute to intra- and extra-intestinal
immune-mediated diseases (Penders et al., 2007; Štšepetova et al., 2007; Sekirov et al., 2010;
Clemente et al., 2012; Russell and Finlay, 2012). Understanding which bacteria from our GITs
contribute to the development or prevention of allergic asthma may result in further research
to discern the mechanisms behind bacterial-host interactions and potentially facilitate treatment
strategies.
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METHODS USED TO STUDY THE ROLE OF
HUMAN FECAL BACTERIA IN ASTHMA

Although culture-independent techniques have revolutionized
the world of microbiology (Suau et al., 1999; Zoetendal et al.,
2006; Rajilić-Stojanović et al., 2007); conventional culture-
dependent techniques have been the method widely used to
study the role of human fecal bacteria in asthma (Mansson and
Colldahl, 1965; Stockert, 2001; Nambu et al., 2008; Vael et al.,
2008; Bisgaard et al., 2011). To date, the culture-independent
techniques used to characterize fecal bacteria from patients with
asthma include quantitative real-time polymerase chain reaction
(qPCR) (Van Nimwegen et al., 2011), denaturing gradient gel
electrophoresis (DGGE) (Bisgaard et al., 2011; Vael et al., 2011),
fluorescent in situ hybridization (FISH) (Salminen et al., 2004),
and massively parallel high-throughput sequencing of the 16S
ribosomal RNA (rRNA) gene (Arrieta et al., 2015). Despite
the advantage of detecting uncultivable bacteria, these culture-
independent techniques are not without limitations. Among
others, they do not allow for whole community analysis of the
microbial population (Sekirov et al., 2010; Fraher et al., 2012;
Sankar et al., 2015), which is considered key in determining
the patterns of fecal bacteria associated with health and disease
states (Schippa and Conte, 2014). For example, qPCR and FISH
do not provide identification of novel organisms as they are
used to characterize and quantify targeted groups of bacteria
(Sekirov et al., 2010; Fraher et al., 2012). DGGE, a band-based
method for determining bacterial diversity, does not enable direct
identification of bacteria (Sekirov et al., 2010; Fraher et al.,
2012). Furthermore, DGGE has low bacterial detection limits and
limited phylogenetic resolution (Sekirov et al., 2010). Although
massively parallel high-throughput sequencing of the 16S rRNA
gene provides an almost comprehensive view of bacterial
communities; it does not provide classification at species-level
(Gosalbes et al., 2012; Arrieta et al., 2015). The importance
of species-level characterization in health and disease states
has been demonstrated in murine models of allergic diseases
(Karimi et al., 2009; Russell et al., 2012; Kim et al., 2013). An
overgrowth of the genus Lactobacillus has been associated with
an increased risk of allergic asthma (Russell et al., 2012), while
the species L. reuteri and L. rhamnosus provide a protective role
in allergic airway disease (Karimi et al., 2009; Kim et al., 2013).
In comparison to 16S rRNA gene sequencing techniques; whole
genome shotgun (WGS) sequencing offers a higher and more
reliable resolution of microbiota profiles at lower taxonomic
levels (Morgan and Huttenhower, 2014; Van Dijk et al., 2014;
Ranjan et al., 2015). For example, WGS sequencing is able to
improve the issue related to the Bifidobacterium amplification
bias by certain primer sets (Kurokawa et al., 2007; Sim et al., 2012;
Walker et al., 2015). In addition, it allows for determination of
the metabolic and functional properties of fecal bacteria which
may greatly contribute to our understanding of the role of
fecal bacteria in health and disease (Qin et al., 2012; Arrieta
et al., 2015; Quince et al., 2015). However, despite the number
of advantages that WGS sequencing provides, it has not been
incorporated by any of the studies investigating the importance
of fecal bacteria in the development of asthma. Furthermore, a

causal link between fecal bacterial profiles and asthma in humans
has recently been confirmed using murine models (Arrieta et al.,
2015). To the best of our knowledge, this is the only report of
its kind where the causal role of the fecal bacteria (Lachnospira,
Veillonella, Faecalibacterium, and Rothia), which potentially
confers protection against the development of asthma in humans,
was demonstrated using germ-free mice models (Arrieta et al.,
2015).

