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Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations

has become a reality in the post-genomics era. We applied this technology to

strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven

North America outbreaks, as well as multiple isolates from the same patient and

from different infected individuals in the same household. Customized high-resolution

bioinformatics sequence typing strategies were developed to assess the core genome

and mobilome plasticity. Sequence typing was performed using an in-house single

nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power

becomes of particular importance for the investigation of isolates from outbreaks in

which macrogenomic techniques such as pulse-field gel electrophoresis or multiple

locus variable number tandem repeat analysis do not differentiate closely related

organisms. We also characterized differences in the phage inventory, allowing us to

identify plasticity among outbreak strains that is not detectable at the core genome

level. Our comprehensive analysis of the mobilome identified multiple plasmids that have

not previously been associated with this lineage. Applied phylogenomics approaches

provide strong molecular evidence for exceptionally little heterogeneity of strains within

outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing

the analysis on archetypal reference strains. Next generation sequencing and whole

genome typing strategies provide the technological foundation for genomic epidemiology

outbreak investigation utilizing its significantly higher sample throughput, cost efficiency,

and phylogenetic relatedness accuracy. These phylogenomics approaches have major

public health relevance in translating information from the sequence-based survey to

support timely and informed countermeasures. Polymorphisms identified in this work

offer robust phylogenetic signals that index both short- and long-term evolution and

can complement currently employed typing schemes for outbreak ex- and inclusion,

diagnostics, surveillance, and forensic studies.
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INTRODUCTION

Microbial pathogens with a foodborne etiology present major
challenges to public health. Escherichia coli has been divided into
different pathovars based on key virulence factors that define
their pathogenicity (Sadiq et al., 2014). One particularly daunting
pathovar among the Shiga toxin producing E. coli (STEC) are
strains of the enterohemorrhagic O157:H7 serotype, which can
be transmitted by a variety of vehicles, and causes serious
human disease (Tarr et al., 2005). Currently, there is no effective
treatment or prophylaxis for hemolytic uremic syndrome (HUS)
(Goldwater and Bettelheim, 2012), and use of antibiotics is
not indicated (Freedman et al., 2016). Since its discovery in
1982, this lineage has rapidly evolved from a rare serotype into
the now globally dominant enterohemorrhagic E. coli (EHEC)
serotype. A remarkable feature is its low infectious dose; it is
estimated that 10–100 colony-forming units (CFUs) are sufficient
to cause disease (Tilden et al., 1996; Tuttle et al., 1999) For the
above reasons, prevention of human infection is critical, and
early identification of outbreaks is highly worthwhile. However,
only rudimentary information exists regarding the genomic
heterogeneity that can be expected within outbreaks (STEC
Outbreaks).Moreover, current typing schemes, such as pulse field
gel electrophoresis (PFGE) and multiple locus variable number
of tandem repeats analysis (MLVA), often lack the resolution
to differentiate organisms that form tightly clonal phylogenetic
clusters within the O157:H7 clade (Eppinger et al., 2011b;
Turabelidze et al., 2013; Underwood et al., 2013; Rusconi and
Eppinger, 2016). Additionally, PFGE is subject to technological
and interpretation challenges (Davis et al., 2003).

Increasing technologic economies offer new opportunities
for sequence-based typing of microbial pathogens for public
health purposes (den Bakker et al., 2014; Joensen et al., 2014;
Leekitcharoenphon et al., 2014; Holmes et al., 2015). While it
would be ideal to refer a clinical strain’s sequence to a reference,
of the 445 publicly available genomes of E. coli O157:H7 and its
close relative O55:H7 (O157:H7 Genomes) (Kulasekara et al.,
2009; Zhou et al., 2010; Eppinger et al., 2011a, 2013; Sanjar
et al., 2014, 2015), to date only 11 have been closed (Hayashi
et al., 2001; Perna et al., 2001; Kulasekara et al., 2009; Zhou
et al., 2010; Eppinger et al., 2011b, 2013; Kyle et al., 2012; Xiong
et al., 2012; Latif et al., 2014; Sanjar et al., 2014, 2015; Cote
et al., 2015). Whole genome sequencing (WGS) can provide the
necessary resolution power to investigate apparent single source
outbreaks (Eppinger et al., 2011b; Hasan et al., 2012; Turabelidze
et al., 2013) because the granularity of WGS data provides
considerable confidence in assigning like vs. not-like status to two
potentially linked pathogens (Gilchrist et al., 2015). Such data can
also link pathogens to vehicles or environmental isolates most
precisely (Bentley and Parkhill, 2015). WGS can offer additional
advantages: serotypes and virulence loci within pathogens can
be identified (Scheutz et al., 2012; Leekitcharoenphon et al.,
2014; Lambert et al., 2015; Klemm and Dougan, 2016), and case
management might theoretically be risk-optimized.

Optimization of E. coli O157:H7 sequence analysis
methodologies depend on the scientific and epidemiologic
inquiries and the data being analyzed. Pettengill et al.
evaluated a number of single nucleotide polymorphism

(SNP) predicting tools and phylogenetic methodologies in
prokaryotes and concluded that a reference-based approach,
which accommodates missing data as well as infers phylogenetic
reconstruction, is the most appropriate (Pettengill et al., 2014).
Such a reference-based approach was recently used by the
Alberta Provincial Laboratory for Public Health to study E. coli
O157:H7 outbreaks together with virulence profiling and other
molecular methods (Berenger et al., 2015). No specific virulence
pattern distinguished the outbreak strains from sporadic strains
(Berenger et al., 2015). Recent studies have expanded WGS
typing to globally distributed strains and identified geographical
genomic structuring based on distribution of stx-converting
phage integration sites and SNPs (Mellor et al., 2015; Strachan
et al., 2015) and provided a more detailed subtyping of E. coli
O157:H7 (Griffing et al., 2015). However, clarity can also be
gained by comparing closely related isolates to each other, rather
than to reference strains (Leopold et al., 2009; Turabelidze et al.,
2013).

Here we adapt WGS to a specifically developed SNP-based
pipeline for the high resolution typing of E. coli O157:H7
by identifying SNPs within the core genome. In addition to
SNP analysis in the core genome we assessed plasticity in the
mobilome by LS-BSR and plasmid comparison (phages and
plasmids) (Eppinger et al., 2011a,b, 2014; Hasan et al., 2012;
Jenkins et al., 2015). We tested this pipeline on isolates from
seven retrospectively analyzed EHEC O157:H7 outbreaks, six
intra-household cases, and five clinical “plate-mate” pairs, i.e.,
colonies from the same primary isolation plate from the clinical
laboratory.

MATERIALS AND METHODS

Strains in Study
We compared human isolates (Supplemental Table 1) of nine
phylogenetic clades (Manning et al., 2008), so as to place the
strains in the overall E. coli O157:H7 phylogenetic context.
Strain-associated metadata of analyzed E. coli O157:H7 are
provided in Supplemental Table 1. Outbreak strains were
defined as a set of isolates from different cases of infection
arising from a single point source, as determined by local
health jurisdictions and/or the Centers for Disease Control and
Prevention. Intra-household cluster strains were recovered from
siblings within a household whose infections were not linked to
a recognized outbreak. Because intra-household clusters could
reflect co-primary infections rather than secondary transmission,
we selected such pairings from among our strain set collection
(Cornick et al., 2002; Besser et al., 2007) on the basis of prolonged
intervals (4–6 days) between cases, so as to increase the likelihood
that genomic diversity might emerge secondary to inter-host
transmission. Plate mates are pairs of isolates from the same
sorbitol-MacConkey agar plate used in clinical laboratories to
diagnose the infection.

