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Introduction: Industrial livestock farming is a possible source of multi-resistant

Gram-negative bacteria, including producers of extended spectrum beta-lactamases

(ESBLs) conferring resistance to 3rd generation cephalosporins. Limited information is

currently available on the situation of ESBL producers in livestock farming outside of

Western Europe. A surveillance study was conducted from January to May in 2014 in

four dairy cattle farms in different areas of the Nile delta, Egypt.

Materials and Methods: In total, 266 samples were collected from 4 dairy farms

including rectal swabs from clinically healthy cattle (n = 210), and environmental

samples from the stalls (n = 56). After 24 h pre-enrichment in buffered peptone water,

all samples were screened for 3rd generation cephalosporin-resistant Escherichia coli

using BrillianceTM ESBL agar. Suspected colonies of putatively ESBL-producing E. coli

were sub-cultured and subsequently genotypically and phenotypically characterized.

Susceptibility testing using the VITEK-2 system was performed. All suspect isolates were

genotypically analyzed using two DNA-microarray based assays: CarbDetect AS-1 and

E. coli PanType AS-2 kit (ALERE). These tests allow detection of a multitude of genes and

their alleles associated with resistance toward carbapenems, cephalosporins, and other

frequently used antibiotics. Serotypes were determined using the E. coli SeroGenotyping

AS-1 kit (ALERE).

Results: Out of 266 samples tested, 114 (42.8%) ESBL-producing E. coli were

geno- and phenotypically identified. 113 of 114 phenotypically 3rd generation

cephalosporin-resistant isolates harbored at least one of the ESBL resistance genes

covered by the applied assays [blaCTX-M15 (n = 105), blaCTX-M9 (n = 1), blaTEM

(n = 90), blaSHV (n = 1)]. Alarmingly, the carbapenemase genes blaOXA-48 (n = 5)

and blaOXA-181 (n = 1) were found in isolates that also were phenotypically

resistant to imipenem and meropenem. Using the array-based serogenotyping

method, 66 of the 118 isolates (55%) could be genotypically assigned to O-types.
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Conclusion: This study is considered to be a first report of the high prevalence of

ESBL-producing E. coli in dairy farms in Egypt. ESBL-producing E. coli isolates with

different underlying resistance mechanisms are common in investigated dairy cattle

farms in Egypt. The global rise of ESBL- and carbapenemase-producing Gram-negative

bacteria is a big concern, and demands intensified surveillance.

Keywords: ESBL, carbapenemases, Escherichia coli, Egypt, dairy cattle, microarray, genotype, CRE

INTRODUCTION

Extended-spectrum beta-lactamases (ESBLs) aremainly plasmid-
encoded enzymes providing resistance to 3rd generation (3G)
cephalosporins. These enzymes can be produced by a variety of
different bacteria, such as Enterobacteriaceae or non-fermenting
bacteria (Bradford, 2001; Giamarellou, 2005; Rawat and Nair,
2010; Shaikh et al., 2015). The most frequently found ESBL-
producing species is Escherichia coli which often causes urinary
tract infections, pneumonia or even sepsis in humans (Abraham
et al., 2012). ESBL-producing E. coli has been broadly recognized
in veterinary medicine as causative agents of mastitis in dairy
cattle since the 2000s (Brinas et al., 2003; Haftu et al., 2012), but
only a few studies exist that investigated the prevalence of ESBL-
producing bacteria in livestock, showing their existence in sick
and/or healthy cattle (Valentin et al., 2014; Dahms et al., 2015).

Unfortunately, there is no legislation in Egypt regulating the
use of antibiotics (Dahshan et al., 2015). Antimicrobials such as
tetracycline, quinolones, and beta lactams are still used in Egypt
for growth promotion in animal feed and by veterinarians for the
treatment and prevention of zoonotic diseases (WHO, 2013).

The CTX-M beta-lactamases, named for their greater activity
against cefotaxime, are the most frequently detected ESBLs in
livestock, and have been reported from different food-producing
animals (Schmid et al., 2013; Brolund, 2014; Hansen et al., 2014).
These animals also represent a source and/or a reservoir for
ESBL-producing E. coli (Carattoli, 2008). Several studies indicate
that these resistance genes are disseminated through the food
chain or via direct contact between humans and animals (Schmid
et al., 2013; Dahms et al., 2015). Data on ESBL-producing
bacteria in food animals from Egypt are very limited. Therefore,
the current study was conducted on four dairy cattle farms in
different districts of Northern Egypt to assess the prevalence of
ESBL-producing E. coli in dairy cattle and their environment.

