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We studied fungal species associated with the carmine cochineal Dactylopius

coccus and other non-domesticated Dactylopius species using culture-dependent

and -independent methods. Thirty seven fungi were isolated in various culturemedia from

insect males and females from different developmental stages and Dactylopius species.

26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different

species ofCryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which

are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity

were detected in tissues extracts from different insect developmental stages. However,

accumulation of high UA levels and low uricase activities were found only after antifungal

treatments, suggesting an important role of fungal species in its metabolism. Additionally,

uricolytic fungal isolates were identified and characterized that presumably are involved

in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and

hemolymph DNA and from two published data sets, we confirmed the presence of fungal

genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling

process in Dactylopius by uricolysis. All these results show the importance of fungal

communities in scale insects such as Dactylopius.

Keywords: fungal-metagenomics, Cryptococcus, scale insects, Rhodotorula, ITS region, purine metabolism,

carmine cochineal

INTRODUCTION

Insects are the most diverse arthropods in the biosphere and dwell in almost all environments.
They can feed on a wide variety of nutrients, probably due to their associated microorganisms,
including fungal species (Douglas, 2009). There is evidence that many arthropods harbor yeast-like
microorganisms inside their bodies (Buchner, 1965), and at least eight orders of insects, including
143 species, have been reported to be associated with fungi (Vega and Blackwell, 2005; Gibson
and Hunter, 2010). Fungi are located either inside the insect body in highly specialized cells called
mycetocytes, as in Nilaparvata lugens and Drosophila melanogaster, which harbor yeasts (Chen
et al., 1981; Ebbert et al., 2003), or in cavities named mycangia as in bark beetles (Jones et al., 1999;
Klepzig and Six, 2004; Ganter, 2006). Fungi have also been found in the insect gut, as well as in their
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reproductive organs and fat tissues (Buchner, 1965; Gibson
and Hunter, 2009; Rivera et al., 2009; Ricci et al., 2011).
Moreover, studies on fungi-insect symbioses show that fungi
play important roles in insect development and fitness (Gibson
and Hunter, 2010). Fungi are capable of providing nitrogen
compounds that are limited in the diets of some insects, or
can degrade high molecular weight molecules and produce
pheromones for mating and communication (Brand et al.,
1976; Sasaki et al., 1996; Nasir and Noda, 2003; Gibson and
Hunter, 2010). In some insects like cockroaches, termites, shield
bugs, planthoppers, and bark beetles uric acid (UA), the major
product of nitrogen excretion, is recycled by bacterial or fungal
symbionts (Mullins and Cochran, 1975; Potrikus and Breznak,
1981; Pant, 1988; Kashima et al., 2006; Morales-Jiménez et al.,
2013; Patiño-Navarrete et al., 2014). However, to our knowledge,
there are no reports on the UA content or catabolism in scale
insects.

The Dactylopiidae family includes only one genus,
Dactylopius (Costa), commonly called “cactus cochineals”
or “cochineal scale insects.” They are obligate phytophagous
hemipterous from the scale insects family (Coccoidea). Ten
species have been described as belonging to this genus and
six of them, D. ceylonicus, D. confusus, D. opuntiae, D. coccus,
D. bassi, and D. tomentosus, inhabit Mexico (Ben-Dov and
Marotta, 2001; Chávez-Moreno et al., 2009). These insects are
the main source of carminic acid, a glycoside-anthraquinone
molecule used in the textile, cosmetic, pharmaceutical, and food
industries as a dye or pigment (Deveoglu et al., 2011). All of these
Dactylopius species produce carminic acid, but only D. coccus is
cultivated and used for commercial purposes due to the higher
amount and quality of its pigment (Rodríguez et al., 2005).
Moreover, since non-cultivated Dactylopius are considered a
cactus plague, in some countries they are used as biological
control for these plants (Zimmermann and Moran, 1991; Spodek

TABLE 1 | Collection sites of Dactylopius species.

Location Location

code

Latitude/Longitude Insect species

Campo Carmín, Xochitepec,

Morelos state

CC 18◦44′46.7′′N D. coccus

99◦11′17.8′′W

Teotihuacán, Mexico state TEM 19◦40′47.3′′N D. opuntiae

98◦50′59.4′′W

Ecatepec, Mexico state ECM 19◦35′27.3′′N D. opuntiae

98◦59′57.5′′W

Jiutepec, Morelos state JM 18◦53′52.5′′N D. opuntiae

99◦10′56.8′′W

Coyoacán, Federal district CDF 19◦19′18.9′′N D. confusus

99◦11′09.8′′W

Milpalta, Federal district MADF 19◦12′26.7′′N D. confusus

99◦1′28.8′′W

et al., 2013; Pérez-Ramirez et al., 2014; da Silva Santos et al.,
2015).

Dactylopius cochineals spend their life feeding onOpuntia and
Nopalea cactus sap (Chávez-Moreno et al., 2009), which is mainly
composed of water (88–95% wet weight) and has low protein
concentration (0.5–1% wet weight; Stintzing and Carle, 2005).
Thus, we supposed that nitrogen deficiencies may be supplied by
associated symbiotic microorganisms. The diversity of microbial
symbionts in Dactylopius has been scarcely described. There
are a few reports of the bacterial communities in Dactylopius
species (Pankewitz et al., 2007; Ramírez-Puebla et al., 2010, 2015).
However, there are no reports on the fungal community and their
possible roles in association with this cochineal insect. The aim of
this work was to identify and describe fungi from diverse stages
and tissues of Dactylopius species, as well as to determine their
role in uric acid catabolism in these insects.

