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The gut microbiota is composed of a huge number of different bacteria, that produce

a large amount of compounds playing a key role in microbe selection and in the

construction of a metabolic signaling network. The microbial activities are affected

by environmental stimuli leading to the generation of a wide number of compounds,

that influence the host metabolome and human health. Indeed, metabolite profiles

related to the gut microbiota can offer deep insights on the impact of lifestyle and

dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and

metabolomics are some of the meta-omics approaches to study the modulation of

the gut microbiota. Metabolomic research applied to biofluids allows to: define the

metabolic profile; identify and quantify classes and compounds of interest; characterize

small molecules produced by intestinal microbes; and define the biochemical pathways

of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are

the principal technologies applied to metabolomics in terms of coverage, sensitivity

and quantification. Moreover, the use of biostatistics and mathematical approaches

coupled with metabolomics play a key role in the extraction of biologically meaningful

information from wide datasets. Metabolomic studies in gut microbiota-related research

have increased, focusing on the generation of novel biomarkers, which could lead to

the development of mechanistic hypotheses potentially applicable to the development

of nutritional and personalized therapies.

Keywords: gut microbiota, metabolome, state of health, diseases, dietary habits, omic approach

INTRODUCTION

The gut microbiota is exclusively responsible for several metabolic important functions, including
vitamin and short chain fatty acid (SCFAs) production, amino acid (AAs) synthesis, bile
acid biotransformation, hydrolysis and fermentation of non-digestible substrates (Putignani
et al., 2015). The beneficial effects of gut microbiota include: (i) immune-cell homeostasis and
development (Th1 vs. Th2 and Th17), (ii) epithelial homeostasis, (iii) enteric nerve regulation, (iv)
support of angiogenesis, food digestion, and fat metabolism (Holmes et al., 2011).

The gut microbiota, through metabolite production/fermentation, modulates signaling
pathways involved in the homeostasis of intestinal mucosa. When a balanced interaction between
the gastrointestinal (GI) tract and the resident microbiota is disrupted, intestinal and extraintestinal
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diseases may develop (Putignani et al., 2015), such as allergy,
inflammatory bowel disease (IBD), obesity, cancer and
diabetes, metabolic disorders, cardiovascular dyslipidemia,
and neuropathology (Holmes et al., 2011).

The advent of the omics-based systems biology era has opened
a new scenario in the comprehension of the gut ecosystem
by shedding light on its shape, modulation and interplay with
microorganisms, food functionality, and the role of nutrients in
health (Moco et al., 2013; Putignani et al., 2015).

The “omics” technologies are presently applied to: (i)
determine specific disease markers and novel diagnostic targets;
(ii) discover functional alterations in the physiopathology of
several diseases; (iii) discover the relationship between the gut
microbiota and the host metabolisms (De Preter and Verbeke,
2013). In particular, the use of metabolomics, being a well-
established and powerful top–down systems biology approach,
is crucial to unravel the genetics–environment–health relation,
as well as the typical clinical biomarkers of the different diseases
(Moco et al., 2013). In fact, metabolomics changed the concept
that the cellular metabolism profile is complete (Dettmer et al.,
2007). Therefore, metabolomics is useful to elucidate the complex
interactions of components, to understand the whole system, and
to discover new metabolites in order to provide both a different
perspective on cellular homeostasis (Liu et al., 2010), and new,
unexpected pathways which may have a key physiological role
(Zamboni et al., 2015). The metabolomics experiment (sampling,
sample preparation, instrumental analysis, data processing, and
data interpretation) fulfill the goal of improving the current
status of biological information associated to the metabolome
and, more generally, to functional genomics (Harrigan and
Goodacre, 2003). Nowadays, metabolomics is used to: (i) identify
biomarkers that could indicate the presence of a diseases, or
a response to drug intervention (Dunn and Ellis, 2005); (ii)
determine biochemical or environmental stresses (Le Gall et al.,
2003); (iii) characterize microbial metabolism (Vaidyanathan
et al., 2002); and (iv) characterize human health or disease
(Holmes et al., 2011).