Bioinformatic Analyses for Polymorphisms
Discovery in Core Genome and Mobilome
Developed bioinformatics workflows, methods and principles
for SNP discovery and core and accessory genome analyses
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performed in this study are described in Figure 1 with external
tools referenced in the legend. Multinucleotide insertions and
deletions of polymorphic bases were not considered SNPs.
To classify SNPs we mapped the annotation from the de
novo annotated references with PROKKA and Prodigal ORF
prediction (Hyatt et al., 2010), or the deposited annotation for
EC4115 (Eppinger et al., 2011b). The core genome was defined
as the set of genic and intragenic regions that were not repeated,
did not contain phages, IS elements, or plasmid regions. Briefly
for SNP discovery, reads were aligned with Bowtie2 (Langmead
and Salzberg, 2012) to designated reference genomes. Resulting
alignments were processed with Freebayes (Garrison and Marth,
2012) with the following threshold settings: mapping quality 30,
base quality 20, coverage 30, and allelic frequency 0.9. To account
for false positive calls we used several SNP curation strategies:
(i) Reference reads were mapped against the reference genome
and false positives were identified by Freebayes with the settings
described above; (ii) If reads were not available, the post-assembly
workflow created a reference-based NUCmer alignment and
extracted SNPs with delta-filter and show-snps distributed with
the MUMmer package (Delcher et al., 2003). SNP occurring
in the excluded regions were removed. Cataloged SNPs from
each genome were merged into a single SNP panel, and allelic
status and chromosomal position were recorded. Curated SNPs
were further processed by extracting the surrounding nucleotides
(40 nt) and blastn against the query genomes (Altschul et al.,
1990). Resulting alignments were parsed to remove SNP locations
derived from ambiguous hits (≥2), non-uniformly distributed
regions, and insertion or deletion events, as previously described
(Myers et al., 2009; Morelli et al., 2010; Eppinger et al., 2011b,
2014; Vogler et al., 2011; Hasan et al., 2012).

Optical Maps
Optical mapping facilitated accurate phage profiling (Kotewicz
et al., 2008). In total 12 maps were generated (Supplemental
Table 1), either prepared by OpGen or contributed by FDA
(Eppinger et al., 2011b, 2014). After gentle lysis and dilution, the
extracted genomic DNA molecules from each strain were spread
and immobilized onto derivatized glass slides. The genomic DNA
was then digested with BamH1 restriction enzyme maintaining
the DNA fragment order. Using the ArgusTM Instrument, the
DNA fragments were stained with YOYO-1 fluorescent dye
and photographed using a fluorescent microscope interfaced
with a digital camera. The optical data was converted to digital
data, which defines single molecule restriction maps. Physical
maps were complemented with in silico maps of other outbreak
strains, and comparatively analyzed in MapSolverTM Optical
Map Analysis software (Latreille et al., 2007; Zhou et al., 2007).

SNP PCR Validation
SNPs in four isolates from two outbreaks for which we possessed
archived cultures were subjected to PCR confirmation using
primer pair (89750-F 5′- ACA ACG ATA TGA TCG ACC AGC,
89750-R 5′- TTG TAC AGA AGA CCA TGC TCG) and (27005-
F 5′- AGA GTA CGG ATT CAC CTT GCC, 27005-R 5′- AGT
CAGGCAATTCCTCGTGG, 78298-F 5′- AGTCATTACCAG
GAA CAG CAG 78298-R 5′- TGT TCG AGA TTC TGG TGA

GTG) for strains from the Battle Ground Lake and Finley School
District outbreak, respectively. Resulting amplicons were Sanger
sequenced.

Multi Drug Resistance (MDR) Profiling
Susceptibility to amikacin, ampicillin, amoxicillin-clavulanic
acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol,
ciprofloxacin, gentamicin, kanamycin, nalidixic acid,
streptomycin, sulfisoxazole, tetracycline, and trimethoprim-
sulfamethoxazole was assessed at FDA according to the NARMS
methodology and manufacturer’s instructions with the Sensititre
automated system (Trek Diagnostic Systems, Westlake, OH)
(Zhao et al., 2008). Resistance was determined by comparing
MICs to Clinical and Laboratory Standards Institute (CLSI)
values (Institute, 2013).

RESULTS AND DISCUSSION

Epidemiology of Investigated Strains
We analyzed 36 strains from seven US outbreaks as recognized
by the CDC that occurred between 1998 and 2009 (Supplemental
Table 1): (1) 11 children were infected after consumption of
contaminated ground beef tacos in the Finley School District
(FS) in 1998; (2) 28 swimmers at Battle Ground (BL) Lake State
Park, WA, and eight secondary cases were infected in 1999; (3)
81 cases were attributed to lettuce served at multiple outlets of
a taco chain (Taco John) in 2006; (4) 71 people were infected
in a multistate outbreak after eating at Taco Bell (TB) in 2006;
though the vehicle was not identified (Taco Bell); (5) 21 infections
were attributed to a prolonged multi-state outbreak linked to
the consumption of Totino’s or Jeno’s contaminated pepperoni
pizza (Totino’s pizza) (TP) in 2007; (6) 76 cases were attributed
to a nationwide outbreak of contaminated cookie dough (CD)
(Cookie dough) in 2009; (7) 26 patients from eight states were
infected by beef traced to Fairbank Farms (FF) in 2009 (Fairbank
Farms).

We further studied (#12) strains from six intrahousehold
illnesses (IH), in which the pathogen probably spread between
patients based on the long intervals between onset in the
individual family members (Supplemental Table 1). Though we
cannot exclude the possibility of infection from the same source
(co-primary). The median incubation period of E. coli O157:H7
infections is 3 days (Bell et al., 1994), and onsets ranged between
4 and 6 days. We also studied pairs of isolates from the same
primary plate in the clinical laboratory (plate-mates, PM) from
six patients (Figure 2). The clinical strains were compared to
strains representing the nine phylogenetic clades reported by
Manning et al. (2008) (Figure 2, Supplemental Table 1).

Core Genome Phylogeny
We applied WGS typing strategies to determine the phylogenetic
relatedness of the individual outbreak strains in the context
of outbreak etiology, and to place them into the larger
phylogenomic framework of the E. coliO157:H7 lineage (Leopold
et al., 2009; Eppinger et al., 2011b; Dallman et al., 2015;
Holmes et al., 2015; Jenkins et al., 2015). Of the 3313 SNPs
identified in these 70 genomes, 2797 were intragenic and 516
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FIGURE 1 | Bioinformatics analyses of the E. coli O157:H7 core and mobile genome. The majority of the analyses were performed on Galaxy (Goecks et al.,

2010), an open-source web-based bioinformatics platform (gray box). Illumina reads, draft or closed genomes were retrieved from the NCBI SRA or WGS sequence

repositories (Supplemental Table 1). Reads were assembled with SPAdes v 3.5.0 (Bankevich et al., 2012), and annotated with PROKKA v 1.11.0 (Seemann, 2014). A

reference genome was selected for each outbreak analysis and distinct regions were excluded from SNP validation as follows: Repeats with NUCmer (Delcher et al.,

2003), phages with PHAST (Zhou et al., 2011) plasmids by querying against a custom E. coli plasmid database and IS elements from ISFinder (Siguier et al., 2006).

Optical maps were generated to facilitate accurate prophage and mobilome profiling (Eppinger et al., 2011b). Read based SNP discovery was based on Bowtie2

alignment (Langmead and Salzberg, 2012) and subsequent Freebayes SNP calling (Garrison and Marth, 2012) and for closed or draft genomes on NUCmer (Delcher

et al., 2003), followed by blast- and PCR-based SNPs validations to curate for false-positives with strategies detailed in (Eppinger et al., 2011b, 2014). The identified

SNPs were genotyped and used for phylogenetic reconstruction by maximum parsimony of the outbreaks with PAUP v4.0a146 (Wilgenbusch and Swofford, 2003).