WHAT DO STUDIES IN HUMANS REVEAL
ABOUT THE ROLE OF FECAL BACTERIA
IN ASTHMA?

Although prospective longitudinal studies are key in
demonstrating the role of fecal bacteria in disease development
(Zhao, 2013); we identified only two studies which assessed
whether fecal bacterial profiles sampled over time preceded
the occurrence of asthma at later stages in life (Bisgaard et al.,
2011; Arrieta et al., 2015). Bisgaard et al. (2011) did not report
a significant association (Bisgaard et al., 2011). In contrast,
Arrieta et al. (2015) found significantly reduced abundances
of the bacterial genera Lachnospira, Veillonella, Rothia, and
Faecalibacterium in infants at risk for asthma, as evidenced
using the Asthma Predictive Index (API) (Arrieta et al., 2015).
Moreover, in a prospective birth cohort study conducted in
Belgium (using fecal specimens sampled at 3 weeks of age);
the detection of Bacteroides (B. fragilis, B. finegoldii, and B.
thetaiotaomicron), Ruminococcus (R. productus and R. hansenii),
and Clostridium spp. was associated with an increased risk for
asthma development (as based on the API) (Vael et al., 2011).
At species-level, the prospective birth cohort study by Van
Nimwegen et al. (2011) conducted in the Netherlands reported
a two-fold increased risk of asthma at 6–7 years in infants
colonized with Clostridium difficile at 1 month of life (OR= 2.06;
95% CI 1.16–3.64) (Van Nimwegen et al., 2011).

All prospective birth cohort studies, except for the study
by Nambu et al. (2008), made use of the API when assessing
asthma as an outcome at <5 years of age (Vael et al., 2008,
2011; Arrieta et al., 2015). The API, incorporated by three
studies cited in this review, is an example of a predictive
assessment for asthma development later in life, recommended
for young children experiencing recurrent wheeze (Castro-
Rodriguez, 2010). Considering that asthma diagnosis in children
<5 years of age is challenging and often based on symptom
patterns, clinical assessment of the family history and the
presence of atopy (Pedersen, 2007; Sly et al., 2008; Pedersen
et al., 2011); the use of predictive assessments, such as the API, is
essential. However, despite its success in developed countries, the
API should be used with caution in infants from low and middle
income countries (LMICs) (Zar and Levin, 2012). This may be
explained by the fact that young children from LMICs are more
commonly affected by viral lower respiratory tract infections
(LRTIs) or pulmonary tuberculosis. Furthermore, it has been
suggested that atopy may be less strongly associated with asthma
in these settings compared to the more developed countries (Zar
and Levin, 2012). This suggests that non-atopic wheeze may be
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the primary form of asthma in these children, making the API,
which relies primarily on the presence of atopy for assessing the
risk of asthma, a less reliable predictive assessment tool in LMICs
(Zar and Levin, 2012).

FACTORS INFLUENCING FECAL
BACTERIAL PROFILES AND POTENTIALLY
ASTHMA

Both murine models and human studies have provided evidence
that early life changes in the GITmicrobiome are most influential
in the development of allergic asthma (Russell et al., 2013; Arrieta
et al., 2015). Some of the well described factors responsible for
these early life changes in fecal bacterial profiles, which have also
been associated with childhood asthma, are mode of delivery,
feeding practices, and antibiotic use (Kozyrskyj et al., 2011).

Mode of Delivery
A number of childhood studies have reported that infants
delivered via cesarean section are at an increased risk for the
development of asthma (Thavagnanam et al., 2008). However,
these studies do not account for confounding factors that may
be associated independently with asthma, as well as changes in
fecal bacterial profiles, which will allow for determining the true
effect of external factors on fecal microbiota and the resultant
health outcome. To date, only a single study using mediation
analysis (Van Nimwegen et al., 2011) supported the role of
mode and place of delivery (independent variable) in C. difficile
colonization (mediator variable), together with its consequent
impact on asthma development via modulation of C. difficile
profiles (dependent variable).

Feeding Practices
Although, it has been reported that breastfeeding has the
potential to protect against allergic airway disease (Dogaru et al.,
2014), no studies have used mediation analysis (as performed by
Van Nimwegen et al. (2011)) to determine whether bacteria from
breast milk protect against asthma via the modulation of infant
fecal bacteria.