Indeed, the metabolomics approach has been applied to
several studies on the gut microbiota, mostly focused on the
exploration of disease-related metabolites in order to obtain
detailed information on the gut metabolic pathways. In fact,
the gut microbiota is involved in several biochemical functions
directly associated to the perturbation of specific gut microbial
populations, which may lead to the development of diseases
(De Preter, 2015; De Preter et al., 2015). In other words, as the
gut microbiota interacts with the host metabolism and affects
physiological or pathological conditions, (Figure 1; Table 1;
Del Chierico et al., 2012) the study of its composition helps
discriminate between unhealthy and healthy subjects.

Moreover, the identification of metabolites may highlight
how lifestyle and dietary habits affect specific disease conditions
(Vernocchi et al., 2012).

Finally, metabolomics represents an unprecedented approach
to collect the complex metabolic interactions between the host
and its commensal microbial partners, offering the opportunity
to define individual and population phenotypes (Moco et al.,
2013). In fact, several cellular metabolites are associated with

the phenotypes of living organisms (i.e., human, mice, bacteria),
and they represent the substrates and products of different
biochemical pathways reflecting genetic and environmental
factors (Kim et al., 2016).

Furthermore, these data will serve as a basis to comprehend,
at the cellular and molecular levels, the relationships between
nutritional status and disease risk predisposition, thus allowing
to formulate nutritional recommendations.

This review is focused on the application of MS- and NMR-
based metabolomic techniques to describe the gut microbiota
metabolome and human physiology in relation to nutritional
programs and therapies.

VOLATILE AND NON-VOLATILE
COMPOUNDS: DETECTION METHODS
AND DATA ANALYSIS

Metabolomics uses high throughput techniques to characterize
and quantify small molecules in several biofluids (urine, serum,
plasma, feces, saliva), revealing a unique metabolic signature
(Nicholson and Lindon, 2008).

However, due to the chemical diversity, the different
properties of metabolites, and the large dynamic range of
metabolite concentrations in samples, it is almost impossible to
measure the complete metabolome with only one technique (De
Preter and Verbeke, 2013; Smirnov et al., 2016). Considering
that the amount of predictable metabolites and derivatives in
mammals, plants and bacteria is unknown (Weckwerth and
Morgenthal, 2005), there is the need of different analytical
platforms and complex integrated computational pipelines,
adjusted by analytical and chemical parameters, to cover
complete metabolome pathways in the different biofluids
(Savorani et al., 2013). Moreover, the collection and preparation
of samples, and the selection of the appropriate analytical
platforms are fundamental requisites for reproducibility of
sample manipulation (Dunn and Ellis, 2005). Besides, the
storage and the continuous sample freeze/thawing may alter the
composition and stability of the samples and consequently the
precision and accuracy of results (Roessner et al., 2000).

Finally, the fundamental requirements of metabolomics
studies are: accurate study design; sample treatment and platform
set up, corroborated by data analysis; integration of results; and
biological interpretation (Smirnov et al., 2016).

Metabolomics can be divided into two different groups:
targeted analysis and non-targeted discovery analysis (Dettmer
et al., 2007). In particular, the targeted approach is related
to the analysis of the different classes of molecules (i.e.,
carbohydrates, lipids, aminoacids), while non-targeted analysis
gives a rapid snapshot of the metabolic profile of samples by
using technologies able to detect a wide number of metabolites
(Smirnov et al., 2016).

Detection Methods
At present, we are able to separate, detect, characterize,
and quantify metabolites and their relevant metabolic
pathways thanks to the rapid development of a range of
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FIGURE 1 | Effect of gut microbiota metabolome on organs and tissues.

TABLE 1 | Role of gut microbiota metabolites on health and disease.