Consistency index and majority consensus trees were built with Mesquite (Maddison and Maddison, 2015). The mobilome was analyzed in regards to phage content

with large scale-blast score ratio (LS-BSR) (Sahl et al., 2014) and computed matrices visualized with MeV (Saeed et al., 2003). Shiga toxins were identified by

discontiguous megablast (Buhler, 2001; Ma et al., 2002) against the VirulenceFinder (Joensen et al., 2014) database. Plasmids were identified after alignment of draft

genomes to the closest closed reference plasmid in Geneious (vR9) (Kearse et al., 2012). Unmapped remaining contigs were queried against NCBI nr plasmids by

discontiguous megablast (Buhler, 2001; Ma et al., 2002). Identified plasmid homologs were compared and visualized with EasyFig (Sullivan et al., 2011) by tblastx

(Altschul et al., 1990) or progressiveMauve (Darling et al., 2010). Plasmids and chromosomes were further surveyed for presence of resistance loci using ResFinder

(Kleinheinz et al., 2014).
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FIGURE 2 | Maximum parsimony tree of E. coli O157:H7. Comparison of

70 genomes yielded a total of 3313 SNPs of which 1266 were parsimony

informative. The tree shown is a majority-consensus tree of 28 equally

parsimonious trees with a consistency index of 0.998. Trees were recovered

using a heuristic search in Paup 4.0b10 (Wilgenbusch and Swofford, 2003).

(Continued)

FIGURE 2 | Continued

Only nodes with bootstrap values below 100 are listed. Phylogenetic clade

association is provided in circled numbers (Manning et al., 2006). Strains

investigated are comprised of PM, Plate mates; IH, intrahousehold infections;

BL, Battle Ground Lake; CD, Cookie Dough; FS, Finley School District; FF,

Fairbank Farms; TB, Taco Bell; TJ, Taco John; and TP, Totino’s Pizza. Our

plasmid survey confirmed that all strains carry the lineage-specific plasmid

pO157. Further we identified other plasmids with a size range from 34 to 78

kb. Plasmid type prevalence is represented in colored circles: p78 (yellow),

p63 (orange), p55 (light brown), p39 (red), p36 (brown), p34 (dark brown), and

a small 3.3 kb plasmid (black) (Makino et al., 1998). Plasmid p36 is

homologous to pEC4115 (Eppinger et al., 2011b).

were intergenic (Table 1, Supplemental Dataset 1). We observed
significantly more SNPs in intergenic regions (chi square test, p
< 10−14) than would be expected when considering the average
intergenic frequency in EC4115 of 11.1% when compared to
the percentage (15.5%) delineated from the cataloged SNPs.
We note that, even though we excluded repeated regions and
phages/mobilome during SNP discovery, thereby reducing the
genome content by 20%, the coding to non-coding ratio of
the remaining core genome remained stable. Homoplasy was
negligible: only seven homoplastic SNPs were found dispersed
throughout the chromosome (Supplemental Table 2) evidenced
by a consistency index of 0.998. Of the seven homoplastic SNPs
four are in rpoS, which is known to be highly polymorphic in
E. coli O157:H7 (Uhlich et al., 2013). In line with our previous
findings (Leopold et al., 2009; Eppinger et al., 2011a,b), SNPs
were evenly distributed throughout the chromosome (Figure 2)
without any mutational hot spots as found in other enteric
pathogens (Hasan et al., 2012; Eppinger et al., 2014). From the
cataloged SNP panel we delineated a total of 77 individual SNP
genotypes. These genotypes represent only two-thirds of the
115 nodes in the tree (Figure 2, Supplemental Table 2), which
can be attributed to the lack of terminal strain-specific SNPs
(Figure 2). Among the cataloged 3313 SNPs, approximately one-
third (#1266) is parsimony-informative. The SNPs in PA40 and
PA48 are not strain-specific, but indicate the relative phylogenetic
distance that separates these clade 7 and 9 strains from the
other clades (Manning et al., 2008). As evidenced in the tree
topology, approximately half of the parsimony non-informative
SNPs (#1046) is introduced by reference strain PA48 from
clade 9 (Figure 2, Supplemental Table 2). Among investigated
strains PA48 is phylogenetically closest to the progenitor O55:H7
serotype (Feng et al., 1998; Manning et al., 2008; Zhou et al.,
2010). This clade is also within the most ancient cluster of
E. coli O157:H7 (Leopold et al., 2009) and higher SNP counts
are indicative of more time to accrue mutations than in other
phylogenetic groups that have emerged more recently.

Genomic Epidemiology of North American
Outbreaks
Guided by the established phylogenomic framework (Figure 2),
we analyzed outbreak specific “genome” characteristics
and polymorphic heterogeneity in seven different North
American outbreaks using a common (EC4115), as well as
outbreak-specific references. We specifically applied this dual
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TABLE 1 | SNPs characteristics for 70 E. coli O157:H7.

Total NSYN NSYN/

NSYN

SYN SYN/SYN Intergenic Genic

SNPs 3313 1712 1 1083 1 516 2797

NI 2048 1054 1 656 1 335 1712

PI 1266 658 0 427 0 181 1085

Genes 1821 1264 1 891 1 0 2157

Stop gain 50 57 0 0 0 0 57

Stop loss 16 17 0 0 0 0 17

Hypothetical

proteins

245 269 1 103 0 0 373

Transition 2254 1037 1 852 1 363 1891

Transversion 1064 676 1 231 1 155 909

Multiallelic 5 1 1 2 1 2 5

reference genome approach to improve resolution power
by enabling polymorphism discovery in parts of the core
genome integral to the outbreak-associated strains, but not
necessarily present in a more phylogenetic distant reference
like EC4115 (Figure 2). We note here that our investigation of
the 2006 Spinach (SP) outbreak revealed a number of subtle
polymorphisms distinguishing all the recovered Maine isolates
from the remainder of SP strains. Such subtle polymorphisms
would have clearly evaded detection by using a reference from
outside the SP outbreak (Eppinger et al., 2011b). In general we
observed limited plasticity among related outbreak strains when
compared to the closed reference genome EC4115 (Tables 2–5)
(Eppinger et al., 2011b). Strains with increased SNP numbers
were either from cases that were epidemiologically predicted to
be outliers, or that could not be read-corrected. For example, the
TB outbreak associated strains included four strains classified by
CDC as temporal outliers (Supplemental Table 1), two (EC4436,
EC4437) separated by 285 SNPs and one (EC4439) by 27 SNPs
from the core outbreak cluster (Figure 2, Tables 2, 3). According
to our SNP analysis, the remaining strain EC4448 should be
considered to be derived from a single point source, even if this
isolate is separated by a single homoplastic nonsynonymous
(nsyn) SNP (Figures 2, 3, Tables 2, 3, Supplemental Table 2).
Notably, rpoS carries this homoplastic stop codon mutation,
which is known to be highly polymorphic in E. coli O157:H7;
particularly in regards to premature stop codons that affect curli
expression and biofilm formation (Uhlich et al., 2013). The same
SNP was identified with an outbreak specific reference EC4401 in
addition to multiple (#31) reference specific alleles (Figure 4A,
Tables 2, 3, Supplemental Dataset 1). These SNPs were mainly
located in intergenic (#30) regions and probably caused by
over-predictions because of a lack of reads in the genome
repository, and consequently inability to perform quality control.
We observed the same phenomenon of over-prediction for
the TJ outbreak strains, separated by 24 SNPs (Tables 2, 3,
Supplemental Dataset 1); again no read data were available to
us. We found the majority of predicted SNPs clustered mainly
in close proximity either in intergenic regions or within the
boundaries of the same gene, indicative of low quality sequence
regions. Intragenic SNPswere identical to those found in EC4115,

except for two additional SNPs in the lac repressor and in rpoS
(Supplemental Dataset 1). The CD outbreak set underwent both
contig and read-based discovery, which again over-predicted
SNPs for EC1734 (no reads) due to a lack of reads for quality
control (Figures 2, 4B, Tables 2, 3). Moreover, the production
lot isolate EC1738 was placed on a distant branch (clade 6.26),
separated from all human isolates tightly clustered in clade 8.30
(Figure 1, Table 2, Supplemental Table 1). Hence, we consider
this strain as an outlier, which is phylogenetically unrelated to
the case isolates. Among the outbreak-specific SNPs we detected
one synonymous (syn) and two nsyn SNPs in EC1736, but the
syn was also detected using EC4115 as a reference (Table 2,
Supplemental Dataset 1). Archived strains were not available for
this outbreak and we could therefore not confirm if EC1736 truly
carries these 3 SNPs, which would question its inclusion into the
outbreak.

