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Although most commonly associated with the infection of domestic livestock, the

replication of pestiviruses, in particular the two species of bovine viral diarrhea virus

(BVDV), occurs in a wide range of free ranging cervids including white-tailed deer, mule

deer, fallow deer, elk, red deer, roe deer, eland and mousedeer. While virus isolation and

serologic analyses indicate that pestiviruses are circulating in these populations, little is

known regarding their impact. The lack of regular surveillance programs, challenges in

sampling wild populations, and scarcity of tests and vaccines compound the difficulties

in detecting and controlling pestivirus infections in wild cervids. Improved detection rests

upon the development and validation of tests specific for use with cervid samples and

development and validation of tests that reliably detect emerging pestiviruses. Estimation

of impact of pestivirus infections on herd health will require the integration of several

disciplines including epidemiology, cervid natural history, veterinary medicine, pathology

and microbiology.

Keywords: pestivirus, cervids, wildlife diseases, surveillance, sampling

INTRODUCTION

The recognized species of the Pestivirus genus include bovine viral diarrhea virus types 1
(BVDV1) and 2 (BVDV2), classical swine fever virus (CSFV), and border disease virus (BDV)
(Simmonds et al., 2012). In addition to these four species, five putative species have been
proposed; Bungowannah virus, giraffe virus, HoBi-like virus, pronghorn virus (PHV) and atypical
porcine pestivirus. All four of the recognized species have been isolated from free ranging
wildlife populations and two of the putative species, giraffe virus and PHV, have only been
isolated from free ranging wildlife species (Table 1). Despite abundant evidence that pestiviruses
currently circulate in wildlife populations, the full impact of exposure and prevalence of these
infections are largely unknown. The limited information available regarding prevalence is mainly
in the form of serological surveys (Table 2). Even though these studies have been limited and
sporadic, they have demonstrated that a wide range of wildlife species havea wide range of
wildlife species has been infected by pestiviruses. Further, controlled studies have shown that
pestiviruses infect wild species and once infected they may transmit virus (Grondahl et al.,
2003; Uttenthal et al., 2005, 2006; Duncan et al., 2008a; Nelson et al., 2008; Passler et al.,
2010; USDA, 2010; Pruvot et al., 2014). While it is possible that positive serology results may
be due to contact with domestic species, the high prevalence of seropositive samples within
some isolated wild life populations without close contact with domestic species suggest that

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.00921
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.00921&domain=pdf&date_stamp=2016-06-17
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:julia.ridpath@ars.usda.gov
http://dx.doi.org/10.3389/fmicb.2016.00921
http://journal.frontiersin.org/article/10.3389/fmicb.2016.00921/abstract
http://loop.frontiersin.org/people/157068/overview


Ridpath and Neill Surveillance for Pestiviruses in Free Ranging Cervids

pestiviruses are being maintained independently within wildlife
populations. This is illustrated by a study in which the geographic
location of BVDV antigen-positive cattle and BVDV-seropositive
white-tailed deer were analyzed using the dual kernel density
estimation method. An exploratory cluster analysis revealed
1 significant cluster of BVDV antigen-positive herds and 2
significant clusters of BVDV-seropositive deer. There was no
spatial overlap between the clusters suggesting that BVDV is
maintained independently in domestic livestock herds and in the
white-tailed deer population.(Kirchgessner et al., 2013).

The purpose of this article is to review reports regarding
pestivirus infections in wild cervids and to summarize some of
the challenges involved in determining the impact of pathogens
infecting free ranging cervids.