Antibiotic Use
In humans, a modest increased risk of asthma development,
associated with antibiotic use, has been reported (Marra et al.,
2009; Risnes et al., 2010; Murk et al., 2011; Penders et al., 2011).
To date, only fecal C. difficile colonization has been associated
with the occurrence of asthma (Van Nimwegen et al., 2011),
which might be explained (among other factors) by a loss of
intestinal commensal microbes through the use of antibiotics
(Azad and Kozyrskyj, 2012).

POTENTIAL MECHANISMS SUPPORTING
THE ROLE OF GASTROINTESTINAL
BACTERIA IN ASTHMA

The exact mechanisms by which GIT bacteria may influence the
development of respiratory diseases are unclear; however recent

work has demonstrated that crosstalk between host mucosal
immune cells and resident microbes significantly influences the
risk for respiratory disease (Forsythe, 2011; Samuelson et al.,
2015; Vital et al., 2015). A central player in this regulation
of pulmonary immunity by the GIT microbiome are dendritic
cells (DCs) (McLoughlin and Mills, 2011) (Figure 1). Intestinal
DCs encounter bacterial antigens presented in organized GIT
immune tissue (i.e., lamina propria and Peyer’s patches) and
also directly sample lumen residing bacteria in the GIT by
extending their dendrites into the intestinal lumen (Salzman,
2011). This sampling of intestinal bacterial antigens results in
DCs co-ordinating B and T cell subset expansion both locally
(Peyer’s patches and lamina propria) as well as systemically
(e.g mesenteric lymph nodes) (Hill and Artis, 2010) (Figure 1).
This results in DC-guided local and systemic immune education
driven by microbiota associated antigens which has profound
effects not just in the intestine but throughout the body (Hill and
Artis, 2010; Russell and Finlay, 2012) (Figure 1). An important
consequence of this effect of GIT bacteria is manifested in
subsequent host T-cell immune responses in the lungs and
has been particularly well demonstrated in murine models of
asthma (Herbst et al., 2011; Navarro et al., 2011; Konieczna
et al., 2012; Oertli et al., 2012). For example, B. fragilis and
Clostridium species (cluster IV and XIVa), both intestinally
restricted bacteria, can drive induction of T regulatory (Treg)
cells and associated elevated secretion of the regulatory cytokine
IL-10 in mesenteric lymph nodes to mediate protection against
allergic T-helper cell (Th-) 2 airway inflammation (Round
et al., 2011) (Figure 1). Other studies have demonstrated that
early life depletion of Bacteroidetes species using vancomycin
abrogates the ability of mice to launch Treg protection from
allergic asthma (Atarashi et al., 2011; Russell et al., 2012).
In addition, raised levels of Helicobacter pylori has also been
shown to elicit protection against the development of asthma,
again, via the induction of Treg cells (Arnold et al., 2011).
Interestingly this effect may, in part at least, also be due to de
novo production of IL-10 orthologs by H. pylori driving this
Treg induction. Moreover, oral administration of probiotics (L.
reuteri, L. rhamnosus GG, Bifidobacterium breve, or B. lactis)
can impair the onset of ovalbumin induced allergic airway
inflammation; again related to the reduced induction of Treg
cells (Feleszko et al., 2007; Karimi et al., 2009). Taken together,
these and other studies are generating an important profile
of the microbial species driving Treg dependent protection
against allergic airway inflammation. Other studies have also
identified bacteria which may drive the onset of allergic
pathology. Segmented filamentous bacteria (SFB), non-cultivable
Clostridia-related host-specific species (Gaboriau-Routhiau et al.,
2009), and members of the cytophaga-flavobacter-bacteroides
(CFB) phylum, for example, have been shown to promote
differentiation of pro-inflammatory Th17 cells associated with
airway inflammation (Ivanov et al., 2008; Atarashi et al., 2011)
(Figure 1).