For three outbreaks (FF, FS, and BL) we identified only a single
or no SNP when referenced to EC4115 (Figure 2, Tables 2, 3). A
single intergenic and three nsyn mutations were identified when
using an FF outbreak-specific reference strain EC1856 (Tables 2,
3). The three nsyn SNPs did not affect domain prediction in
Pfam (Finn et al., 2016). B112 of the BL outbreak had a syn
SNP in a tRNA-histidine ligase (#3460738) not found in any
other E. coli O157:H7 genome deposited (nr or WGS). This
SNP was identified in both instances when using EC4115 or
an outbreak-specific reference (Supplemental Dataset 1). This
SNP was confirmed using PCR amplicon sequencing. Using the
alternative FS outbreak-specific reference one intergenic SNP in
B105 and one nsyn SNP affecting the Nitrogen regulation protein
NR(I) (ECH74115_RS26390) (B107 and B105) were identified
(Tables 2, 3). SNP discovery predicted an outbreak-specific allele
in three strains. However, these SNPs are false positives, as they
could not be confirmed by PCR sequencing. The SNP (#693920)
in FS strain B103 was identified as false-positive homoplastic
SNP also observed in plate mate and intrahousehold strains
with an allelic frequency below 0.9 (Supplemental Table 2).
During SNP prediction we identified 52 SNPs in strain B103
that were not found in the other FS outbreak strains. These
52 SNPs were all located in a phage region that corresponds
to the tandem integrated SP1/2 phages (Hayashi et al., 2001).
The SNPs were all false-positives due to the presence of an
additional phage in B103 related to a prophage from organism
pro483 (NC_028943) (Supplemental Figure 3). The tail fiber
proteins of these two phages were sufficiently similar to misalign
reads for B103. This exemplifies the importance of SNP curation
and assessment according to the genomic region in which they
originate, as independent horizontal acquisition of segments
can introduce epidemiologically misleading SNPs (Pettengill
et al., 2014), also known as epidemiological type 2 errors of
attribution.

The TP outbreak strains revealed a highly distinct SNP
pattern compared to the genomic plasticity reported for other
outbreaks (Figures 1, 5, Tables 2, 3). Two distinct phylogenetic
clusters separated by 16 SNPs were observed. Additionally, each
strain carried at least 4–17 strain-specific SNPs. Comparison
to outbreak-specific reference EC1863 confirmed the relative
high number of strain-specific SNPs (Tables 2, 3, Figure 5). In
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TABLE 2 | Comparison of common vs. outbreak-specific reference genic SNPs.

Isolate Sequences

analyzeda
Synonymous SNPs in isolates, among backbone ORFs Nonsynonymous SNPs in isolates,

among backbone ORFs

Comments

Compared to

reference EC4115

Compared to

outbreak strain

Compared to

reference EC4115

Compared to outbreak

strain

FINLEY SCHOOL OUTBREAK, ALL ISOLATES CLADE 3.15

B103 A 0 0 0 1 All co-primary cases

B104 A 0 0 0 1

B105 A 0 Reference 0 Reference

B106 A 0 0 0 0

B107 A 0 0 0 1

TACO BELL OUTBREAK, ALL CLADE 8.30 EXCEPT EC4436-7 CLADE 8.32

EC4401 B 1 Reference 0 Reference Eppinger et al., 2011b

EC4402 A 0 0 0 0 Case isolate

EC4436 A 90 Excluded 155 Excluded Temporal outliers

EC4437 A 90 Excluded 155 Excluded

EC4439 A 5 Excluded 17 Excluded

EC4448 A 0 0 1 2

EC4486 B 0 1 4 4 Eppinger et al., 2011b

TACO JOHN, ALL ISOLATES CLADE 2.90

EC4501 B 1 0 6 8 Eppinger et al., 2011b

TW14588 C 0 Reference 0 Reference

FAIRBANK FARMS OUTBREAK, ALL ISOLATES CLADE 8.30

EC1845 A 0 0 0 2 Case isolate

EC1846 A 0 0 0 2

EC1847 A 0 0 0 2

EC1848 A 0 0 0 2

BATTLEGROUND LAKE OUTBREAK, ALL ISOLATES CLADE 8.32

B112 A 1 1 0 0 Case isolates

B113 A 0 0 0 0

B114 A 0 Reference 0 Reference

COOKIE DOUGH OUTBREAK, EC1738 CLADE 6.26, EC1734-7 CLADE 8.32

EC1738 B 168 excluded 298 excluded Product isolate

EC1734 B 0 5 2 5 Case isolates

EC1735 A 0 1 0 2

EC1736 A 1 Reference 1 Reference

EC1737 A 0 1 0 2

TOTINO’S, PIZZA OUTBREAK ALL ISOLATES CLADE 8.31

EC1863 A 6 Reference 11 Reference Case isolates

EC1864 A 9 10 10 8

EC1866 A 6 7 12 8

EC1868 A 6 3 6 6

EC1869 A 7 15 9 21

EC1870 A 10 20 9 21

FAIRBANK FARMS OUTBREAK, ALL ISOLATES CLADE 8.30

EC1849 A 0 0 0 2 Case isolate

EC1850 A 0 0 0 2

EC1856 A 0 Reference 0 Reference

EC1862 A 0 0 0 3

a This study/short reads in NCBI = A, WGS = B, assembled genomes in NCBI = C.

contrary to our observations for strain-specific SNPs in the above
discussed outbreaks, these SNPs are neither concentrated in
specific regions nor more frequent in intergenic than in genic

regions (Tables 2, 3). The EC1869/EC1870 branch contributes
roughly 60% of all SNPs (Supplemental Dataset 1). Based on
the established phylogenetic topology we hypothesize that two
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TABLE 3 | Comparison of common vs. outbreak-specific reference

intergenic SNPs.

Isolate Sequences

analyzeda
SNPs in isolates, in

intergenic regions

Commentsb

Compared

to reference

EC4115

Compared

to outbreak

strain

FS B103 A 1 1 Reference

specific alleleB104 A 0 1

B105 A 0 Reference

B106 A 0 1

B107 A 0 1

BG B112 A 0 0

B113 A 0 0

B114 A 0 Reference

TB EC4401 B 1 Reference F

EC4402 A 0 27

EC4436 A 40 Excluded

EC4437 A 40 Excluded

EC4439 A 5 Excluded

EC4448 A 0 27

EC4486 B 3 31

TJ EC4501 B 8 16 F

TW14588 C 1 Reference

CD EC1738 B 67 Excluded F

EC1734 B 0 4

EC1735 A 0 0

EC1736 A 0 Reference

EC1737 A 0 0

TP EC1863 A 2 Reference High diversity

EC1864 A 1 5

EC1866 A 2 6

EC1868 A 2 5

EC1869 A 10 14

EC1870 A 6 11

FF EC1845 A 0 1 Reference

specific alleleEC1846 A 0 1

EC1847 A 0 1

EC1848 A 0 1

EC1849 A 0 1

EC1850 A 0 1

EC1856 A 0 Reference

EC1862 A 0 1

aThis study/short reads in NCBI = A, WGS = B, assembled genomes in NCBI = C.
bF = mixed analysis with reads missing for some strains.

closely related but different E. coli O157:H7 contaminated a
common vehicle, if, indeed, all cases had the same exposure.
Two-thirds of the SNPs were strain-specific, denoting a particular
high diversity within this outbreak (Figures 1, 5, Tables 2, 3).

Such a degree of genomic plasticity among epidemiologically
linked strains has rarely been observed in E. coli O157:H7.
Several scenarios could have led to this radial expansion:
(i) the epidemiology linked cases together that actually were
from different simultaneous outbreaks, (ii) the SNPs identified
in silico are false positives and only PCR-confirmation could
really confirm the true distance among the strains, (iii) the
high rate of accumulated SNPs could be caused by a mutator
genotype resulting in the accumulation of mutations in a
short time span, (iv) the heterogeneity could be related to
the protracted duration of the outbreak (3 months), vs. single,
brief, single source-exposures as in the FS outbreak, or (v)
heterogeneity caused by increased strain mutation rates during
outbreaks as have been discussed for other enterics (Morelli
et al., 2010). In support of our findings, Dallman et al. noted
correlations between the length of the strain collection intervals
and respective numbers of SNPs observed (Dallman et al.,
2015).