MATERIALS AND METHODS

Insect Sampling and Identification
Dactylopius coccus samples were obtained from Campo Carmín
Company (Table 1). Wild species of Dactylopius (D. opuntiae
and D. confusus) were collected from three states in Mexico
(Table 1). Insects were obtained from Opuntia spp. cactus
and were transported together with their host plants to
the laboratory. For species identification, ten female adults
from the different locations were preserved in fixation buffer
(chloroform: ethanol: glacial acetic acid 4:3:1). The superficial
wax was removed by placing the insects in 10% KOH for
10min at 60◦C. Body contents were removed by cutting a
slit in the body margin and expelling the contents with a
spatula. Cleaned specimens were transferred into 70% alcohol
for 10min. Then, all specimens were transferred and kept
in a staining solution (2% aqueous solution of acid fuchsin)
overnight. Specimens were washed in 70% alcohol for 10min
and dehydrated in 100% alcohol for 10min. Each specimen
was placed face down on a slide with a drop of Canada
balsam and covered with a slip. Microscopic observations with
the keys described by Perez-Guerra and Kosztarab allowed
the morphological identification of Dactylopius species (Perez-
Guerra and Kosztarab, 1992). Specimens were deposited in
the collection of Héctor González-Hernández from COLPOS,
Mexico.

Fungal Isolation, DNA Extraction, and PCR
Amplification
Insects from 1st instar nymph, 2nd instar nymph and adult
stages of D. coccus and of wild Dactylopius (D. opuntiae and
D. confusus) were detached from their host plant, submerged
in 100% ethanol and the wax cover was removed with forceps
under a stereoscope. They were then surface disinfected with
70% ethanol and rinsed twice with sterile water. A pool of five
washed and disinfected insects from each developmental stage
mentioned above of D. coccus, D. opuntiae, D. confusus and a
pool of 20D. coccus adult males were totally macerated (hereafter
named as whole body samples) with a sterile Eppendorf R© pestle
in a 1.5 microtube with 500µl of 0.85% NaCl. Additionally, two
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FIGURE 1 | Maximum likelihood tree (−ln L = −5579.17063) of fungi isolated from different species of Dactylopius spp. The ITS sequence of Taphrina

deformans was used as outgroup. Scale bar indicates 2% estimated sequence divergence. Bootstrap support values ≥ 50% are indicated. Colors mean different

Dactylopius species. Red, D. coccus; green, D. opuntiae; and purple, D. confusus. Letters in parentheses show the collect site (Table 1).
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TABLE 2 | Fungi associated with different Dactylopius species in culture-dependent analysis.

Insect host Isolate name Most related fungi ITS

sequence from

GenBank (identity %)

Most related fungi 26S

rRNA sequence from

GenBank (identity %)

OTU

Number

Morphology

Yeast (Y) Mold

(M)

Isolated from:

Ovary-eggs (O)

Gut (G) Whole

body (W)

Insect host

stage

Dactylopius

coccus

DCHTL5 Rhodotorula

mucilaginosa EU56392

(100)

Rhodotorula

mucilaginosa DQ832198

(100)

1 Y G Adult female

DC3F Y O Egg

DCH3T2 Y W Adult female

DC Cryptococcus saitoi

EU149781 (100)

Cryptococcus saitoi

JX188127 (100)

4 Y W Adult female

DCAPYAF Cryptococcus flavescens

FN428902 (99.76)

Cryptococcus flavescens

FJ743610 (98.5)

5 Y W Adult female

DCHBPI Stereum sp. GQ999353

(77.58)

Phlebiopsis flavidoalba

EU118662 (97.8)

9 M W Adult female

DCALI Irpex sp. JN615247

(99.78)

Irpex lacteus JN710547

(99.8)

8 M G Adult female

DCHBP Trametes polyzona

JN164978 (99.77)

Trametes polyzona

JN164790 (100)

7 M G Adult female

HG Periconia sp. JN164978

(88.85)

Periconia macrospinosa

JN859484 (93.74)

11 M O Egg

HM M O Egg

DCHB Phanerochaete sordida

HM583837 (98.60)

Phanerochaete sordida

HM595608 (97.8)

10 M G Adult female

DCNin003F Penicillium commune

FR799456 (99.06)

Penicillium nalgiovense

JQ434685 (100)

13 M W 1st instar

DCNin002F M G 1st instar

DCNIN01F Penicillium chrysogenum

HQ380757 (99.76)

Penicillium cavernicola

JQ434692 (100)

14 M W 1st instar

DCMAF01BCI M W Adult male

DCMAF04BI M W Adult male

DCMAF01BAI M W Adult male

DCMAF01BBI M W Adult male

DCMAF03BB M W Adult male

Dactylopius

confusus

DSPC Cryptococcus saitoi

EU149781 (100)

Cryptococcus saitoi

JX188127 (100)

4 Y W Adult female

DSCP1C Y G Adult female

DSP26 Rhodotorula

mucilaginosa EU56392

(100)

Rhodotorula

mucilaginosa DQ832198

(100)

1 Y G 2nd instar

DSPCUA Debaryomyces

prosopidis JN942657

(100)

Debaryomyces hansenii

AB470569 (100)

12 Y G Adult female

DSPA Y G Adult female

Dactylopius

opuntiae

DSPNAR Rhodotorula glutinis

AF444539 (100)

Rhodotorula glutinis

KC494740 (100)

2 Y G Adult female

DSP30 Rhodotorula

mucilaginosa EU56392

(100)

Rhodotorula

mucilaginosa DQ832198

(100)

1 Y G 2nd instar

DSPNEGRO Rhodotorula minuta

AF190012 (100)

Rhodotorula minuta

EU583491 (99.8)

3 Y G Adult female

DWL Trametes polyzona

JN164978 (99.77)

Trametes polyzona

JN164790 (100)

7 Y W Adult female

DSPMGT17CB Cryptococcus diffluens

GQ376092 (99.58)

Cryptococcus diffluens

AF335981 (100)