Although the studies described here provide insight into the
potential role of GIT bacteria in the development of asthma in
murine models; more studies are needed to explore the manner
in which whole GIT bacterial communities, from asthmatic

Frontiers in Microbiology | www.frontiersin.org 3 June 2016 | Volume 7 | Article 838

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Claassen-Weitz et al. Fecal Bacteria and Asthma

FIGURE 1 | Schematic representation of the potential immunological interaction between the gastrointestinal tract microbiota and the development of

asthma. 1. Dendritic cells (DCs) sample antigen in the lamina propria (LP) and Peyer’s patches (PP) of the small intestine; and by extending their dendrites into the

intestinal lumen. 2. The interactions between DCs and microbial associated molecular patterns (MAMPs) allow DCs to present antigen to naïve lymphocytes in the

mesenteric lymph nodes (mLNs). For example, DCs present epitopes together with major histocompatibility complex (MHC) class II and specific immunomodulatory

cytokines to naïve CD4+ T cells. This elicits proliferation and activation of various T cell subsets which 3. enter systemic circulation via the efferent lymph, homing to

mucosal surfaces inside and outside of the gastrointestinal tract (GIT). 4. TGF-β contributes to the differentiation of Th17 cells, which produce cytokines (such as

IL-17) involved in pro-inflammatory responses. 5. IL-12 associated cytokines are responsible for Th1 cell differentiation. This regulates the induction of IL-10, which

supresses pro-inflammatory responses. 6. Presentation of vitamin B2, from a wide range of bacteria and fungi via MR1 molecules, to mucosa-associated invariant T

(MAIT) cells results in a rapid production of pro-inflammatory Th1/Th17 cytokines. MAIT cells’ preferential location in the GIT LP and PP, as well as their

pro-inflammatory responses in reaction to bacterial metabolites such as vitamin B2, may support their potential role in asthma pathogenesis via the “gut-lung axis” in a

similar manner to what has been proposed for DCs. 7. Circulating short-chain fatty acids (SCFAs) contribute to the protection against allergic airway inflammation via

enhanced generation of DC precursors in bone marrow, followed by seeding of the lungs with DCs with high phagocytic capacity and limited ability to promote Th2

cell effector function. 8. Localization of inflammatory GIT bacteria in the GIT mucus layer may induce strong IgA responses and chronic local inflammation. An influx of

inflammatory Th17, Th1, and neutrophil cells in the GIT could potentially circulate to the lungs where they may contribute to asthma pathogenesis. This hypothesis

may be supported by the strong associations found between irritable bowel disease (IBD) and asthma.

and non-asthmatic participants, interact with the innate and
adaptive immune cells of the GIT, as well as their subsequent
immune effects in the lungs. Besides, studies should also
investigate a broader scope of mechanisms to explain the role of
GIT bacteria in asthma pathogenesis. For example, a potential
mechanism in need of further investigation is the tenable role
of IgA-coated inflammatory GIT bacteria in the development
of asthmatic responses in the lungs (Figure 1). To date, no
clear link between host GIT microbiota-idiopathic intestinal
inflammation and allergic lung disease has been demonstrated.
However, our recent understanding of the involvement of IgA-
coated bacteria in intestinal inflammation (Van der Waaij et al.,

2004; Palm et al., 2014), as well as the number of clinical
studies denoting an association between inflammatory lung
disease and intestinal inflammation (Tulic et al., 2016); provides
rationale for investigating the systemic immune effect of IgA-
coated GIT bacteria. For example, it is suspected that around
50% of patients suffering from ulcerative colitis and Crohn’s
disease have subclinical pulmonary abnormalities with low-grade
airway inflammation (Kuzela et al., 1999; Mohamed-Hussein
et al., 2007). Moreover, a large cohort study, investigating 5260
IBD patients together with 21,040 non-IBD participants, recently
provided strong evidence for the association between IBD and
an increased risk for asthma (Peng et al., 2015). In support of
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this, Palm et al. (2014) clearly showed microbial localization of
IgA positive bacteria from IBD patients in the normally sterile
GIT mucosa of germ-free mice, which was not observed for
IgA negative bacteria from IBD patients (Palm et al., 2014). We
therefore hypothesize that GIT bacteria characterized by high
levels of IgA coating may enter the GIT mucosa (Palm et al.,
2014) where they may elicit systemic inflammatory responses at
extra-intestinal mucosal sites such as the lungs.