The clonal nature of E. coliO157:H7 outbreaks was confirmed
in the majority of the outbreak strains analyzed here, consistent
with prior findings from SNP typing in other O157:H7 outbreaks
(Turabelidze et al., 2013; Dallman et al., 2015; Holmes et al.,
2015; Jenkins et al., 2015; Munns et al., 2016). We found the
number of SNPs to be inversely proportional to the availability
of reads. This highlights the critical importance of quality
control for accurate SNP discovery by accounting for both
underlying sequence quality and evolutionary context of the SNP
carrying loci to curate for false-positives. In this regard, the
relevance of excluding mobile regions when inferring outbreak
relatedness is evidenced in the loss of at least two thirds of
predicted SNPs that if considered would impair phylogenetic
accuracy.

WGS Typing of Plate Mates Recovered
from Human Infections
In the medical praxis typically a single colony is retrieved from a
primary isolation plate and sent for further molecular analysis.
It is therefore not clear how much genotypic diversity exists
among infecting isolates of E. coli O157:H7 as shed from the
same individual in a single stool. To answer this question,
plate-mates (pairs of colonies) were separately saved from five
patients (Figure 2, Supplemental Table 1) enrolled in a multi-
state study of E. coli O157:H7 infections (Wong et al., 2012).
In the EC4115 reference-based discovery, two PM possessed
the same homoplastic intergenic SNP (Figure 2, Tables 4, 5),
which was not confirmed after allelic verification. When using
an internal reference these strains were undistinguishable. The
results are in accordance with those of Dallman et al., who
reported 0–2 SNPs among same patient isolates, with most
(70%) having no SNP differences at all (Dallman et al., 2015).
Our results from this limited study, therefore, point toward
infection with a single E. coli O157:H7 clone as the underlying
cause for the majority of infections. We previously reported
that a single laboratory passage can produce SNPs in E. coli
O157:H7, but SNPs arise only rarely (Eppinger et al., 2011b).
In the course of naturally acquired human infections, our
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TABLE 4 | Comparison of common vs. PM/IH-specific genic SNPs.

Isolate Sequences

analyzeda
Synonymous SNPs in isolates, among backbone ORFs Nonsynonymous SNPs in isolates, among backbone ORFs

Compared to reference

EC4115

Compared to outbreak

strain

Compared to reference

EC4115

Compared to outbreak

strain

PM B26-1 A 0 0 0 0

B26-2 A 0 Reference 0 Reference

PM B28-1 A 0 Reference 0 Reference

B28-2 A 0 0 0 0

PM B29-1 A 0 0 0 0

B29-2 A 0 Reference 0 Reference

PM B36-1 A 0 0 0 0

B36-2 A 0 Reference 0 Reference

PM B40-1 A 0 Reference 0 Reference

B40-2 A 0 0 0 0

PM B7-1 A 0 0 0 0

B7-2 A 0 Reference 0 Reference

IH B83 A 0 0 0 0

B84 A 0 Reference 0 Reference

IH B85 A 0 Reference 0 Reference

B86 A 0 0 0 0

IH B89 A 0 0 0 0

B90 A 0 Reference 0 Reference

IH B93 A 0 Reference 0 Reference

B94 A 0 0 0 0

IH B15 A 0 0 0 0

B17 A 0 Reference 0 Reference

IH B108 A 0 0 0 0

B109 A 0 Reference 0 Reference

aThis study/short reads in NCBI = A, WGS = B, assembled genomes in NCBI = C.

data endorse that E. coli O157:H7 SNPs are exceptionally rare
events.

WGS Typing of Strains from Intrahousehold
Infections
To determine if genomic changes in infecting E. coli O157:H7
occur during probable intrahousehold (IH) transmission, we
analyzed a cohort of six pair isolates from IH infections where
onset was quite delayed between cases (Figure 2). As with the
PM pairs, EC4115 based SNP discovery resulted only in false
positive homoplastic intergenic SNPs (Figure 2, Tables 3, 4) that
were absent in the pair-wise analysis. Dallman et al. observed
similar SNP distributions in household transmission cases in the
UK, with 40% having no such differences in the core genome
(Dallman et al., 2015). Interestingly, two IH cases of clade
type 3.15 clustered together (Figure 2). A single syn SNP was

specific to the B83/B84 cluster. These cases were all from the
same state and occurred in the same year, but epidemiological
investigations suggest they are separate cases of IH transmissions
with over 6 weeks between occurrence and 80 miles distance
between the zip codes in which the cases resided. This application
of WGS typing analysis can genomically link clusters that
were not previously identified epidemiologically (Dallman et al.,
2015).

In general the frequency of SNPs in intergenic and genic
regions were similar, highlighting the random nature of SNPs
identified. While there is clearly no applicable universal gold
standard or criteria for outbreak ex- or inclusion in regards
to SNP matrix distances, we note that a number of outbreak
investigations have found between four to seven SNPs among
strains with putative epidemiological links (Underwood et al.,
2013; Joensen et al., 2014; Dallman et al., 2015; Holmes et al.,
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TABLE 5 | Comparison of common vs. PM/IH-specific intergenic SNPs.

Isolate Sequences

analyzeda
SNPs in isolates, in

intergenic regions

Commentsb

Compared

to reference

EC4115

Compared

to outbreak

strain

PM B26-1 A 0 0

B26-2 A 0 Reference

PM B28-1 A 1 Reference Homoplastic FP

B28-2 A 0 0

PM B29-1 A 0 0

B29-2 A 0 Reference

PM B36-1 A 1 0 Homoplastic FP

B36-2 A 0 Reference

PM B40-1 A 0 Reference

B40-2 A 0 0

PM B7-1 A 0 0

B7-2 A 0 Reference

IH B83 A 1 0 Homoplastic FP

B84 A 0 Reference

IH B85 A 0 Reference Homoplastic FP

B86 A 1 0

IH B89 A 0 0

B90 A 0 Reference

IH B93 A 0 Reference

B94 A 0 0

IH B15 A 0 0 Homoplastic FP

B17 A 1 Reference

IH B108 A 0 0

B109 A 0 Reference

aThis study/short reads in NCBI = A, WGS = B, assembled genomes in NCBI = C.
bFalse positive = FP.

2015). However, these analyses are limited by only including the
genic portions of the genomes and/or did not use an outbreak-
specific reference for SNP discovery. This prevents identification
of variations in parts of the core genome that are unique to
outbreak-associated strains and not necessarily present in a
distantly related closed reference strain. Moreover, only few
studies use confirmatory PCR or other resequencing to validate in
silico delineated SNPs (Eppinger et al., 2011b; Underwood et al.,
2013).

Phage Profiles of Clinical U.S. Strains
The abundance of lambdoid phages in the EHEC O157:H7
genome hinders assembly of phage regions based on short reads
alone (Eppinger et al., 2011b). Contig breaks often occur within
the phage borders due to the conserved nature of structural

and replication proteins and hinder individual phage-level
comparisons in the fragmented phage assemblies. Therefore, we
applied an alternative genome-scale strategy to comprehensively
analyze stx allele status and losses or gains in the strain’s phage
ORF-omes.