Beneficial microbial activities Benefits References Harmful microbial

activities

Drawbacks References

SCFAs and vitamin production,

recovery of energy

Nutrients and energy

providing

Putignani et al.,

2015

Lipopolysaccharide

supply, inflammation

Obesity and metabolic

syndrome

Krajmalnik-Brown

et al., 2012

Butyrate production, fermentation

of non-digestible fibers

Cancer prevention Louis et al., 2014 Toxins production,

inflammation

Cancer promotion Louis et al., 2014

Antimicrobials production(e.g.,

bacteriocins, H2O2, acids etc.),

intestinal pH regulation,

competition for ecological niche

Inhibition of pathogens Kamada et al.,

2013

Tissue invasion,

inflammation,

disruption of the gut

barrier/homeostasis

Infectious diseases, leaky

gut

Kamada et al., 2013;

Michielan and D’Incà,

2015

Anti-inflammatory vs.

pro-inflammatory signals

development

Normal

gastrointestinal

immune function

Belkaid and Hand,

2014

Pro-inflammatory vs.

anti-inflammatory

signals development

IBD, immune disorders Putignani et al., 2015

Non-digestible carbohydrates

metabolism

Normal gut motility Flint et al., 2012 Metabolism imbalance IBS, metabolic disease

aggravation

Putignani et al., 2015

Propionate production Gluconeogenesis,

cholesterol synthesis

inhibition

De Vadder et al.,

2014

Acetate production Cholesterol synthesis,

cardiovascular diseases

Krajmalnik-Brown

et al., 2012
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analytical platforms, including gas chromatography (GC),
liquid chromatography (LC), high pressure LC (HPLC), ultra
pressure LC (UPLC), Fourier transform infrared spectroscopy
(FTIR), ion cyclotrone resonance-FT (ICR-FT), capillary
electrophoresis (CE) coupled to mass spectrometry (MS), and
nuclear and proton nuclear magnetic resonance spectroscopy
(NMR-1H-NMR) (Zheng et al., 2011; Vernocchi et al., 2012).

MS-based metabolomics allows targeted and untargeted
metabolome analysis and it has become an indispensable tool
in metabolome analysis (Milne et al., 2013); moreover, MS
has a broader dynamic range, exhibits a high sensitivity and
selectivity (Zhao and Hartung, 2015), and allows determining
metabolite fingerprints for establishing metabolome libraries,
which facilitate the identification of metabolites (Martins-de-
Souza, 2014).

Gas Chromatography Mass Spectrometry
GC-MS is a combined system, with which thermally stable
and volatile compounds are separated by GC and then
eluting metabolites are detected by electron-impact (EI) mass
spectrometers. GC-MS is considered as the gold standard in
metabolomics (Harrigan and Goodacre, 2003). Even if GC has
several advantages, such as high efficiency, reproducibility and
sensitivity, it shows also some drawbacks. In fact, it can only be
performed for volatile compounds, or those that can be made
volatile, or made stable by derivatization (Roessner et al., 2000;
Vernocchi et al., 2012).

Volatile organic compounds (VOCs) are important
components of the metabolome (i.e., alcohols, esters, aldehydes,
ketones, SCFAs) and are found in biological samples (Mills
and Walker, 2001). The sample preparation methods consist
of liquid or solid phase extraction (SPE) (Dettmer et al., 2007).
Another rapid and solvent-free sample preparation technique is
headspace-solid phase microextraction (HS-SPME) (Pawliszyn,
1997), for which the different types of stationary phases (polar
and non-polar) used as fiber coatings are commercially available.
On the other side, to stabilize the metabolites, two stages
of derivatization with different kinds of reagents need to be
performed (Roessner et al., 2000). During these processes,
small aliquots of samples are analyzed by split or splitless
mode on GC columns of various polarities, thus obtaining
high chromatographic compound resolution and sensitivity,
even if the resulted chromatograms are complex (i.e., multiple
derivatization products), contain many metabolite peaks, and
need a long run time (longer than 60 min) (Roessner et al., 2000).
Therefore, coupling GC with time-of-flight (TOF)-MS, which
has high scan rates and produces accurate peak deconvolution of
complex samples in faster times, allows improving conventional
GC–MS techniques in the analysis of ultra-complex samples
(Dunn and Ellis, 2005; Dettmer et al., 2007).