6 Y G Adult female

(Continued)
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TABLE 2 | Continued

Insect host Isolate name Most related fungi ITS

sequence from

GenBank (identity %)

Most related fungi 26S

rRNA sequence from

GenBank (identity %)

OTU

Number

Morphology

Yeast (Y) Mold

(M)

Isolated from:

Ovary-eggs (O)

Gut (G) Whole

body (W)

Insect host

stage

DSPEM Y G 2nd instar

DSPM17G Y G Adult female

DOP Cryptococcus saitoi

EU149781 (100)

Cryptococcus saitoi

JX188127 (100)

4 Y W Adult female

DOPE Y O Egg

DSP Y W 1st instar

WTDSMAQUIAF Cryptococcus flavescens

FN428902 (100)

Cryptococcus flavescens

FJ743610 (98.5)

5 Y G Adult female

DSPMAQUI03F Y G Adult female

DSPBLA Trametes polyzona

JN164978 (99.77)

Trametes polyzona

JN164790 (100)

7 M G Adult female

FIGURE 2 | Fungal composition assessed by taxonomic classification of ribosomal rRNA markers from metagenomic (culture-independent) and

culture-dependent analyses of D. coccus.

individuals of 2nd instar nymphs and adult females from D.
coccus, D. opuntiae, and D. confusus were dissected under sterile
conditions to obtain guts (gut samples) and ovary-eggs (ovary
samples). Dissections were performed by making a transverse
cut in the cuticle and removing the organs with fine sterile
forceps. These organs were submerged in 600µl of sterile 0.85%
NaCl and macerated using sterile pestles. After maceration, all
samples were indirectly sonicated for 30 s in a Bransonic R©

Ultrasonic MH Cleaning Bath. One hundred microliters of this
suspension were inoculated in 50ml of YPDmedia (1% w/v yeast
extract, 2% w/v peptone, and 2% w/v dextrose), malt extract
media (Difco) and two minimal media: MMT [NH4Cl 3 g l−1;
K2HPO4 1 g l

−1; MgSO4 0.025 g l
−1; CaCl2 0.25 g l

−1; KCl 0.025 g
l−1; FeSO4 0.02 g l−1; yeast extract (Difco) 0.02 g l−1; trehalose

0.01 g l−1; glucose 10 g l−1; and sucrose 5 g l−1] and MMTC
[NH4Cl3 g l−1; K2HPO4 1 g l−1; MgSO4 0.025 g l−1; CaCl2
0.25 g l−1; KCl 0.025 g l−1; FeSO4 0.02 g l−1; CuSO4 0.02 g l−1;
yeast extract (Difco) 0.02 g l−1; Carmine dye 0.01 g l−1 (Merck
microscopy grade)] and were incubated at 25 ± 2◦C at 180 rpm
for 72 h. After the incubation period, 100µl of the liquid medium
was spread on the corresponding solid medium for selection
of yeast and filamentous isolates. To test the best conditions
for growing fungi, 100µl of the initial macerate suspension
was also spread directly on solid media MMTC and MMT
and incubated in CO2 generation GaspackTM EZ CampyPuchTM

System at room temperature for 1 week. Pure cultures were
obtained and stored at −70◦C in 25% glycerol for further
analysis.
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FIGURE 3 | Pathway for purine catabolism of fungal genes predicted from D. coccus gut (blue) and hemolymph (red) metagenomes.

DNA from fungal isolates was extracted following the
protocols described byHoffman andWinston (1987). ITS regions
were amplified using primers ITS1 (5′ TCCGTAGGTGAACCT
GCGG 3′) and ITS2 (5′TCCTCCGCTTATTGATATGC 3′) that
we designed for this study. D1-D2 26S rRNA gene region from
fungal isolates were amplified using primers 26S-A1 (5′ CAT
ATCAATAAGCGGAGCAAAAG 3′) and 26S-A2 (5′ ìCAGTTC
TGCTTACCAAAAATGG 3′; Scorzetti et al., 2002). The final
concentration for 50µl PCR reactions was as follows: 10 ng of
total DNA, 0.8 pmol of each primer, 0.2mM dNTPs, 2.5mM
MgCl, 0.5 U Taq polymerase and 1x Taq polymerase buffer
(Invitrogen Life Technologies, Sao Paulo, Brazil). The reaction
conditions were 94◦C for 5min; 35 cycles of 60 s at 94◦C, 60 s at
57◦C, and 90 s at 72◦C; and a final extension at 72◦C for 10min.
PCR products were purified using the High Pure PCR Product
Purification Kit (Roche) and sequenced by Macrogen Inc. (Seoul,
Korea) by Sanger technology.

Insect DNA Extraction
For shotgun metagenomic analysis, 30 adult females of D. coccus
were externally disinfected and dissected as described above. All
30 guts (including the Malpighian tubules) were placed in 200µl
of lysis buffer solution (Tris-HCl 10mM, pH. 8; EDTA 1mM;

NaCl 10mM; SDS 1%; Triton X-100 2%). For DNA extraction,
samples were macerated with sterile pestles, additionally 0.3 g
of sterile glass beads and 200µl of phenol-chloroform-isoamyl
alcohol (25:24:1) were added to the macerate. The samples
were mixed by vortexing, warmed at 65◦C for 1 h, followed by
centrifugation at 15996× g and the aqueous phase was recovered.
Nucleic acids were precipitated with 1ml of absolute ethanol for
20min at −20◦C, washed twice with 70% ethanol then dried
in a vacuum concentrator, resuspended in 50µl of deionized
water and cleaned with DNeasy Blood and Tissue Kit (QIAGEN)
columns (this sample is hereafter called as gut metagenome).
Additionally, hemolymph from another 30 individuals of D.
coccus adult females was obtained by dissection. Insect debris
was separated by centrifugation in a Percoll (Sigma) gradient,
and hemolymph cells were resuspended into 200µl of PBS
and macerated using sterile plastic pestles (Eppendorf). DNA
extraction and purification from this sample (hereafter called as
hemolymph metagenome) was performed with DNeasy Blood
and Tissue Kit (QIAGEN) following manufacturer’s instructions.