In addition to assessing the immuno-regulatory effect of the
composition of GIT bacteria in asthmatic and non-asthmatic
participants; studies should also investigate the functional
characteristics of GIT bacteria in the occurrence of asthma.
In support of this, Trompette et al. (2014) reported the role
of circulating short-chain fatty acids (SCFAs) in the protection
against allergic airway inflammation (Trompette et al., 2014)
(Figure 1). Here, microbiome metabolism in a high fiber diet
setting resulted in enhanced SCFA metabolism leading to the
generation of myeloid bone marrow precursors that gave rise
to populations of pulmonary DCs that protected against Th2
driven allergic airway disease (Trompette et al., 2014). In support
of this, Zaiss et al. (2015) demonstrated attenuated allergic
airway inflammation via a GPR41 (SCFA receptor) dependent
manner, as well as the effect of changes in GIT bacteria on SCFA
production (Zaiss et al., 2015). Furthermore, microbial vitamin
B2 (riboflavin) metabolites have been shown to activate a subset
of innate-like T cells, the mucosa-associated invariant T (MAIT)
cells, which are highly abundant in peripheral blood, mucosal
tissues, as well as the liver (Treiner et al., 2003; Le Bourhis et al.,
2013). Vitamin B2 from a wide range of bacteria and fungi are
presented to MAIT cells by MR1 molecules (Kjer-Nielsen et al.,
2012; Patel et al., 2013), followed by the rapid production of pro-
inflammatory Th1/Th17 cytokines such as interferon-gamma
(IFNγ) and IL-17 (Le Bourhis et al., 2011) (Figure 1). MAIT cells’
pro-inflammatory responses in reaction to bacterial metabolites,
together with their preferential location in the GIT lamina
propria and mesenteric lymph nodes (Treiner et al., 2003), may
support the “gut-lung axis” theory in a similar manner to what
has been proposed for DCs. Therefore, functional properties of
GIT bacteria such as dietary fiber metabolism and the production
of vitamin B2 may be an important aspect of host microbe
crosstalk.

THE POTENTIAL OF MODULATING
GASTROINTESTINAL MICROBIOTA TO
PROTECT AGAINST ASTHMA

The mechanistic insights into how GIT bacteria may protect
or contribute to the development of asthma have provided
great potential for the development of intervention studies. For
example, the administration of probiotics (beneficial live bacterial
species) (De Kivit et al., 2014), prebiotics (non-digestible food
ingredients) (Jeurink et al., 2013) or symbiotics (synergistic
nutritional supplements combining probiotics and prebiotics)
(Van de Pol et al., 2011; Van der Aa et al., 2011) have
demonstrated immune-modulatory potential via the restoration
of an altered intestinal microbiota. The efficacy of probiotic

administration (mainly Lactobacillus or Bifidobacterium spp.) in
treatment or prevention of asthma has clearly been demonstrated
in animal models (Feleszko et al., 2007; Karimi et al., 2009;
MacSharry et al., 2012; Kim et al., 2013); however data in
humans are not conclusive (Vliagoftis et al., 2008; Elazab
et al., 2013). Nevertheless, probiotic administration needs to
be carefully considered as we do not fully understand its
effect on GIT bacteria. It may also hold more complex effects
for the host (Shenderov, 2013), such as infections (Fijan,
2014) and allergic sensitization (Viljanen et al., 2005; Taylor
et al., 2007). Various factors therefore need to be taken into
account in the development of probiotics. These include the
immunological pathways behind immune responses elicited by
live bacteria and bacterial molecules (Caselli et al., 2011); the
ongoing research around what a “healthy” GIT profile should
look like (Koren et al., 2013; Knights et al., 2014) (prior to
considering modulation thereof); what the effect of probiotics
are on these “healthy” GIT profiles (Eloe-fadrosh et al., 2015);
the inter-individual variability of the human GIT microbiome
(De Filippo et al., 2010; Grześkowiak et al., 2012; Yatsunenko
et al., 2012; Lin et al., 2013; Ou et al., 2013; Suzuki and
Worobey, 2014); the effect of probiotics on host metabolic and
signaling pathways (Shenderov, 2013); and whether diversity
within specific bacterial taxa is of importance in immunological
tolerance (West, 2014). In addition, studies are needed to assess
the period, dose and duration of probiotic supplementation. As
for probiotics, prebiotic supplementation was not significantly
associated with the prevention of asthma in humans (Arslanoglu
et al., 2012; Osborn and Sinn, 2013); however, administration
of oligosaccharides in mice has been associated with decreased
parameters of allergic asthma (Vos et al., 2007).