SURVEILLANCE BASED ON DETECTION
OR ISOLATION OF PESTIVIRUSES

Pestiviruses, principally BVDV1 and BVDV2, have been detected
in samples collected from free ranging cervid populations
(Table 1). However, isolations or detection by PCR tend to be
a rare event among the populations surveyed (for references
see Table 1). Cattle may be acutely or persistently infected with
BVDV (Evermann and Barrington, 2005). Similarly it has been
demonstrated that, under experimental conditions, cervids may
be acutely or persistently infected with pestiviruses such as
BVDV1 or BVDV2 (Passler et al., 2007, 2009; Ridpath et al.,
2007, 2008). Experimental infections with typical field strains of
BVDV in immunocompetent cattle and white tailed deer tend
to be mild or asymptomatic (Ridpath et al., 2007, 2013). The
majority of the surveys conducted to date relied on serum or ear
notch samples which, at least in cattle, are better for detecting
persistent infections than acute infections (Ridpath et al., 2002;
Liebler-Tenorio et al., 2004). Further, based on the pattern
of viral antigen present in various tissues it appears that the
pestivirus positive deer harvested from free ranging populations
were probably persistently rather than acutely infected. In cattle,
persistently infected animals make up less than one percent of
the population at slaughter but have a significant impact on
the health of cohorts (Hessman et al., 2009). The detection of
persistently infected animals (PI) in any population, domestic
or free ranging, is significant as PIs act as efficient vectors for
keeping the virus in circulation. However, persistent infections
in deer are only established if the fetus is infected in the first one
third of pregnancy (Ridpath et al., 2008, 2012). Thus, infections
of the fetus occurring during the final two thirds of pregnancy
and all infections of animals post-birth result in acute infections
rather than persistent infections. Failure to detect acutely infected
animals will lead to underestimation of infection rate. Therefore,
while detection of PIs yields significant information it cannot be
used as a measure of prevalence of infection.

SEROLOGICAL SURVEYS

Antibodies against pestiviruses have been identified from
serum collected from seven different families of free ranging

wildlife; Antilocapridae, Bovidae, Giraffidae, Cervidae, Suidae,
Camelidae, and Leporidae with the greatest number of wildlife
host species in the Bovidae and Cervidae families (Table 2).
In North America, the largest numbers of wild ruminants
are found in the Cervidae family (Flather et al., 2009) with
five species being represented: moose (Alces alces), elk/wapiti
(Cervus elaphus), caribou/reindeer (Rangifer tarandus), mule
deer (Odocoileus hemionus), and white-tailed deer (Odocoileus
virginianus) (Conner et al., 2008). Pestivirus neutralizing
antibodies have been detected in free ranging populations of all
five species (Table 2). A limitation of serological surveys is that
the level of antigenic cross reactivity between pestivirus species
makes it difficult to absolutely identify the pestivirus species
elicited the immune response (Dubovi, 2013).

Many serological surveillance studies in wildlife arise out of
pestivirus control programs aimed at clearing a pestivirus species,
such as BVDV1 and BVDV2, from domestic animal populations.
The primary goal of many of these studies is to determine if
wildlife species can serve as virus reservoirs for domestic species,
not to determine the level of infection in wildlife populations. The
significant problem with these serological surveillance studies is
that the level of neutralizing antibodies is only determined against
one of the four recognized pestivirus species and this may result
in underestimation of infection with emerging pestivirus species.
This was noted by the authors in one of the earliest large scale
serology surveys of wildlife which used samples collected from
free ranging ungulates residing in Africa (Hamblin and Hedger,
1979). This survey evaluated 3359 sera, collected from multiple
species of wildlife in nine African countries, for neutralizing
antibodies against BVDV. At that point in history, the BVDV2
species had not yet been identified. Thus, the laboratory reference
strains used in this study only belonged to the BVDV1 species.
Neutralizing antibodies were detected in sera from 17 different
species. The authors noted that because pestiviruses are cross
reactive it is possible that the serum neutralizing antibodies
reported in their study, may be due to cross neutralization
with “other viruses as yet unrecognized.” It is also highly
possible that antibodies against pestiviruses with limited cross
reactivity with BVDV1 could have been missed in this and other
studies.

Aside from an interest in pestiviruses that impact domestic
species there are other reasons for the use of classic pestivirus
strains in assays. Firstly, cytopathic reference strains from
each of these species are readily available. This is not true of
all emerging pestivirus species. To date only noncytopathic
strains of the Giraffe and Pronghorn species are available.
When cytopathic strains are used in virus neutralization (VN)
tests, end points may be determined by observation of the cell
monolayer. End point determination using noncytopathic
strains requires secondary detection methods such as
immunofluorescence, immunohistochemistry staining or
polymerase chain reaction. Use of such secondary detection
methods is time and cost prohibitive for large-scale surveillance
projects.