DNA Sequencing
For gut metagenome DNA Illumina sequencing libraries were
prepared using a fragment size of 400 bases and sequenced
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FIGURE 4 | Uric acid and uricase activity during different life stages of

D. coccus and D. opuntiae. (A) Uric acid content in ng per microgram tissue

(Two way-ANOVA P = 0.1978; F = 1.73 d.f. 1). (B) Uricase activity in milli-Units

per microgram tissue (Two way-ANOVA P = 0.5585 F = 0.3496 d.f. 1). Values

are shown as means ± SE of five independent experiments. Mean values with

different letters are significantly different (Tuckey-HDS test P < 0.01).

by Illumina HiSeq2000 platform using a configuration of
200 cycles to obtain pair-end reads of 100 base length.
Both library preparation and sequencing were performed at
Macrogen Inc. (Korea). The sample yielded a total of 58,146,564
reads. Additionally, DNA from hemolymph metagenome was
sequenced using the 454GS-FLX platform yielding 811,305 single
reads.

Metagenomic Fungal Ribosomal Gene
In silico Reconstruction and
Characterization
Ribosomal genes from all metagenomic reads were obtained
using Parallel-meta 2.4 (Su et al., 2014) algorithm. Eukaryotic
ribosomal sequences were recovered using -E option against the
SILVA database within an e-value of 1 × 10−10 cutoff. Fungal
18S rRNA sequences were retrieved from parsing Parallel-meta
result tables. Fungal hits were visualized in Krona graphs (Ondov
et al., 2011). 18S rRNA gene sequences were recovered from
long reads of the hemolymph metagenome (>200 nt), compared
to taxonomically related sequences from NCBI using BLASTn
2.2.30+ (Camacho et al., 2009) and used for maximum likelihood

phylogenetic analysis. MODELTEST 3.06 was used to select
appropriate models of sequence evolution by the AIC model.
Model TrN was the best model (A = 0.25409; C = 0.14918; G
= 0.20597; T = 0.39076). The ribosomal sequence retrieved was
deposited in the GenBank database under the accession number
KT351777.

Gene Annotation and Purine Pathway
Reconstruction
To eliminate bacterial sequences, all metagenomic reads were
mapped to Wolbachia wDacA and wDacB genomes previously
obtained from D. coccus metagenome (Ramírez-Puebla et al.,
2015) using Bowtie2 2.2.4 (Langmead and Salzberg, 2012).
Un-mapped reads were retrieved by Samtools 1.2 (Li et al.,
2009). High-quality shotgun unmapped reads longer than
100 nucleotides were used directly for gene prediction and
annotation. Gene prediction was performed using FragGeneScan
1.20 (Rho et al., 2010) with –w 0 –p 16 –t illumina_5 (gut,
DCoax and DCperu metagenomes) and –t 454_5 (hemolymph-
metagenome) parameters. Metabolic annotation was obtained
from all putative coding gene predicted using GhostKoala tool
from KEGG (Kanehisa et al., 2015). Fungal annotation was
obtained by parsing the annotation result table using KEGGREST
Bioconductor library (http://bioconductor.org/packages/release/
bioc/html/KEGGREST.html). A metabolic pathway of uric acid
catabolism was constructed using KEEGMapper–Search & color
Pathway tool (http://www.genome.jp/kegg/tool/map_pathway2.
html) from fungal annotation results. All metagenomics reads
from gut and hemolymph metagenomes were deposited in
GenBank under SRA accession study SRP074499.

Additionally, to extend our metagenomic results we analyzed
the two available Dactylopiusmetagenomes from the whole body
(here after called DCoax and DCperu metagenome) deposited
in GenBank under BioProject PRJNA244295 (Campana et al.,
2015). For this, we performed a fungal ribosomal gene in silico
reconstruction and the annotation of fungal reads related to uric
acid catabolism as was described above.

Phylogenetic Analysis
Nucleotide sequences were compared against non-redundant
GeneBank library by BLASTn 2.2.30+ (Camacho et al., 2009)
and taxonomically related sequences were collected from NCBI.
Cultured fungi were identified by ITS and 26S rRNA phylogenies
obtained by Maximum likelihood. MODELTEST 3.06 was used
to select appropriate models of sequence evolution by the AIC
model (Posada, 2008). GTR+I+G (α = 1.772 for gamma
distribution; A = 0.25778; C = 0.23041; G = 0.22501; T =

0.28681) was the best model for the ITS gene, while GTR + I (α
= 0.383 for gamma distribution; A = 0.25061; C = 0.20735; G =

0.29982; T = 0.24222) was the best model for 26S rRNA gene.
A p-distance among sequences was calculated using DNAdist
algorithm from Phylip 3.6 software (Felsenstein, 1989). Limits for
genus and species were established at 95 and 97%, respectively.
To compare the sequences and quantify the number of fungi
operational taxonomical units (OTUs) related with Dactylopius
spp., a cluster analysis was performed using MOTHUR (Schloss
et al., 2009) and ribosomal sequences were clustered at 0.03%
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FIGURE 5 | (A) Growth kinetics of uricolytic yeast associated with Dactylopius spp. using uric acid as sole nitrogen source. (B) Uric acid consumption kinetics of

uricolytic yeast associated with Dactylopius spp. using uric acid as sole nitrogen source. Values are shown as means ± SEM of three independent experiments.

distance. All sequences generated from ITS and 26S rRNA of
cultured fungi were deposited in the GenBank database under the
accessions numbers KM393247 to KM393282 and KT351741 to
KT351776, respectively.