Major virulence traits of E. coli O157:H7 are encoded on
members of the mobilome that are usually stably integrated into
the chromosome, such as the locus of enterocyte effacement
(LEE) and stx-converting phages (Nataro and Kaper, 1998).
Phages are key components of pathogenome evolution and their
acquisitions are important events in the emergence of E. coli
O157:H7 from an ancestral cell closely related to E. coli O55:H7
(Feng et al., 1998, 2007; Zhou et al., 2010). Moreover, analyses
such as SNP typing that are limited to the core genome cannot
provide information about the conferred pathogenic potential
anchored in the mobilome. Our analysis of the 2006 SP outbreak
exemplifies genomic heterogeneity that can be found in a single
outbreak of O157:H7 in regards to mobilome (Eppinger et al.,
2011b). Within the prophage pool (Hayashi et al., 2001) the
stx-converting bacteriophages are of particular interest, as they
encode a potent cytotoxin, Shiga toxin or Stx (Karmali et al.,
2010) as direct mediator of EHEC O157:H7 disease (Krüger
and Lucchesi, 2015). In E. coli O157:H7 the chromosomal
backbone is highly conserved and genomic alterations chiefly
relate to phage complement, plasticity, and respective integration
sites (Shaikh and Tarr, 2003; Abu-Ali et al., 2009; Eppinger
et al., 2011b, 2013; Smith et al., 2012; Yin et al., 2015). Three
stx alleles, stx1a, stx2a, and stx2c, are found predominantly
in this lineage (Scheutz et al., 2012). We used discontiguous
megablast against the VirulenceFinder database to determine
the toxin subtypes present in each outbreak (Joensen et al.,
2014). All IH, PM, and outbreak strains carry the more potent
allelic variant stx2a (Supplemental Table 1). In addition, all FS
and TJ outbreak strains, PMs B40-1/2 and B26-1/2 and two
separate IH transmission cases (B83/B84, B85/B86) carry an
stx1-converting phage. Co-carriage of Stx2 and Stx1 can reduce
Stx2a production (Serra-Moreno et al., 2008) and also attenuates
end-organ toxicity of Stx2a (Donohue-Rolfe et al., 2000; Russo
et al., 2016). Noteworthy, the 2006 SP outbreak associated with
hypervirulence (Kulasekara et al., 2009; Abu-Ali et al., 2010)
features the Stx2a/2c toxin type, with an almost complete stx1-
converting phage occupies yehV. However, this atypical phage
lacks stx1genes (Eppinger et al., 2011b). We also note that
the TJ lettuce isolate TW14588 harbors two stx2a-converting
phages integrated at argW and wrbA (Supplemental Table 1). We
speculate that double stx2a-converting phage occupancy might
also increase pathogenic potential, such as through phage dosage
effects, also considering that stx2a is the most potent allelic
subtype (Tesh et al., 1993; Tesh, 2010; Fogg et al., 2012). We
note that this information cannot be gathered by PCR-based
Stx-subtyping (Scheutz et al., 2012), as this approach does not
determine copy number, highlighting the increased resolution
obtained by WGS in regards to the pathogenic potential of the
outbreak (Holmes et al., 2015). All other outbreaks except BL
possess stx2c-converting bacteriophages. The interplay between
these two stx2-converting phage types is not known, although
both variants have been linked to HUS (Friedrich et al., 2002;
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FIGURE 3 | Genome-wide distribution of SNPs. Chromosomal positions of the 3313 identified SNPs were plotted along the EC4115 chromosome using a 1000

bp sliding window. We found SNPs dispersed throughout the chromosome providing no indication for mutational hotspots. Deserted regions lacking SNP calls

correspond to excluded mobile regions, such as stx-prophages.

Persson et al., 2007). We observed only two variations in the
stx2 allelic profiles in the CD and TP outbreaks (Supplemental
Table 1). The non-clinical CD outlier EC1738 collected in the
production plant is distinguished by lack of the stx2a allele. TP
strain EC1870 lacks the stx2c allele that is present in all other TP
outbreak strains (Supplemental Table 1).

On average, the phage complement in the strains represents
14% of predicted coding regions in the genomes, in accordance
with other studies (Asadulghani et al., 2009; Smith et al., 2012). As
expected when considering the close relation between outbreak
strains (Figure 2), the variability in phage-borne ORFs was
low (5%) (Supplemental Figure 1; Supplemental Table 3). This
small variability represents the noise caused by clustering of
related proteins into centroids in the LS-BSR analysis rather
than differences in phage regions. The TB associated strains
had more variability (11.2%) (Supplemental Table 3), due to
inclusion of the temporal outliers EC4436, EC4437, and EC4439
(Figure 6). Variome analysis highlighted phage regions that were
unique to each temporal outlier group, resulting in the same
clustering as in the SNP-based analysis (Figures 2, 6). The CD
outbreak also had greater variability (16.5%) despite the exclusion
of outlier EC1738 (Supplemental Table 3), likely attributable
to differences in fragmentation of the analyzed genomes. We
observed a correlation of quality of PHAST prediction with
size of contigs and reduced genome fragmentation. Closed
genomes and genomes with larger contigs had up to 20%
more predicted phage regions that also served to increase the
noise, compared to more fragmented genomes (Supplemental
Table 1).

The identified phage complements of the FS isolates were
highly similar. However, we found phage sequences unique
to strain B103 (Supplemental Figure 2A). Discontiguous
megablast of the phage region (Buhler, 2001; Ma et al.,

2002) against closed bacteriophages identified Escherichia phage
pro483 (KR073661), originally isolated from an avian pathogenic
E. coli DE048. This prophage was previously described in
SP strains (Eppinger et al., 2011b) and a supershedder strain
SS17 (Cote et al., 2015). Unlike the yegQ insertion in SP
outbreak strains (Eppinger et al., 2011b), this phage disrupts
the colicin immunity protein (WP_001303895) in strain B103.
Using the phage pro483 (KR073661) as a genomic anchor
for the B103 draft contigs we recovered 86% of the phage
genome with 97% identity. We further identified a 12 bp
(ACCAATAACTGA) repeat at both ends of the phage borders,
indicative of the phage integration mechanism (Campbell,
1992). The SP outbreak strain EC4115 however features an 18
bp repeat (Eppinger et al., 2011b). The genomic architecture
is syntenic and largely conserved throughout the phage
genome, except for insertion or deletion introduced by an
exonuclease (ECH74115_RS15445) and a hypothetical protein
(ECH74115_RS15450) only present in EC4115 (Supplemental
Figure 3).

Acquisition or loss of phages secondary to recombination
events during the course of an outbreak creates interstrain
plasticity. Thus, analysis of a single archetypical outbreak strain
might underestimate the mobilome and core chromosome
plasticity (Eppinger and Cebula, 2015). Comprehensive
analyses did not reveal significant differences in phage
content of the BL and FF outbreak clusters (Figure 2)
to further distinguish these clonal outbreaks featuring
only one and four SNPs per outbreak cluster, respectively
(Supplemental Figures 2B,C). In contrast, the TP outbreak
strains displayed a higher degree of mobilome plasticity
(Supplemental Figure 2D), in line with the higher number of
predicted SNPs (#98) for this outbreak (Figure 2, Supplemental
Dataset 1).
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FIGURE 4 | Phylogenetic tree for Taco Bell (A) and Cookie dough (B)

outbreak strains. Maximum parsimony phylogeny computed from 37 TB and

14 CD SNPs identified in the respective outbreak associated strains. (A) By

using a TB outbreak-specific reference (EC4401) we increased the

phylogenetic resolution for these highly clonal strains. (B) Maximum parsimony

phylogeny delineated from 14 SNPs discovered in the four CD outbreak

associated strains. Strain EC1736 served as reference for the read based

discovery. Majority of SNPs (#11) were specific to EC1734 and probably false

positives from through assembly based discovery.

Plasmid Prevalence in Clinical E. coli
O157:H7 Strains
The E. coliO157:H7 lineage is distinguished from other serotypes
by the presence of the large virulence plasmid pO157 (Burland
et al., 1998). For this serotype, additional plasmids have been
occasionally characterized at sequence level (Makino et al., 1998;
Eppinger et al., 2011b) or by plasmid profiling (Ostroff et al.,
1989; Meng et al., 1995). To facilitate plasmid discovery and
survey we reassembled the genomes with SPAdes (Bankevich
et al., 2012). Even though deposited genomes from 454 and
Illumina Celera hybrid assemblies (Denisov et al., 2008) had
fewer contigs compared to SPAdes assemblies from Illumina

reads only (Supplemental Table 1), reassembly typically produced
longer contigs, in particular for plasmid-originating regions. If
Illumina reads only were processed, the SPAdes assemblies clearly
outperformed NCBI deposited Velvet assemblies in regards to
sensitivity for plasmid prediction (Supplemental Table 1). We
queried plasmid sequences against the NCBI nr plasmid database
using discontiguous megablast (Buhler, 2001; Ma et al., 2002).