Another consideration is that frequently emerging viruses,
such as pronghorn virus (Vilcek et al., 2005) or atypical porcine
pestivirus (Hause et al., 2015), do not initially grow well in cell
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TABLE 1 | Detection of pestivirus species in samples collected from free ranging wildlife populations.

Pestivirus species Family Wildlife Population Country References

BVDV1 and BVDV2 Cervidae White-tailed deer (Odocoileus virginianus) US Chase et al., 2008; Passler et al.,

2008

BVDV1 BVDV2 Mule deer (Odocoileus hemionus) US Van Campen et al., 2001;

Duncan et al., 2008b; Wolff

et al., 2016

BVDV Scottish red deer (Cervus elaphus scoticus) Scotland Nettleton et al., 1980

BVDV1 European roe deer (Capreolus capreolus) Germany Fischer et al., 1998

BVDV Water deer (Hydropotes inermis) South Korea Kim et al., 2014

BVDV1 Sika deer (Cervus nippon) China Gao et al., 2011

BVDV1 Bovidae Bighorn sheep (Ovis canadensis) US Wolff et al., 2016

BVDV1 Mountain goat (Oreamnos americanus) US Wolff et al., 2016

BDV Pyrenean chamois (Rupicapra pyrenaica pyrenaica) Pyrenees (border between

France and Spain)

Arnal et al., 2004

BVDV1 Canadian bison (Bison bison bison) Canada Deregt et al., 2005

CSFV Suidae Wild boar (Sus scrofa) France Simon et al., 2013

Giraffe Giraffidae Giraffe (Giraffa camelopardalis) Kenya Plowright, 1969

Pronghorn Antilocapridae Pronghorn (Antilocapra americana) US Vilcek et al., 2005

TABLE 2 | Free ranging species with reported titers against pestiviruses.

Family Species Geographic regions References

Bovidae Gemsbok (Oryx gazella), Roan antelope (Hippotragus equinus), Blue

wildebeest (Connachaetes taurinus), Kudu (Tragelaphus

strepsiceros), Eland (Taurotragus oryx), Buffalo (Syncerus caffer),

Nyala (Tragelaphus angasi), Waterbuck (Kobus ellipsiprymnus),

Defrassa waterbuck (Kobus defrassa), Lechwe (Kobus leche),

Reedbuck (Redunca arumdinum), Sable antelope (Hippotragus

niger), Oryx (Oryx gazella), Tsessebe (Damaliscus lunatus)

Hartebeeste (Alcelaphus buselaphus), Wildebeeste (Connachaetes

taurinus), Impala (Aepyceros melampus), Springbok (Antidorcas

marsupialis), Duiker (Sylvicapra grimmia), Chamois (Rupicapra

pyrenaica pyrenaica), Mouflon (Ovis orientalis), Bighorn sheep (Ovis

canadensis), European bison, American bison

Africa, North America, Europe Hamblin and Hedger, 1979; Depner et al.,

1991; Marco et al., 2011; Wolff et al., 2016

Cervidae Water deer (Hydropotes inermis), Reindeer/Caribou (Rangifer

tarandus), Roe deer (Capreolus capreolus), Red deer (Cervus

elaphus), Moose (Alces alces) Fallow deer (Dama dama), white-tailed

deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), Sika

deer (Cervus nippon)

Asia, North America, Europe McMartin et al., 1977; Lawman et al., 1978;

ElAzhary et al., 1979; Couvillion et al., 1980;

Van Campen et al., 2001; Lillehaug et al.,

2003; Kim et al., 2014; Wolff et al., 2016

Giraffidae Giraffe (Giraffa camelopardalis) Africa Hamblin and Hedger, 1979; Depner et al.,

1991

Antilocapridae Pronghorn antelope (Antilocapra americana) North America Barrett and Chalmers, 1975

Camelidae Vicuna (Vicugna vicugna) South America Marcoppido et al., 2010

Suidae Wild boar (Sus scrofa), Wart hog (Phacochoerus aethoiopicus) Europe, Africa Hamblin and Hedger, 1979

Leporidae European rabbit (Oryctolagus cuniculus) Europe Frolich and Streich, 1998

lines commonly used in the laboratory (Vilcek et al., 2005).
Finally, the pestivirus that the wild population was infected with
may not yet have been isolated and characterized.