Determination of Uric Acid and Uricase
Activity in Dactylopius spp.
Three guts from D. coccus and D. opuntiae in 1st instar nymph,
2nd instar nymph and adults, as well as eggs from both
species, were dissected as mentioned above. Additionally male
bodies were resuspended in 200µl AmplexRed buffer solution.
Also, 10µl of honeydew from D. coccus and D. opuntiae were
resuspended in 100µl of the same buffer solution. UA and
uricase activity were determined using the Amplex R© Red Uric
Acid/Uricase Assay Kit (Life Technologies Eugene, OR) following
the manufacturer’s instructions. Means of the UA content as well
as uricase activity were compared using two-way ANOVA, and a
Tukey-HSD post-hoc test was applied for pairwise comparisons
between insects. Furthermore, to compare differences in
UA content between honeydew and adult female guts a t-
test was performed. All statistics test were performed using
R version 3.1.

Fungal Uricolytic Activity
Individual guts and Malpighian tubules, from adults of
D. opuntiae and D. coccus were placed separately in microtubes
and macerated with sterile pestles in 200µl of sterile PBS.
Serial 10-fold dilutions from 10−1 to 10−3 were spread on
duplicate plates of MU media (K2HPO4 2.5 g l−1; KH2PO4 5 g
l−1; MgSO4•7 H2O 0.2 g l−1; MnSO4 0.02 g l

−1; CaCl2 0.05 g l
−1;

FeSO4 0.05 g l
−1; uric acid (Sigma) 1.5 g l−1; glucose 10 g l−1 and

agar 15 g l−1). Plates were incubated at 28◦C in CO2 atmosphere
generated by BD GasPak EZ Pouch SystemsTM for 7 days.
Colonies with yeast-like macro and microscopic morphology
surrounded with a clear halo (suggestive of uric acid utilization)
were counted and colony forming units (CFU) per gut were
obtained. All isolates were stored at −70◦C. Additionally,
uricolytic activity of 37 isolated fungi from Dactylopius spp. was
tested measuring a degradation halo in YPU (Yeast extract 10 g
l−1; Peptone 10 g l−1, UA 7 g l −1) medium. Enzyme activity was
determined as described by Morales-Jiménez et al. (2013). To
find out if UA was used by fungi isolates as sole nitrogen source,
growth and UA consumption kinetics were performed. Microbial
growth was measured quantifying the CFUml−1 for yeast and by

weighing the final biomass for molds grown in liquid MUmedia.

UA consumption was quantified by measuring the decrease in

Frontiers in Microbiology | www.frontiersin.org 8 June 2016 | Volume 7 | Article 954

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Vera-Ponce de León et al. The Dactylopius Mycobiome

TABLE 3 | Uric acid consumed as sole nitrogen source by fungi isolated

from Dactylopius.

Isolate Uric acid consumed

(µg ml−1)

Sperman correlation

R-value

P-value

Rhodotorula glutinis

DSPNAR

127.6± 42.54 −0.922 0.0045

Cryptococcus saitoi

DSPC1C

119.9± 62.16 −0.725 0.0515

Rhodotorula minuta

DSPNEGRO

414.8± 66.43 −0.897 0.0128

Rhodotorula

mucilaginosa

DCHTL5

170.5± 89.54 −0.867 0.0127

Cryptococcus

flavescens

DCAPYAF

323.5± 37.34 −0.925 0.0041

Debaryomyces sp.

DSPA

0.0± 0.0 0.221 0.3372

Penicillium sp.

DCM03BB

717.9± 27.05 −0.892 0.0085

absorbance at 295 nm. These results were compared against a
standard curve of UA. A Sperman correlation was performed to
assess a negative correlation and differences in UA consumption
in relation to time.

Antifungal Treatment
A group of 15 first instar nymphs of D. opuntiae was fed
on a prickly pear pad of Opuntia ficus-indica injected with
5ml of 20µg ml−1 antifungal cocktail of Ketoconazol (Sigma),
Anfotericine B (Sigma), and Fludioxonil (Sigma). Fleshy leaves
were injected weekly for 4 weeks and then female insects were
removed. O. ficus-indica leaves without antifungal were similarly
infested and used as negative controls. After treatment, a pool
of six individuals of each leaf was used to measure differences
in dry weight, UA content and uricase activity. Five replicates of
this experiment were performed. UA content, uricase activity and
dry weight data were compared between controls and treatments
using a t-test.

Fluorescent In situ Hybridization (FISH)
FISH was performed as previously described by Koga et al.
(2009) with slight modifications. Ninety-day old D. coccus and
D. opuntiae were collected. Malpighian tubules, as well as ovaries
and embryos (25 from D. coccus and 20 from D. opuntiae) were
dissected as described above. These organs were embedded in 3%
agarose and treated as described by Rosas-Pérez et al. (2014). The
oligonucleotide probe used was Cy5-Cry851 (5′-TGATGCGA
GTTTCTGCTATC-3′), which targets 26S rRNA of Cryptococcus
saitoi (designed for this work). After washing with PBS the
samples were stained with 2.4µg ml−1 of DAPI and mounted
with citifluor antifade solution. To confirm probe specificity,
control experiments were performed with no probe and RNAse
digestion. The samples were observed under an Olympus FV100
Multi-photonic confocal microscopy. Images were processed
using FIJI 2.0.0 software (Schindelin et al., 2012).