Finally, metabolite quantification is obtained by external
calibration or response ratio (peak area of metabolite/peak area
of internal standard), while metabolite identification is obtained
by matching retention time and mass spectrum of the sample
peak with a pure compound previously analyzed, under identical
instrumental conditions, with the same or different instruments

(Fiehn et al., 2000), or by matching the metabolite against
commercial databases (i.e., NIST, WILEY, EPA, NIH).

GC-MS can be used in several fields, such as plant
metabolomics, as reported by Stashenko et al. (2004), who used
SPME-GC-MS for sampling the volatile plant metabolites, or
for example, by Akhatou et al. (2016), who combined GC-
MS with multivariate statistical techniques to characterize the
primary metabolome of different strawberry cultivars, and to
study the influence of multiple agronomic conditions. Moreover,
as reported by Currie et al. (2016), GC-MS has proved useful
in microbial metabolomics related to pharmaceutical studies
to analyze the endogenous metabolite levels produced by
Pseudomonas putida in response to six pharmaceuticals; or in
food studies, when used to characterize the microbial metabolite
production in: cheese (Vannini et al., 2008; Pisano et al., 2016),
probiotic food (Patrignani et al., 2009; Tabanelli et al., 2015b),
sourdough (Guerzoni et al., 2007), wine (Vernocchi et al., 2011;
Patrignani et al., 2016), sausages (Tabanelli et al., 2015a), and
ready to eat products (Siroli et al., 2015). Moreover, GC-MS
is used in clinical applications, for example to analyze volatile
compounds (SPME-GC-MS) in urine, blood, feces, hair, breath
and saliva (Mills and Walker, 2001), or to evaluate biomarkers
in several diseases, such as asthma (Gahleitner et al., 2013;
Chang et al., 2015), schizophrenia (Liu et al., 2010), depressive
disorders (Ding et al., 2014), ulcerative colitis (Kohashi et al.,
2014), and neonatal sepsis (Fanos et al., 2014). In the last
years, GC-MS has become one of the most used techniques to
study the modulation of gut microbiota as a result of nutrition
(i.e., diet, nutraceutical food consumption), diseases, drug, and
probiotic administration. Garner et al. (2007) qualitatively and
quantitatively analyzed the fecal metabolome to identify potential
biomarkers in GI diseases; Di Cagno et al. (2011) characterized
the fecal metabolome of celiac children subjected to gluten-
free diet, compared to healthy children; Francavilla et al. (2012)
evaluated the gut metabolome of allergic children; Vitali et al.
analyzed the effects of symbiotic or prebiotic foods and probiotic
foods on the human gut metabolome profile (Vitali et al., 2010,
2012); De Filippis et al. evaluated the effects of theMediterranean
diet on the gut microbiota metabolome (De Filippis et al., 2015).

Moreover, De Preter (2015) and De Preter et al. (2015)
applied this technique to make a clinical diagnosis of IBD, and
to determine the impact of prebiotics on Chron’s disease. Del
Chierico et al. characterized the gut microbiota of non-alcoholic
fatty liver disease (NAFLD), and obese pediatric patients to
unravel disease signatures (Del Chierico et al., 2016). Finally, De
Angelis et al. analyzed the fecal metabolome of children with
autism and pervasive developmental disorders (De Angelis et al.,
2013).

Liquid Chromatography Mass
Spectrometry
HPLC separation may cover a wide range of compounds’
determination, even though its resolution is low. LC is
probably the most flexible separation method, as it allows
to separate compounds with little effort in few pre-analytical
steps (compared to GC-MS) (Moco et al., 2007). Usually,
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the metabolite separation obtained with LC is followed by
electrospray ionization (ESI) or, to a lesser extent, by atmospheric
pressure chemical ionization (APCI) (Bakhtiar et al., 2004). The
combination of LC with MS allows to analyze polar, non-polar
and neutral compounds separately in a complex matrix (Smirnov
et al., 2016). This technique diverges from GC-MS for the lower
temperatures of analysis, and it does not require sample volatility,
thus entailing an easier sample preparation (Dunn and Ellis,
2005).

LC/MS is an excellent technique showing sensitivity,
specificity, resolving power, and capability to extract additional
information about metabolites from their retention time (RT)
domain (Forcisi et al., 2015).