While there are valid reasons why serological surveys, based
on VN tests, use reference strains from the four recognized
species, it is highly probable that when these assays are used in
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such surveys they miss titers resulting from exposure to emerging
viruses that are genetically distant and antigenically distinct. The
greater the genetic difference between pestiviruses, the lower the
cross reactivity (Ridpath et al., 2010; Bauermann et al., 2012). For
example, the emerging bovine pestivirus species known as HoBi-
like virus, while distinct, is closer to the two BVDV species than to
other emerging pestivirus such as pronghorn virus. In one study
it was shown that a serum collected from a bovid infected by a
HoBi-like viruses had a greater than 1/500 titer against a HoBi-
like virus, averaged a greater than 1/300 titer against BVDV2
strains but did not neutralize the pronghorn virus (Bauermann
et al., 2012).

While commercial ELISA kits are available for detecting
antibodies against the classic pestiviruses, particularly BVDV, the
limited cross reactivity that exists between emerging pestiviruses
and classic pestiviruses make these tests unreliable for detecting
antibodies resulting from infection by emerging pestiviruses
(Bauermann et al., 2012). Further, these commercial tests are
not designed to differentiate between antibodies raised against
different pestivirus species.

While performing serology on a one time collection of samples
from a population can give information on the occurrence and
prevalence of exposure, it does not yield information on when
the exposure occurred. To estimate time of exposure, multiple
samples over time must be collected and archived.

CHALLENGES IN THE COLLECTION OF
REPRESENTATIVE SAMPLES

Ideally samples should be representative of the population
under study including biological, spatial, and temporal variables
(Stallknecht, 2007). Further, samples must be collected while
virus is present in tissues and tissues must be tested using
technologies that maximize the probability of detecting the agent
(Thurmond, 2003). Issues of access, cost and feasibility frequently
preclude the gathering of such ideal samples.

If the goal is to detect a pestivirus the sample must be
collected while the animal is still viremic. This not a problem
with persistently infected cervids but is a problem with acutely
infected cervids where the window of detectable viremia may be
less than 5 days (Ridpath et al., 2007).

Both passive and active surveillance systems may be used to
obtain cervid samples. Passive surveillance, which relies upon
the observation and subsequent testing of an animal displaying
clinical signs of disease or collection of samples from animals that
have died of disease, is problematic for detecting infection with
viruses, such as pestiviruses, which don’t cause severe clinical
disease. Passive surveillance tends to under estimate the impact
of diseases that have significant mortality rates let alone those
that result in subclinical disease. This is illustrated by an outbreak
of hemorrhagic disease in white-tailed deer that occurred in
Missouri. While it was estimated that the outbreak resulted in
an 8% mortality rate, not one case of mortality or morbidity
was reported by the public. The occurrence and extent of the
outbreak were only noted because of surveillance conducted on
100 radio-monitored deer (Beringer et al., 2000). Some surveys

for BVDV in deer have depended on getting samples from deer
that were harvested by hunters (Duncan et al., 2008b; Passler
et al., 2008). Hunting licenses usually require that the harvested
animals are adults and most hunters desire to harvest healthy
specimens. Thus, hunter harvested samples tend to represent
healthy animals that have lived to sexual maturity, and based in
studies in cattle, restricting surveys to healthy adults may result in
underestimation of the incidence of persistent infection. In cattle
it has been observed that animals persistently infected (PI) with
BVDV are more frequently found among young stock than older
stock because some (but not all) PI cattle succumb in the first year
of life (Houe, 1992).

Even though hunter harvested samples may be skewed against
including PI animals, BVDV PI animals have been detected in
these samples (Van Campen et al., 2001; Chase et al., 2004;
Duncan et al., 2008b; Passler et al., 2008) albeit at a low rate
varying from 0.03 to 0.2%. The presence of PI deer indicates that
BVDV circulates in these populations; however, their impact is
difficult to assess.