RESULTS

Culture-Dependent and
Culture-Independent Analyses of Fungal
Communities
A total of 37 fungal isolates were cultured from D. coccus,
D. opuntiae, and D. confusus. Isolates were obtained from guts,
whole bodies and ovary samples (Table 2). Nucleotide sequences
of 26S rRNA genes and ITS regions from different morphotypes
corresponded to 14 OTUs. 26S rRNA and ITS phylogenetic
analyses showed sequences belonging to Ascomycota and
Basidiomycota with Rhodotorula, Cryptococcus and Penicillium
as the most frequent genera (Figure 1; Supplementary Figure 1).
Fungal species like Rhodotorula mucilaginosa and Cryptococcus
saitoi were present in the three Dactylopius species sampled,
whereas Trametes polizona was present in D. coccus and
D. opuntiae (Table 2). Three filamentous fungi had an ITS
sequence identity of 77.6 and 88.9% to Stereum sp. and Periconia
sp. (DCHG and DCHM) respectively (Figure 1; Table 2). In 26S
rRNA phylogenies, the closest related sequences of these novel
fungi were Phlebiopsis flavidoalba (DCHBPI) with 97.8% identity
and Periconia macrospinosa (DCHG and DCHM) with 93.74%
identity (Table 2, Supplementary Figure 1). Likewise, from D.
coccus we could isolate the mold Penicillium from 1st instar
nymphs (n = 3) and males (n = 5) but not from adult females
(Figure 1; Table 2; Supplementary Figure 1).

From the metagenomic data of the hemolymph and
gut metagenomes, fungal 18S rRNA gene sequences were
detected. Hemolymph metagenome sequences were assigned
particularly to Sebacina vermifera, Bullera ninhbinhensis
(Basidiomycetes), and Candida lignicola (Ascomycetes; Figure 2;
Supplementary Data Sheet 1). In congruence, a phylogenetic
reconstruction of 18S rRNA (∼200 nt) from this sample showed
the presence of Pichia anomala (100% identity) in Dactylopius
hemolymph (Supplementary Figure 2). In gut metagenome,
we found sequences related to Basidiomycota, particularly to
the Sebacinaceae family (Craterocolla sp. and Sebacina sp.)
and Ustilaginaceae family (Rhodosporidium sp.), as well as
sequences related to Chytridiomycota and Glomeromycota
phyla (Figure 2; Supplementary Data Sheet 1). Remarkably, most
of the fungal sequences obtained by the metagenomic analysis
were associated with uncultured and unclassified fungi (Figure 2;
Supplementary Data Sheet 1). Analysis of DCoax metagenome
showed sequences related to Basidiomycota (Agaricus bisporus
and Thanatephorus cucumeris), Ascomycota (Blastobostrys
adeninivorans and Candida sp.), Glomeromycota and some
unclassified fungi (Figure 2; Supplementary Data Sheet 1).
From DCperu metagenome the only fungal species detected was
Candida sp.

Metagenomic Annotation of Fungal Genes
Involved in Uric Acid Catabolism
A total of 518,258 open reading frames (ORFs) were predicted
from the hemolymph metagenome and 20,136,058 ORFs from
the gut metagenome. From those, only 2,874 and 66,502
corresponded to fungal ORFs, respectively. Metabolic annotation
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FIGURE 6 | Uric acid and uricolytic activity in gut of insects treated

with antifungals. (A) Uric acid content in D. opuntiae gut. * shows significant

difference between treatments (t-test t = 10.05; df = 2; P = 0.0098). (B)

Uricolytic activity in D. opuntiae gut. * shows significant difference between

treatments (t-test t = 3.671 df = 4, P = 0.0214). Values are shown as means

± SE of five independent experiments.

of these fungal ORFs revealed genes related to UA metabolism
(Figure 3). Particularly, we detected the presence of 20 and
85 fungal genes involved in UA catabolism from hemolymph
and gut metagenome, respectively (Supplementary Table 1). All
coding genes for xanthine degradation to urea were present
in gut metagenome whereas in hemolymph metagenome we
did not find any allantoinase fungal genes (Figure 3). From
DCoax metagenome a total of 8,911,722 ORFs were estimated
and 8,901,672 were properly annotated by Ghost-KOALA,
from which 262,623 corresponded to fungal sequences. We
found 128 putative genes involved in uric acid catabolism in
this metagenome (Supplementary Table 2). From the DCperu
metagenome, 8,619,769 ORFs were predicted; 8,611,041 had a
functional annotation and 226,810 belonged to fungal sequences.
A total of 101 putative genes of uric acid catabolism were
present in this sample (Supplementary Table 3). As in gut
metagenome, all genes for xanthine catabolism to urea were
found in DCoax and DCperu metagenomes (Supplementary
Figure 3).

UA and Uricase Activity in Dactylopius spp.
Guts
UA and uricase activities were detected in D. opuntiae and
D. coccus extracts where the changes in UA concentration
depended on the insect developmental stage (Figure 4A). The
highest amount of UA was present in eggs of both species
(21.87 ± 2.91 and 34.49 ± 3.11 ng µg−1 tissue, respectively;
Supplementary Table 4) whereas the lowest was inD. coccus adult
male,D. coccus female and inD. opuntiae 2nd instar nymph (4.49
± 0.38; 4.61 ± 0.91 and 2.91 ± 0.32 ng µg−1 tissue respectively;
Supplementary Table 4).

Post-hoc comparison using Tukey-HSD test showed
significant differences in UA content among eggs, 1st instar
nymph, and adults in both species, although no significant
difference was seen between 2nd nymph instar and adult
(Figure 4A).