MATERIALS AND METHODS

Farm Description and Sampling
In 2014, four dairy farms, three in Gamasa (GF1, GF2, GF5), and
one in Damietta (D), were investigated (Figure 1). These farms
were located in Nile Delta, Egypt in two different governorates
(Damietta; Latitude N. 31◦19′, Longitude E. 31◦81′ and Dakahlia
Latitude N. 31◦25′, Longitude E. 31◦32′). The herd size ranged
from 400, 600, 650, and 800 in GF1, GF2, GF5, and D,
respectively. The cattle enrolled in this study were between 2 and
10 years old. Half of the farms housed dairy cattle in free-stall
barns and half of them in tie-stall barns. In total, 266 samples

were collected from these farms. This included rectal swabs and
milk samples from apparently healthy dairy cattle (n = 210),
and environmental swab samples from water trough, feed and
bedding (n= 56).

Bacterial Strains, Isolation, Identification,
and Genomic DNA Extraction
All collected samples were enriched in buffered peptone water
and cultivated on BrillianceTM ESBL agar (Oxoid, Wesel,
Germany) for preliminary analysis for ESBL-producing E. coli.
For further investigations, all suspected E. coli that grew on the
selective medium were cultivated on tryptone yeast agar (Oxoid,
Wesel, Germany). Presumptive characteristic E. coli isolates
were identified by Gram staining and motility, and confirmed
using a panel of biochemical tests (Triple Sugar Iron (TSI) agar,
catalase, oxidase, H2S production and sugar fermentation) and
API 20 E systems (bioMérieux, France; ISO, 2001). All confirmed
isolates were subsequently re-tested using an automated
microdilution technique (VITEK-2, bioMérieux, Nürtingen,
Germany) that covered the following antibiotics: imipenem,
meropenem, cefotaxime, ceftazidime, cefuroxime-axetil,
cefuroxime, piperacillin/tazobactam, ampicillin/sulbactam,
ampicillin, gentamicin, tobramycin, ciprofloxacin, moxifloxacin,
tetracycline, tigecycline, co-trimoxazol, and fosfomycin (VITEK-
2 test card: AST-N289). Susceptibility tests for chloramphenicol,
kanamycin, streptomycin, erythromycin and colistin were not
performed in this study.

Genomic DNA from clonal isolates was extracted using
the DNeasy Blood & Tissue kit (Qiagen GmbH, Hilden,
Germany) according to manufacturer’s instructions. When
necessary, DNA was concentrated to at least 100 ng/µl using a
SpeedVac centrifuge (Eppendorf, Hamburg, Germany) at room
temperature with 1400 rpm and for 30 min. Five microliters of
recovered genomic DNA were used directly for biotin-labeling
and subsequent hybridization.

GenoSeroTyping and Antimicrobial
Resistance Genotype
For all ESBL-producing E. coli, the serotype was determined
using the E. coli SeroGenoTyping AS-1 kit. The antimicrobial
resistance (AMR) genotype was detected by the CarbDetect AS-
1 kit and all other resistance genes were detected by the E. coli
PanType AS-2 kit (Alere Technologies GmbH, Jena, Germany).
The data were automatically summarized by the “result collector,”
a software tool provided by Alere Technologies. An antibiotic
resistance genotype was defined as a group of genes which have
been described to confer resistance to a family of antibiotics (e.g.,
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FIGURE 1 | Map of Nile Delta, Egypt with all locations of the dairy cattle farms from which the samples were collected (GF-Gamasa, D-Damietta).

the genotype “blaCTX-M1/15, blaTEM” confers resistance to 3G
cephalosporins) (Table 2).