Using this approach we discovered five plasmids at the
sequence level (p78, p34, p55, p63, and p39) that have not
been previously described in deposited E. coliO157:H7 genomes.
Among these is a homolog of a 37 kb conjugal transfer pEC4115,
referred to as p36, originally described in the SP outbreak strains
(Eppinger et al., 2011b). We found the TB and TP outbreaks to
be most diverse in regards to plasmid carriage (Figure 2). The
TB associated strains contained three distinct plasmid profiles,
which correlated with the clustering from the core genome SNP
discovery (Figure 2).

Plasmid p78, the largest plasmid, shows homology to the
conjugative IncI1 group E. coli plasmid pC49-108 and Salmonella
enterica plasmids (Fricke et al., 2011; Kröger et al., 2012;
Wang et al., 2014a). p78 varied in length, from 78 to 88
kb in clade 8 strains (Figure 7). The related plasmid pC49-
108 carries multiple antibiotic resistance genes (Wang et al.,
2014a), including a beta-lactamase (blaCTX−M−1) (Wang et al.,
2014a), dihydrofolate reductase (dfrA17) and aminoglycoside
adenylyltransferase (aadA5) found both adjacent to a class 1
integron (Wang et al., 2014a). In similarity to the blaCTX−M−1

located next to a mobile element (ISECp1), we found another
class C beta-lactamase gene in S. enterica CVM 22462, again
found next to a mobile transposase locus. We speculate that
colocalization to mobile elements might affect locus stability
and explains the scattered prevalence of these resistances in the
plasmid homologs (Wang et al., 2014b) (Figure 7).

Resistance to antibiotics has been observed in E. coliO157:H7,
but the genetic basis remains largely unknown (Meng et al.,
1998). We previously linked multi drug resistance (MDR), a
rare occurrence in E. coli O157:H7, to phage-borne antibiotic
resistance loci (Eppinger et al., 2011a). Strain EC4402, part
of the core TB outbreak cluster, was identified as a MDR
isolate (Figure 2). This strain displays elevated MICs for several
cephalosporins and aminoglycosides, sulfisoxazole and nalidixic
acid (quinolone). However, our in silico analysis with ResFinder
(Kleinheinz et al., 2014) did not reveal any potential underlying
resistance loci. Here we note that resistance phenotypes can be
conferred by loci not previously linked to antibiotic resistance
(Gibson et al., 2016). We speculate that the resistance loci
might have been either lost from the original p78, or were
an integral part of other MDR plasmids lost during laboratory
cultivation prior to the sequencing of EC4402. Alternatively, the
antibiotic resistance might be conferred by yet unknown loci not
represented in queried resistance databases.

Plasmid p36 was highly homologous to other conjugal
transfer plasmids, such as S. enterica plasmid pCFSAN000111_01
(NZ_CP007599) (Timme et al., 2012) and pEC4115 (Eppinger
et al., 2011b) (Supplemental Figure 4). While p78 was found
solely in clade 8, p36 seems to be more widespread (Cote
et al., 2015), and present in non-O157:H7 E. coli serotypes.
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FIGURE 5 | Phylogenetic tree for Totino’s Pizza outbreak strains. Maximum parsimony phylogeny of the Totino’s Pizza outbreak using reference EC1863. The

tree topology shows the genotypic heterogeneity among the outbreak associated strains, forming “two” distinct phylogenetic groups.

Co-carriage of a p78-p36 combination was also found in clade
8 strains K4405 and K4406 (Figure 7, Supplemental Figure
4). The TB outlier strain EC4439 lacks both p78 and p36,
but carries a p55 plasmid with high homology to Klebsiella
pneumoniae pDMC1097-77.775 kb (87% coverage, 99% identity)
(Wright et al., 2014) (Supplemental Figure 5). This IncI2
group plasmid carries multiple resistances, which are absent
in the E. coli plasmid homologs (Supplemental Figure 5).
Interestingly, this plasmid is also present in IH strain B86,
but absent from strain B85, either because of independent
acquisition or secondary loss in B85, respectively (Figure 2). Our
findings on plasmid prevalence are in accordance with those
of Dallman et al. who showed that epidemiologically linked
strains can vary largely in their plasmid inventory (Holmes et al.,
2015).

The IH strains B89 and B90 harbor p34 (Supplemental
Figure 6), which is related to E. coli pVR50, an F-like
conjugative MDR plasmid (Beatson et al., 2015). While the
overall plasmid backbone is conserved, p34 lacks any resistance
loci (Supplemental Figure 6). The TP strains also possess strain-
specific plasmids: p36 in EC1870, p63 in EC1863, and p38 in
EC1868 (Figure 2). Plasmid p63 has partial homology to pO26-
Vir, an IncK group plasmid, a mosaic of multiple plasmids
(Fratamico et al., 2011). In 1863 (p63) we found homologous
loci for conjugal transfer and type IV pili (Supplemental Figure
7), which have been implicated in cell adherence and biofilm
formation (Dudley et al., 2006), and notably, these phenotypes
are strain-dependent in E. coli O157:H7 (Vogeleer et al., 2014).
A 39 kb plasmid fragment in EC1868 (p39) was found to be

homologous to a 87 kb INcFII plasmid from E. coli (pGUE-
NDM) (Bonnin et al., 2012) (Figure 2).

The observed variability in plasmid type and prevalence in
the individual strains clearly highlights genomic plasticity that
exists even among closely related isolates of the same origin and
can be utilized for strain attribution (Eppinger et al., 2011b).
The identified heterogeneity between the mobilome of outbreak
strains stresses the importance of studying a number of isolates
from the same outbreak instead of using archetypal outbreak
strains, which as shown might not fully reflect the plasticity
in the outbreak population (Eppinger and Cebula, 2015).
Interestingly, all the above described E. coli O157:H7 plasmids
lack antibiotic resistance loci, even though our plasmid survey
found widespread resistances among homologous plasmids in
other serotypes and species.

CONCLUSION

While some of these clinical isolates have been studied previously
using molecular epidemiology techniques (Samadpour et al.,
2002), we have for the first time applied whole genomics
epidemiology approaches (Eppinger et al., 2011b). Through
these high resolution methods we established a detailed
understanding of the genomic heterogeneity found among
the studied E. coli O157:H7 outbreak populations from the
U.S. The gathered phylogenomic data were critical to define
the genetic relatedness of individual strains in the context of
outbreak etiology and phylogenetic positions in the broader
model of E. coli O157:H7 evolution and epidemiology. In this
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FIGURE 6 | Hierarchical clustering of the computed phage variome for Cookie dough (A) and Taco Bell (B) outbreaks. Phage inventories within the

respective outbreak clusters compared by LS-BSR and variome differences are presented in this heatmap. BSR values range from 0 (blue, absent) to 1 (yellow,

identical). (A) Strain EC1734 contributed the majority of varying regions within the CD phage complement. (B) The tree topology derived from SNP typing for the TB

outbreak (Figure 2) is in accordance with the variome clustering. Most of the variation was introduced by phages prevalent in the three temporal outlier strains

EC4436, EC4437, and EC4439.

study, we detected previously unnoted polymorphic genome
features in the core and mobile genome, such as an array of
new plasmids not previously associated with this lineage. The
cataloged polymorphic signatures aided in strain attribution and
allowed us to precisely define the outbreak boundaries. This

allowed us to discern the distinct phylogenetic boundaries of the
studied EHEC strains when placed into a larger phylogenomic
framework of E. coli O157:H7 from North America (Figure 2)
assessing both core and mobilome (Figures 6, 7) (Eppinger
and Cebula, 2015). The developed WGS typing approach
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FIGURE 7 | Alignment of plasmid p78 and homologs. Plasmid architecture and gene inventories were compared by tblastx, and respective annotations were

mapped in Geneious vR9 (CDS, green). The plasmid architecture was highly conserved with a high identity level throughout the entire length of the plasmid [100%

identity yellow (inverted fragment, orange), 36% identity blue (inverted fragment light blue)]. Plasmid p78 homologs were widespread, such as in TB outbreak

associated strains, B28 plate mates, other E. coli O157:H7, and S. enterica. We found a locus for a RelB/E tox/antitoxin system present in all plasmids, with the

exception of PM strains B28 (blue box). Resistance loci are highlighted in red boxes.
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TABLE 6 | Proposed criteria and practices for SNP-based epidemiological outbreak inclusion or exclusion.