Urate oxidase or uricase (EC 1.7.3.3 or UOX) is a homo-
tetramer that catalyzes the conversion of UA and molecular
oxygen to 5-hydroxyurate and hydrogen peroxide (Gabison et al.,
2008). In our results, this enzyme showed high activity in adult
females of both Dactylopius species (80mU µg−1 tissue for
D. coccus and 135mU µg−1 tissue for D. opuntiae; Figure 4B;
Supplementary Table 4). Post-hoc test showed significant
differences in uricolytic activity in all stages (Figure 4B). The
content of uric acid in adult’s honeydew in both scale species
was low, 0.18 ± 0.05 and 0.58 ± 0.05 ng µl−1 in D. coccus and
D. opuntiae, respectively. A t-test showed a significant difference
between UA content in honey dew and adults gut (D. coccus
P = 0.0006; t = 4.856; df = 8;D. opuntiae P < 0.0001; t = 26.85;
df = 8), moreover no urate oxidase activity was detected in these
samples. This supports the idea that UA is metabolized inside the
insect.

Uricolytic Fungi Associated with
Dactylopius
The number of uricolytic yeast CFUs inMU fromD. opuntiae gut
was estimated in 4.1× 102 ± 0.74× 102 CFU gut−1. The isolates
C. flavescens DCPYAF01, R. mucilaginosa DCHTL5, R. minuta
DSPNEGRO, R. glutinis DSPNAR, C. saitoi DSPCUB, and
the mold Penicillium sp. DCFM03BB (Figure 1; Table 2), were
capable of growth and consumption of UA as sole nitrogen source
(Figures 5A,B; Table 3). The maximum consumption rates were
with Penicillium sp. DCMAF03BB and R. minuta DSPNEGRO
(717.9± 27.05 and 414.8± 66.43µg of UA respectively; Table 3).
Debaryomyces sp. DSPA showed no significant growth and there
was no evidence for UA uptake by this strain (Figures 5A,B;
Table 3).

Antifungal Effects on UA Concentration
and Uricase Activity in D. opuntiae
After four weeks with antifungal treatment D. opuntiae weight
was significantly lower in comparison to the controls (2.50 ±

0.15 and 0.58 ± 0.12mg respectively; t = 6.954; df = 4;
P = 0.0201; Supplementary Figure 4). Uric acid concentration
was significantly higher in fungicide treated insects vs. controls
(6.25 ± 0.28 and 3.58 ± 0.21 UA ng µg−1 tissue 1 respectively;
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FIGURE 7 | Localization of Cryptococcus saitoi inside Dactylopius. In the fluorescence in situ hybridization (FISH) images, blue and red signals indicate insect

nuclear DNA and fungi respectively. (A) Left D. coccus embryo; right D. opuntiae embryo. (B) No-probe controls; Left D. coccus embryo; right D. opuntiae embryo.

White arrows show C. saitoi signal.

Figure 6A). Additionally, uricase activity was significant lower in
antifungal treatments than in controls (20.20± 1.35 and 50.91±
8.26mU tissue µg−1, respectively; Figure 6B).

Cryptococcus saitoi Localization in
Dactylopius
Fluorescent in situ hybridization of D. coccus and D. opuntiae
showed the presence of C. saitoi in embryos of both species
(Figures 7A,B). Of 25 embryos ofD. coccus and 20 ofD. opuntiae,
17 (68%) and 14 (70%) contained the fluorescent signal. FISH
analysis showed that C. saitoi fungi were on the egg surface.
Additionally, C. saitoi was observed by FISH in a distal part of
the Malpighian tubules in D. coccus (Supplementary Figure 5).

DISCUSSION

A comprehensive study of the fungal community associated with
Dactylopius is presented here, where different species in four
fungal phyla were found by culture and culture-independent

analyses. C. saitoi and R. mucilaginosawere found in most female
samples (Figure 2) while Penicillumwas the only fungus found in
males (Figure 1; Table 2; Supplementary Figure 1). Penicillium
has been associated with other insects such as bees, beetles,
termites, and as well as in Triatoma sp. guts (Batra et al., 1973;
Lage-Moraes et al., 2001; Pérez et al., 2003). The cultured fungi
obtained belonging to Rhodotorula, Cryptococcus, Trametes,
Penicillium, and Debaryomyces (Figure 1; Supplementary Figure
1) were previously found in other phytophagous insects (Jones
et al., 1999; Guevara et al., 2000; Suh et al., 2001; Ganter,
2006; Kobayashi et al., 2007). Particularly in the scale insect
Saissetia oleae, Cryptococcus, and Rhodotorula yeasts were
isolated from the gut and reproductive organs (Zacchi and
Vaughan-Martini, 2003). Similarly, in the reproductive tissues
and guts from D. coccus and D. opuntiae, we found Cryptococcus
and Rhodotorula by a culture dependent approach and by
FISH (Figure 7; Table 2; Supplementary Figure 5). In culture
we also found P. flavidoalba (DCHBPI), Periconia macrospinosa
(DCHG and DCHM) and Irpex lacteus (DCALI) which, to our
knowledge, have not been previously isolated from insect’s inner
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tissues. In this work ITS and 26S rDNA markers were used for
culture-fungi identification and in few cases genus or species
assignment differed depending on the marker used (Table 2),
indicating that single gene phylogenetic stories are not fully
reliable and a better sample of the genome is needed in novel
groups.

Most of the fungal ribosomal sequences from the female
metagenomic analyses belonged to uncultured or non-
classified fungi. With ∼100–300 base pair reads an accurate
classification may be difficult. Additionally, fungal sequences
are underrepresented in metagenomics because of limited
information in databases used for the analysis and problems
in fungal DNA extraction from different samples (Lindahl
and Kuske, 2013; Escobar-Zepeda et al., 2015). However,
members of Chytridiomycota and Glomeromycota phyla
(Figure 2; Supplementary Data Sheet 1) were recovered form
D. coccus metagenomes. There are reports of entomopathogenic
Chytridiomycota associated with elm bark beetles, blackflies,
and aquatic dipteran larvae (Humber et al., 1990; Powell,
1993), but not in scale insects. Glomeromycota is a phylum
of asexual fungi from arbuscular mycorrhiza of plants, they
are obligate endosymbionts and cannot be grown in pure
culture in the absence of their plant host (Hempel et al., 2007;
Gianinazzi-Pearson and Van Tuinen, 2012). Interestingly,
there are no reports of this fungal phylum associated with
insects, although some sequences related to mycorrhizal fungi
have been found in other habitats like the human oral cavity
(Ghannoum et al., 2010; Cui et al., 2013). In Dactylopius we
found sequences of Glomeromycota in gut and whole body
(Supplementary Data Sheet 1). It is tempting to speculate that
its presence could mediate a close interaction between insects
and their host plant. This is the first report of Glomeromycota in
insects.