Multiplex Labeling, Hybridization, and Data
Analysis
Extracted DNA was labeled by primer extension amplification
using E. coli SeroGenoTyping AS-1, CarbDetect AS-1 or E.
coli PanType AS-2 kits according to manufacturer’s instructions.
The procedure for multiplex labeling, hybridization and data
analysis was described in detail by Braun et al. (2014). Briefly,
internal labeling of the synthesized single stranded DNA resulted
from the primer elongation of previously hybridized primers
to the target genomic DNA, by using dUTP linked biotin
as dideoxynucleotide triphosphate to be incorporated during
synthesis. This procedure allowed site-specific internal labeling
of the corresponding target region. The PCR protocol included 5
min of initial denaturation at 96◦C, followed by 50 cycles with
20 s of annealing at 50◦C, 40 s of elongation at 72◦C, and 60 s
of denaturation at 96◦C (used device: Eppendorf Mastercycler
gradient, Eppendorf, Hamburg, Germany). This reaction resulted
in a multitude of specific linearly amplified, single-stranded,
biotin-labeled DNA molecules for subsequent hybridization and
detection using the DNA microarrays.

For hybridization procedures, the CarbDetect AS-1
and the E. coli PanType AS-2 kit were used according to
manufacturer’s instructions. CarbDetect ArrayStrips were placed
in a thermomixer with an Alere ArrayStrip adapter (Quantifoil

Instruments, Jena, Germany) and subsequently washed with 200
µl of deionized water at 50◦C with 550 rpm for 5 min and with
100 µl hybridization buffer C1 at 50◦C with 550 rpm for 5 min.
Liquids were always completely removed using a soft plastic
pipette (e.g., BRANDT, #612-2856) to avoid any scratching of
the chip surface. In a separate tube, 10 µl of previously labeled,
single-stranded DNA was dissolved in 90 µl hybridization buffer
C1. The hybridization was carried out at 50◦C and 550 rpm
for 1 h. After hybridization, the ArrayStrips were washed twice
using 200 µl washing buffer C2 at 45◦C for 10min, shaking
at 550 rpm. Peroxidase-streptavidin conjugate C3 was diluted
1:100 in buffer C4. A total of 100 µl of this mixture was added
to each well of the ArrayStrip and subsequently incubated at
30◦C and 550 rpm for 10 min. Thereafter, two washing steps
with 200 µl C5 washing buffer were carried out at 550 rpm
at 30◦C for 5 min. The visualization was achieved by adding
100 µl of staining substrate D1 to the ArrayStrips, and signals
were detected using the ArrayMate device (Alere Technologies
GmbH). Finally, an automatically generated HTML-report was
provided giving information on the presence or absence of
antimicrobial resistance genes and the affiliation to one of the
more common species.

Ethic Statement
An Ethic Statement is not necessary. The isolates were obtained
by noninvasive rectal swabs and no animal experiments were
carried out for this study.
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RESULTS

Antimicrobial Resistance Genotype and
Phenotype
Rectal swabs samples (n = 210) yielded 98 (46.6%) cultures and
environmental samples (n = 56) yielded 16 (28.6%) cultures of
putatively ESBL-producing E. coli. All 114 isolates were Gram-
negative, motile, catalase positive, oxidase negative and indole-
producing bacteria. Additionally, all isolates caused a decrease
of pH and a color change of the TSI agar indicator and gas
formation in the bottom of the test tube, and were therefore
assigned as E. coli. In total, 113 (99.1%) phenotypically 3G
cephalosporin-resistant isolates harbored at least one of the ESBL
genes covered by the microarray (blaCTX-M15, blaCTX-M9,
blaTEM, blaSHV; Figure 2). The carbapenemase gene blaOXA-
48 was detected in five isolates (3.4%) and the carbapenemase
gene blaOXA-181 (0.8%) was detected in one isolate (Table 1,
Figure 2). These isolates showed a phenotypic resistance to
imipenem and meropenem (Table 2). The total number of
detected resistance genes is listed in Table 1 and an overview to
each isolate is given in Figure 2. The ESBL gene blaCTX-M1/15
was found in 103 isolates whereas blaCTX-M9 was only found
in 9 isolates. Consensus sequences for blaTEM and blaSHV
were found in 89 and 1 isolate, respectively. For all detected
beta-lactamase genotypes, the phenotype was analyzed using the
VITEK-2 instrument. The results are shown in Table 2. The
concordance for the carbapenem resistance and ESBL genotype
was 100%. In one phenotypic ESBL positive isolate, only the
narrow spectrum beta-lactamase (NSBL) gene blaOXA-1 was
found. Due to this unexpected phenotype the concordance for
the NSBL genotype was only 60%.