The design of active surveillance systems requires an
understanding of the social organization of the species to be
studied. Unlike domestic livestock, wild deer do not confine
their activities to large herd groups, cannot be rounded up
without damaging ecosystems and social grouping, and are not
amenable to handling. Populations are frequently divided into
small breeding groups based on age and gender and contact
between groups and make up within groups may change with the
season. Neonates are frequently hidden rather than grazing with
the herd.

The ideal surveillance program would include samples
collected at multiple time points allowing retrospective analysis
(Stallknecht, 2007). Archived samples are fundamental to
estimating the introduction of a pathogen or detecting an
increase in the incidence of infection.

ASSESSING THE IMPACT OF PESTIVIRUS
INFECTIONS

It is easier to assess the impact of infection with high virulence
pestivirus strains that result in clinically severe acute disease
such as classic swine fever in swine or hemorrhagic syndrome
in cattle. However, the impact of lower virulence pestiviruses
is harder to assess, even in domesticated species. Previous
studies using captive deer have demonstrated white-tailed deer
infected by pestiviruses such as BVDV1, BVDV2, and PHV
display very mild clinical signs even though they are undergoing
significant immune suppression (Van Campen et al., 1997;
Vilcek et al., 2005; Ridpath et al., 2007, 2008, 2012). While
the immune suppression may lead to reduction in herd health
and numbers, the contribution of pestivirus infections to the
problem may be difficult to establish. The prevalence of BVDV
persistent infection in cattle, while low, has significant impact
on production. Lonergan et al. determined that while PI cattle
represent only 0.3% of the cattle population on arrival in feedlots,
they accounted for 2.6% of chronically ill cattle and 2.5% of
cattle that died during the observation period (Loneragan et al.,

Frontiers in Microbiology | www.frontiersin.org 4 June 2016 | Volume 7 | Article 921

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Ridpath and Neill Surveillance for Pestiviruses in Free Ranging Cervids

2005). Perhaps more importantly, exposure to PI animals has a
significant impact on the health of cohorts. In the same study
it was found that the risk of initial treatment for respiratory
tract disease was 43% greater in cattle exposed to a PI animal,
compared with those not exposed to a PI animal. Overall, 15.9%
of initial respiratory tract disease events were attributable to
exposure to a PI animal. In a subsequent study, Hessman et al.
(2009) demonstrated that aside from overt disease, growth rates
and feed conversion were negatively affected by the presence of PI
cattle in feedlots. Comparing cattle lots with direct exposure to a
PI with those without direct exposure revealed significant deficits
in all performance outcomes associated with PI exposure. In the
wild, where the rule is survival of the fittest, pestivirus infections
which reduce efficiency in feed conversion and resistance to
disease could be instrumental in a decline in animal numbers and
population health.

CONCLUSIONS

The limited serologic surveillance that has been published
focused on the levels of neutralizing antibodies against the
recognized pestivirus species. Such studies may underestimate
exposure to emerging pestiviruses. The value of serological
studies is greatly enhanced if sequential testing of the same
population over is conducted. Samples, collected from the same

population, over time allows detection of changes in exposure
patterns.

Many studies rely on samples generated from deer harvested
by hunters. However, such samples may yield skewed data as
the majority of hunter-generated samples come from healthy,
primarily male adults. Further, the tests available are designed
for detection of recognized pestiviruses in domestic species.
The reagents used may not be appropriate for wild cervids
or emerging pestiviruses that are only distantly related to the
recognized pestivirus species. In particular, cell cultures derived
from domestic species may not work for the propagation of
viruses that are adapted to cervid hosts. In summary, the
full impact of pestiviruses on cervid populations may not be
recognized at this time.

Improved detection rests upon the development and
validation of tests specific for use with cervid samples and the
development and validation of tests that reliably detect emerging
pestiviruses. Estimation of the impact of pestivirus infections
will require the integration of several disciplines including
epidemiology, cervid sociology, veterinary medicine, pathology
and microbiology.
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