Ideal case

PRIMARY CRITERIA

Highly credible exposure Point source (clustered in time and space), pathogen isolated from incriminated vehicle

High quality sequencing Contig numbers should be comparable to previous assemblies performed with the same assembly

method, minimum coverage required will depend on technology used

Mobilome exclusion Data focus on the most immutable part of the genome, most commonly the genome backbone

SNP validation Second method, PCR confirmation or re-sequencing to validate mutations in discriminatory SNPs

SECONDARY CRITERIA

Collection of multiple isolates from cases for

accurate attribution

The larger the sample that demonstrates homogeneity, the greater the likelihood of a common source

If a common PFGE/MLVA type is present in the same region, confirmation that allelic differences exist

between outbreak strain and background non-outbreak strains

SNP calling Reference and outbreak based SNP comparisons

Allelic frequency >=0.9

Base and mapping quality control

Novel SNP If a tolerance is set at >0 for SNPs as a cut point for assigning isolates as being from the same source, a

SNP that is not in the database (i.e., apparently de novo) would be given more credence than one that

has been described previously, and which probably represents a different lineage or located in a known

polymorphic gene, such as rpoS

QUESTIONABLE CRITERIA

Variances in the complementary mobilome,

such as presence of plasmids and phages

Loci of likely mobile origin are not reliable as a differentiating trait for epidemiologic purposes

BEST PRACTICES IN REPORTING RESULTS

Report exclusion criteria A list of loci and regions that were excluded from SNP discovery

Provide list of SNP loci and alleles Provide information on location of SNP, product, resulting codon change

Provide reads Deposition of sequences and strain associated metadata in public repositories

provided us with the necessary resolution power to study
the individual dynamics in highly clonal outbreaks (Morelli
et al., 2010; Eppinger et al., 2011b, 2014; Hasan et al., 2012;
Berenger et al., 2015; Holmes et al., 2015; Jenkins et al.,
2015).

While the majority of outbreaks were caused by pathogens
that form tight clonal clusters, one outbreak (“Totino’s Pizza”)
was associated with isolates showing considerable genomic
heterogeneity (Figures 2, 5). Apparent SNPs in other outbreaks
are associated with a paucity of reads for quality control,
falsely increasing the diversity among the outbreak isolates.
Since outbreaks can have high economic impacts, such as
nationwide recalls of contaminated product, multiple samples
from the same outbreak should be concomitantly sequenced
instead of using archetypal outbreak strains to provide strong
evidence for inclusion or exclusion, strain and source attribution
(Eppinger et al., 2010, 2014; Morelli et al., 2010; Hasan et al.,
2012). Additionally, these high resolution approaches allow
for the discovery of emerging pathotypes, and, potentially, to
better assess the pathogenic potential of individual bacterial
clones (Berenger et al., 2015; Klemm and Dougan, 2016).
Expanding these sequence-based analyses to the publicly
available EHEC sequence pool will improve public health
response in the event of an outbreak allowing timely and
informed countermeasures. Canonical SNPs can be implemented
in efficient typing assays offering robust phylogenetic signals for
outbreak exclusion/inclusion that surpass classical technologies

(Riordan et al., 2008; Elhadidy et al., 2015; Rusconi and Eppinger,
2016).

Our study strongly endorses that quality of SNPs and choice
of an appropriate reference strain in WGST approaches are
equally critical to achieve phylogenetic resolution and accuracy
(Table 6). Here we also demonstrate that in order to avoid
type 2 error of attribution, the quality of SNP data obtained
from WGS approaches is crucial (Table 6). For read-based
discovery approaches we would like to emphasize the importance
of SRA data availability, which is not only foundational to
determine coverage and quality of detected SNP positions,
but also to optimize assembly quality should assemblers with
improved algorithms become available (Supplemental Table 1).
SNP discovery with an appropriate outbreak-specific reference
strain is critical for reference based WGS typing. To fully assess
the genomic plasticity, the reference should be phylogenetically
related and not too distant to the strains of interest, as evidenced
by the resolution power gained using a within outbreak reference
(Figures 2, 4, 5). By extending our analysis to the mobilome, we
detected plasticity among clonal strains in phage and plasmid
content describing novel plasmids not previously associated with
E. coli O157:H7. We also would like to stress the importance of
publicly available strain associated clinical, environmental, and
epidemiological metadata concomitantly to the genomic data as
prerequisite for informed source attribution (Table 6) (Eppinger
and Cebula, 2015).We anticipate that NGS long-read technology,
such as contemporary SMRT technology (English et al., 2012), or
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other platforms under development (Feng et al., 2015; Rhoads
and Au, 2015) will tremendously benefit WGS typing strategies
as it pertains to the highly homogenous E. coli O157:H7 lineage
(Zhang et al., 2006, 2007; Eppinger et al., 2011b). In particular,
long-read technologies will produce (near) closed genomes and
thus allow to accurately determine the stx-virulence status by
defining not only stx allele type, but also stx-converting phage
combination, plasticity, and location, all factors that have been
associated with alterations in Stx-production as direct mediator
of EHEC disease (Ogura et al., 2015; Toro et al., 2015; Yin et al.,
2015).

Our data provide insight into the maximum number of
permissible SNPs two strains can have and still designate them
of the same origin. In prior work, we found no SNPs between 24
isolates of the same point-source cluster, focusing on backbone
ORFs (Turabelidze et al., 2013). Dallman et al. and others
tolerated up to 4 SNPs in the core genome before assigning two
isolates to different sources (Underwood et al., 2013; Joensen
et al., 2014; Dallman et al., 2015; Holmes et al., 2015). We found
one bona fide SNP in the course of a single point-source, short-
term outbreak. Since no gold standards have yet been accepted
for E. coli O157:H7 WGS typing we propose the following
criteria (Table 6) for inclusion (presumably of same source)
vs. exclusion (presumably of different source) of investigated
isolates: (i) High-quality whole genome sequence fortified with
extensive epidemiological outbreak data, (ii) genome-scale SNP
discovery based on high quality sequencing with reference, (iii)
exclusion of mobilome and repeats (to reduce epidemiological
noise), followed by (iv) PCR-confirmation of eventual SNPs for
definitive in-/exclusion, and (v) mobilome discovery which can
significantly contribute to the genomic plasticity. Moreover, for
cases that are quite dispersed in time and space, there should
be greater stringency in assigning “like” status to two strains
that are even differentiated by a single SNP. When outbreaks
occur, there are often large product liability issues at stake,
and considerable obligation on disease control authorities to
identify such clusters andmolecular typing serves an increasingly
important role. Therefore, diligence should be exercised in
choice of sequence-based typing protocols, and in their
analysis.

Finally, while we eagerly anticipate the introduction of
sequence-based pathogen typing as a public health and disease
prevention tool (Sadiq et al., 2014; Eppinger and Cebula, 2015),
we share the concern of Osterholm (2015), who stresses that
this powerful technology be employed as an adjunct to, and not
a replacement for, case interviewing (descriptive epidemiology)
and environmental investigations. Also, we are entering an era
of non-culture diagnosis of enteric infections, including those
caused by E. coli O157:H7 (Schatz and Phillippy, 2012; Klemm
and Dougan, 2016). The high resolution data presented in this
article would not have been possible without classic diagnostic
microbiology laboratory recovery of the pathogen of interest.
We hope that resources will be devoted to recovering these
agents from submitted specimens, so as to complement case
investigation by local healthy jurisdictions.
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