Nine different aminoglycoside resistance genes were detected

by the E. coli PanType AS-1 kit (Table 1). The combinations
of these genes resulted in 14 different genotypes, whereas the
most prevalent genotype was aac(6′)-Ib in combination with
aadA4 (n = 25). All isolates harboring this genotype were
resistant to tobramycin, but three of them were susceptible
to gentamicin (Table 2). Therefore, the concordance between
genotype and phenotype was 94%. Five isolates, which harbored
only aac(6′)-Ib, were resistant to all tested aminoglycosides.
The second most frequent genotype was aac(3)-lVa (n = 20).
All isolates harboring this gene were resistant to gentamicin
and tobramycin and corresponded to 100% of the expected
phenotype (Table 2). Six isolates harboring the gene aphA
were susceptible to tobramycin and gentamicin. The detected
phenotype corresponded 100% with the genotype, as the enzyme
AphA does not mediate resistance against both aminoglycoside
antibiotics tested (Ramirez and Tolmasky, 2010).

The most prevalent genotype for fluoroquinolone resistance
was qnrA1 followed by qepA. One isolate harboring qnrA1
was sensitive to both quinolone antibiotics tested (97.0%
concordance), but all isolates with detected qepA gene were
resistant (100% concordance). Overall, 86 of 114 isolates were
resistant to ciprofloxacin and 92 against moxifloxacin. Only in
56 ciprofloxacin resistant isolates a corresponding genotype was
detected. Similar results were observed for the 92 moxifloxacin
resistant isolates, where only in 68 isolates a corresponding

genotype was detected. The overall concordance of the detection
of genes mediating fluoroquinolone resistance with phenotypic
resistance was 79.0% (Table 2).

Resistance to co-trimoxazole is associated with sul and dfrA
genes. All isolates with this gene combination were resistant
to co-trimoxazole (Table 2). From 45 isolates without this gene
combination, 34 were resistant. Therefore, the concordance of
genotype and phenotype was 80.0%.

Of 114 isolates, one was resistant to fosfomycin. Such
resistance is caused by mutations in ubiquitous genes (e.g.,murA
or glpT) or the loss of entire genes (e.g., uhpA) rather than
by acquisition of distinct resistance markers and therefore the
genotypes were not included into the test panel (Takahata et al.,
2010; Li et al., 2015).

In summary, the overall concordance among all genotypes to
expected phenotypes was 82.6% (Table 2).

Serotyping
For all 114 ESBL-producing E. coli isolates, the O- and H-
types were identified using the E. coli SeroGenotyping AS-1 kit
(Figure 3). For 63 (55.3%) isolates, genes encoding both O and H
antigens were detected and for 51 isolates (44.7%) only the gene
encoding the H antigen could be detected. The most prevalent
serotype was O101:H10. This serotype was found in locations
D, GF1, and GF2 and isolated mainly from rectal swabs, as one
isolate belonging to this group was found in a water trough.
The AMR genotype for O101:H10 isolates was rather uniform
(Figure 3). Isolates of serotype O53:H18 with the carbapenemase
gene blaOXA-48 were only found in farm GF1 and were isolated
from rectal swabs. All isolates belonging to this group were
identical with regard to their phenotype and genotypes (Table 2,
Figures 2, 3). The serotype O8:H9 with blaOXA-181 was found
only once in farm D from a rectal swab. For isolates where only
the H-antigen H6 was found, a very similar AMR genotypes was
detected. Such isolates were found in all investigated farms and
sample types.

DISCUSSION

In 2014, four dairy farms in northern Egypt were investigated
for ESBL-producing E. coli. In total, 210 clinically healthy
dairy cattle were sampled using rectal swabs. Additionally, 56
environmental swabs were taken from different stall objects and
screened for multi-drug resistant bacteria. All swabs were pre-
cultured on BrillianceTM ESBL Agar, and in 114 of 266 samples
(42.8%), ESBL-producing E. coli were detected. To analyze the
underlying molecular AMR mechanism, all 114 isolates were
genotyped using the multiplex microarray technique. The most
frequently detected gene which mediated resistance against 3G
cephalosporins was blaCTX-M1/15 (90.4%). The genes blaCTX-
M9 (5.3%) and blaTEM (78%), which also mediate resistance
to 3G cephalosporins, were also detected. However, both were
usually found in combination with blaCTX-M1/15. BlaCTX-M9
was related to resistance to 3G cephalosporins in just one isolate
as well as blaTEM in four isolates. A comparison to data similar to
data from this study is difficult due tomissing reports from Egypt.
Recently, two reports from Germany are known describing the
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FIGURE 2 | Overview of antimicrobial resistance pattern. Antimicrobial resistant genes of all E. coli isolates obtained from swab samples (healthy dairy cattle

and/or environment). Also given are the farm IDs, sample sources and sampling dates. (Abbreviations: CS, rectal swab; WT, water trough; BM, bulk milk; S, soil; FM,

feed mixer; FA, feed animal; BS, boot swab; B, bedding; TMR, total mixed ration).
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TABLE 1 | Antimicrobial resistance genes and their frequency in E. coli isolates detected by microarray.