It is important to also highlight the potential role of vitamin D
in modulation of the GIT bacterial community and consequent
immune responses such as asthma (Arshi et al., 2014). Vitamin
D not only acts on a number of immune cells and processes
involved in immune regulation of asthma (Brehm et al., 2009,
2010; Mann et al., 2014), but also has the potential to modulate
GIT bacterial profiles and their functions (Mai et al., 2009; Jin
et al., 2015). Thus, further exploring the therapeutic potential
of vitamin D supplementation, together with pro-, pre- and
synbiotic interventions, in modulating the host’s GIT microbiota
and its subsequent effect on allergic airway diseases such as
asthma has merit.

Moreover, understanding the effects of other GIT microbiota,
such as fungi and helminths, on the composition of GIT bacteria
is also likely to be extremely informative. For example, an
overgrowth of commensal fungal Candida species in the GIT,
as a result of antibiotic treatment, has been shown to promote
M2 macrophage activation in the lungs, as well as increased
allergic airway inflammation (Kim et al., 2014). In addition,
changes in the GIT bacterial composition of mice following
chronic infection with the murine helminth Heligmosomoides
polygyrus bakeri have been elegantly shown to protect against
house dust mite induced airway inflammation (Zaiss et al., 2015).
Importantly this study shows that these changes resulted in
elevated SCFA production that actually underlies the protective
phenotype (Zaiss et al., 2015). This and work discussed
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above from the Marsland laboratory provide strong evidence
for dietary modulation of the microbiome protecting against
allergy.

CONCLUSION AND PERSPECTIVES

A systematic search of the literature revealed that studies
investigating fecal bacteria from humans and their relationship
with asthma have been increasingly published since the
beginning of the 21st century. However, reports on the role
of fecal bacteria in the development of asthma in humans
are limited, and primarily investigate the role of select GIT
bacteria in asthma pathogenesis. Large longitudinal prospective
cohort studies, with clear definitions of asthmatic outcomes,
incorporating high-resolution methods (such as massively
parallel 16S rRNA gene sequencing, whole-genome shotgun
sequencing or culturomics), are therefore needed to determine
the role of fecal bacteria in the development of asthma in both
developed and developing countries. Studies also need to assess
the impact of covariates (such as mode of delivery and intestinal
microbes other than bacteria) on both fecal bacterial profiles
and the outcome of interest using rigorous statistical analyses.
Furthermore, studies should aim to test the causal link between
human fecal bacteria and asthma development using murine
models. Finally, the role of GIT bacteria in asthma should be
investigated alongside the airway microbiome in order not to
mask the importance of the local respiratory microbial-host
interactions. In addition, it would be interesting to assess whether
GIT bacteria impacts on corticosteroid responsiveness in asthma
(Goleva et al., 2013), as well as asthma severity and phenotypes
(Zhang et al., 2016).

Literature Search Strategy and Selection
Criteria
We systematically searched peer-reviewed articles published on
bacteria detected from feces and their association with asthma
from six electronic databases (Medline via Pubmed, Scopus via
SciVerse, Academic Search Premier, Africa-Wide Information
and CINAHL via EBSCOHost and Web of Science via Web
of Knowledge), using a combination of keywords [(microbiota∗

OR metagenome OR microbiome∗ OR “human microbiota∗”

OR “human microbiome∗” OR “gut microbiota∗” OR “gut
microbiome∗” OR “intestinal flora” OR “digestive flora” OR “gut
flora” OR feces OR stool OR faeces OR fecal OR faecal) AND
(asthma OR “bronchial asthma” OR “bronchial disease∗” OR
“respiratory sound∗” OR “lung sound∗” OR wheez∗)]. The last
literature search was 19 November 2015. All articles published
in English and French were assessed for inclusion in the
review. Original research articles investigating bacteria from fecal
specimens and their relation to asthma in humans unexposed
to antibiotic, pre- or probiotic treatments were included. In
addition, we cross-checked the reference lists of all eligible studies
included in this review for any additional articles.
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