Sequences of Candida, which we did not recover in cultures
(Figure 1; Table 2; Supplementary Figure 1), were found in all
female Dactylopius metagenomes (Supplementary Data Sheet 1;
Supplementary Figure 2). Species of Candida have been isolated
from insect guts as well as in mycetocytes of other hemipterans
(Gibson and Hunter, 2005; Vega and Blackwell, 2005; Suh et al.,
2008; Hughes et al., 2011).

Additionally, we report here the presence of uricolityc fungi
associated with Dactylopius spp. Nitrogen content in O. ficus-
indica cladodes is around 0.5–1% of wet weight (Stintzing and
Carle, 2005). Meanwhile in Dactylopius this element constitutes
about 32% of wet weight (Gómez-Hernández, 2006). This means
that Dactylopius has to accumulate 30 times the nitrogen present
in the cactus. It is known that N2 recycling by UA catabolism
provides nitrogen to plant feeding insects (Potrikus and Breznak,
1981; Sasaki et al., 1996; Morales-Jiménez et al., 2013; Patiño-
Navarrete et al., 2014). However, bacteria are often mentioned
as major recyclers in these scenarios and only in the brown
plant hopper (Nilaparvata luggens) it has been shown that many
unicellular fungi symbionts called yeast-like symbionts (YLS) are
involved in insect UA metabolism (Sasaki et al., 1996). Plant
hoppers produce and store UA when fed nitrogen-rich diets,
but when nitrogen is limited their YLS mobilize the stored UA
using the enzyme uricase (EC:1.7.3.3). This process may turn UA

into amino acids for insects. Yeast isolates from D. coccus and
D. opuntiae females as well as themold Penicillium fromD. coccus
males were capable of metabolizing UA as sole nitrogen source
(Figures 5A,B; Supplementary Table 4) There are reports for UA
catabolism in Cryptococcus and Penicillium (Allam and Elzainy,
1969; Lee et al., 2013) but to our knowledge there are no reports
for uricolytic Rhodotorula (Middelhoven et al., 1985). In termites
(Reticulotermes flavipes) and in bark beetles (Dendroctonus
valens andDendroctonus rhizophagus) uricolytic microorganisms
have been isolated from their guts (Potrikus and Breznak,
1980; Morales-Jiménez et al., 2013), in agreement most of the
Dactylopius uricolytic fungi come from the alimentary canal
(Figures 5A,B; Table 2). FISH analysis showed the presence of
Cryptoccocus (uricolytic yeast) in Malpighian tubules ofD. coccus
(Supplementary Figure 5). Additionally, metagenomic analysis
of guts and hemolymph of D. coccus and whole body of other
D. coccus revealed the presence of fungal genes involved in UA
catabolism (Figure 3; Supplementary Figure 3; Supplementary
Tables 2, 3). Uricase catalyzes the first step in UA catabolism
(Gabison et al., 2008). Even though putative genes for uricase
were present in all metagenomes analyzed, there was only one
ORF codifying for this enzyme in hemolymph metagenome;
meanwhile in the gut metagenome 18 of these genes were
found (Supplementary Table 2). This supports the idea that UA
could be metabolized by fungi in Dactylopius gut, as in other
insects, rather than directly in hemolymph. Besides, putative
fungal genes for allantoinase, allantoicases, and ureases were
also found. This suggests that UA can be catabolized to urea
and ammonia by fungi (Figure 3; Supplementary Figure 3). It is
known that in silkworm Bombix mori and in the larvae of the
bruchid beetle Caryedes brasiliensis urea can be incorporated into
insect proteins as an alternative nitrogen source (Hirayama et al.,
1999). In Dactylopius uric acid could be metabolized into urea
by their associated fungi and then used as nitrogen by its insect
host.

Different levels of UA during life stages have been detected
in other Hemiptera. Particularly in Parastrachia japonensis, UA
is higher before copulation and during ovarian development
and lower in nymph stages (Kashima et al., 2006). In contrast,
in Dactylopius we found that UA is higher in nymphs as
compared to adults (Figure 4A; Supplementary Table 4). Uricase
activity was detected in Dactylopius guts in all life stages, in
contrast this enzyme is absent in the majority of insects (Pant,
1988). However, some insect symbionts present uricase activity
(Potrikus and Breznak, 1981; Hongoh and Ishikawa, 2000). In
the shield bug P. japonensis treatment with antibiotics produce
a reduction in uricolytic activity and in amino acid concentration
in hemolymph (Kashima et al., 2006). In Dactylopius, antifungal
treatment showed a similar significant decrease of uricase activity
(Figure 6B), additionally UA concentration was higher in those
insects treated (Figure 6A). As mentioned, the metagenomic
approach revealed fungal uricase genes (Figure 3; Supplementary
Figure 3; Supplementary Tables 1–3), that in addition to
the experimental evidence of UA accumulation and lower
uricolytic activity in antifungal treated insects (Figures 6A,B),
suggest that the uricase detected in the enzymatic assay
on Dactylopius (Figure 4B; Table 3) may come from their
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associated fungi. In conclusion fungi associated to Dactylopius
could recycle nitrogen in order to supply deficiencies in
their diet.
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