Gene family Genes Accession No. Description Frequency

Carbapenemase blaOXA-48 AY236073.2 Carbapenemase, class D carbapenem hydrolyzing beta-lactamase 5

blaOXA-181 JN205800.1 Carbapenemase, class D carbapenem hydrolyzing beta-lactamase 1

ESBL (extended spectrum beta- lactamase) blaCTX-M1/15 X92506.1 Class A extended-spectrum-beta-lactamase 103

blaCTX-M9 AF174129.3 Class A extended-spectrum-beta-lactamase 6

blaTEM Consensus Class A beta-lactamase 89

blaSHV Consensus Class A beta-lactamase 1

blaMOX-CMY9 AF381617.1 Class C beta-lactamase 1

NSBL (narrow spectrum beta-lactamase) blaOXA-1 AY458016.1 Class D beta-lactamase 33

blaOXA-7 AY866525.1 Class D beta-lactamase 1

blaOXA-10 J03427.1 Class D beta-lactamase 2

blaCMY AB212086.1 Class C beta-lactamase 23

Aminoglycosides strA EF090911.1 Aminoglycoside-3′′-phosphotransferase (locus A) 94

strB EF090911.1 Aminoglycoside-6′′-phosphotransferase 94

aadA4 Z50802.3 Aminoglycoside adenyltransferase 32

aac(6′)-Ib AM283490.1 Aminoglycoside 6′-N-acetyltransferase 31

aac(3′)-IVa EU784152.1 Aminoglycoside 3′-N-acetyltransferase 27

aadA1 EU704128.1 Aminoglycoside adenyltransferase 25

aphA AY260546.3 Aminoglycoside 3′-phosphotransferase 18

aadA2 EU704128.1 Aminoglycoside adenyltransferase 10

aadB L06418.4 Aminoglycoside 2′′-O-nucleotidyltransferase 1

Chloramphenicol floR AF252855.1 Florfenicol export protein 43

catB3 AJ009818.1 Chloramphenicol acetyltransferase (group B) 22

catA1 V00622.1 Chloramphenicol acetyltransferase (group A) 17

cmlA1 EF113389.1 Chloramphenicol transporter 10

Streptogramin A/B ermB AB089505.1 rRNA adenine N-6-methyltransferase 4

Macrolides mphA AB038042.1 Macrolide 2′-phosphotransferase I 83

Mrx AB038042.1 Unknown (downstream to mphA) 82

Fluoroquinolones qnrA AY931018.1 Quinolone or fluoroquinolone resistance protein 31

qepA AM886293.1 Fluoroquinolone efflux pump 17

qnrS AM234722.1 Quinolone or fluoroquinolone resistance protein 14

Tetracycline tetA CP000971.1 Tetracycline resistance protein A, class A 66

tetB V00611.1 Tetracycline resistance protein A, class B 40

tetD X65876.1 Tetracycline resistance protein A, class D 5

Co-trimoxazole sul2 DQ464881.1 Dihydropteroate synthetase type 2 96

sul1 AJ698325.1 Dihydropteroate synthetase type 1 72

dfrA17 AF169041.1 Dihydrofolate reductase type 17 33

dfrA14 AJ313522.1 Dihydrofolate reductase type 14 20

dfrA1 AJ884723.1 Dihydrofolate reductase type 1 13

sul3 AJ459418.2 Dihydropteroate synthetase type 3 10

dfrA12 AB154407.1 Dihydrofolate reductase type 12 4

dfrA5 AB188269.1 Dihydrofolate reductase type 5 3

dfrA7 AB161450.1 Dihydrofolate reductase type 7 3

dfrA19 AJ310778.1 Dihydrofolate reductase type 19 2

dfrA15 Z83311.1 Dihydrofolate reductase type 15 1
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FIGURE 3 | Overview of microarray-based serotyping. Serotype of all E. coli isolates obtained from swab samples (healthy dairy cattle and/or environment). Also

given are the farm IDs, sample sources and sampling dates. (Abbreviations: CS, rectal swab; WT, water trough; BM, bulk milk; S, soil; FM, feed mixer; FA, feed animal;

BS, boot swab; B, bedding; TMR, total mixed ration).
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prevalence of ESBL-producing bacteria in livestock of healthy
animals (Schmid et al., 2013; Dahms et al., 2015). Like in the
present study, in both reports the most prevalent ESBL group was
CTX-M. Schmid et al. (2013) collected a total of 598 samples that
yielded 196 ESBL-producing E. coli (32.8%). The high percentage
of ESBL-producing E. coli in healthy animals shows the high
zoonotic risk for people working in close contact to animals.With
this background Dahms et al. (2015) investigated different farms
for ESBL-producing bacteria in samples collected from livestock
and also from farm workers. In total, 70.6% of the tested farms
and 5.8% of the farm workers were positive for ESBL-producing
bacteria. In contrast, a study from Burgundy in France in 2012
showed only a low prevalence, of about 5%, of ESBL-producing
bacteria in feces samples from different farms (Hartmann et al.,
2012).

Due to the preselection of all samples on BrillianceTM

ESBL agar, carbapenem resistant isolates were also retrieved.
In six isolates, carbapenemase genes were detected using the
CarbDetect AS-1 kit. In five isolates from a stall on farm GF1,
blaOXA-48 was found. These isolates were phenotypically and
genotypically identical. Interestingly, another isolate was found
containing blaOXA-181, a gene belonging to the blaOXA-48-
like family. Both genes are also widely distributed in human
pathogens that cause hospital-acquired infection (Poirel et al.,
2012). Carbapenems are last-line antibiotics with a broad
spectrum and a high efficacy, and are stable against ESBLs.
As they can only be administered intravenously, carbapenems
are used exclusively in the clinical environment, and are not
known to be used in animal husbandry. While carbapenemase-
producing Enterobacteriaceae (CPE) are mostly described in
hospitalized humans (Nordmann et al., 2011; Abdallah et al.,
2015b), the current study shows conclusively that such CREs are
also found in farm animals including apparently healthy dairy
cattle. The detection of carbapenem resistant isolates in such
an environment and the threat that such multi-drug resistance
bacteria ends up in consumer food (e.g., milk or dairy products),
raises serious concerns about public health. Carbapenemase-
producing isolates have been detected in poultry farms (Abdallah
et al., 2015a), but there are to date no reports describing finding of
these multi-drug resistant bacteria in dairy cattle farms in Egypt.

Given that the majority of samples that contained
ESBL/carbapenemase-producing bacteria originated from
rectal swabs, this raises the question of how the potentially
contaminated feces are disposed of. Normally, dung is used
as fertilizer in agriculture. Via this route, multi-drug resistant

pathogens might get into the food chain, either directly through

consumption of meat, or indirectly from cattle grazing on
fertilized pasture. Another major problem raises up in this
context, the resistance genes described in this paper are usually
found on plasmids (Chanawong et al., 2001; Paterson and
Bonomo, 2005; Duan et al., 2006; Wittum et al., 2010; Brolund,
2014; Hansen et al., 2014; Valentin et al., 2014) and such mobile
elements can be easily transferred to and between environmental
bacteria (Aminov, 2011; Berglund, 2015), as well as to other
human pathogens (Pitout et al., 2015). This poses a high risk to
the environment, and the human population.

CONCLUSION

To the best of our knowledge, this study is the first report
which analyses the prevalence of ESBL-producing E. coli in
Egyptian dairy farms based on genotyping and phenotyping
data. The high percentage of ESBL-positive isolates and even
of carbapenemase-producing bacteria was alarming given the
relevance of 3G cephalosporins and carbapenems in modern
medicine. Additionally, the isolates had a highly diverse genetic
background with regard to serotype, virulence and antimicrobial
resistance markers (Figures 2, 3). Experiments showed a high
degree of concordance between genotype and phenotype.

Strict hygiene measures are mandatory to control the spread,
the transmission dynamics and potential zoonotic risk factors of
ESBL- and carbapenemase-producing bacteria in dairy farms.
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