Sample derivatization is commonly not necessary, although it
can be helpful to improve the chromatographic sensitivity and
resolution (Leavens et al., 2002), or to produce ionisable groups
of metabolites otherwise not detectable by electrospray ionization
(ESI) MS. Metabolite quantification is obtained by external
calibration or response ratio, and metabolite identification is
more time intensive. Moreover, ESI does not produce molecular
ion fragmentation as it occurs by electron impact MS, so it does
not provide direct metabolite identification by ESI mass spectra
comparison, as ESI mass spectral libraries are not generally
available. Nevertheless, accurate mass measurements can be
obtained by coupling MS/MS using metabolite identification
(Lenz et al., 2004). The advent of HPLC and UPLC allowed
to shorten the analyzing time, provided higher resolution,
sensitivity and efficiency, and permitted to reduce the quantity
of samples and solvent necessary for the analysis (Smirnov et al.,
2016).

The application of LC/MS allows the identification of target
metabolites within a complex sample, not only with the
information about monoisotopic mass, but also providing advice
on the metabolite structure (Villas-Bôas et al., 2005).

LC-MS applications mainly concern the clinical and
pharmaceutical fields (Bakhtiar et al., 2004). Nardotto et al.
(2016) used LC/MS/MS systems to investigate patients with
type 2 diabetes mellitus treated with an oral dose of racemic
carvedilol, who showed accumulation in plasma. Mueller et al.
applied this technique to measure plasma concentrations of
trimethylamine-N-oxide, betaine and choline in the evaluation
of patients with suspected coronary artery disease (Mueller et al.,
2015).

An example of LC and GC technologies’ combination, is also
given by Chow et al. who studied the fecal metabolome, including
the application of non-targeted metabolomics to separate breast-
fed from formula-fed infants by using GC/MS and LC/MS/MS
analysis to identify the various metabolites undergoing change
(Chow et al., 2014).

Capillary Electrophoresis Mass
Spectrometry
CEmay offer high-analyte resolution and detect a wider spectrum
of (polar) compounds compared to HPLC, but it is properly
applicable only to charged analytes (Ramautar et al., 2013).
However, only a few studies on this subject have been published
to date, such as Soga et al. (2003), who separated cationic, anionic
nucleotidis, and CoA metabolites to describe the coverage of

the metabolome. These authors analyzed 1692 metabolites in
bacterial extract (Chow et al., 2014).

Fourier Transform Infrared Spectroscopy
FT-IR spectroscopy allows rapid, non-destructive and high-
throughput determination of different sample types. In
particular, it can simultaneously detect different molecules, such
as lipids and fatty acids (FAs), proteins, peptides, carbohydrates,
polysaccharides, nucleic acids, (Harrigan and Goodacre, 2003;
Dole et al., 2011), but sensitivity and selectivity of this technique
are not high. On the contrary, ICR-FT/MS offers an ultrahigh
mass resolution able to distinguish slight variations in a wide
number of mass signals (Rosselló-Mora et al., 2008), and allowing
to obtain the structural identification of new biomarkers (Jansson
et al., 2009). In fact, Jansson et al. (2009) used ICR-FT/MS to
distinguish between the masses of fecal metabolites in Chron’s
disease patients and healthy subjects.

Furthermore, FT-IR is principally useful for the identification
of functional groups (Vernocchi et al., 2012). In fact, FT-IR has
been used to assist infrared imaging in the diagnosis of many
diseases, such as Parkinson, cancer, Alzheimer, kidney stone,
arthritis (Dole et al., 2011), diabetes, and early stage insulin
resistance (Chen et al., 2008).

Moreover, it is possible to combine the LC and FT-IR
techniques, as performed by Walker et al. (2014), who identified
taurine and sulfate conjugated fatty acids in feces of diabetic mice
by coupling ICR-FT/MS and UPLC-MS.

Finally, MS-based metabolomic techniques offer high
selectivity and sensitivity for metabolites’ identification and
quantification. In fact, they are considered as the most
appropriate techniques for the detection of large numbers of
metabolites, and, in combination with advanced and high-
throughput platforms, they may help decrease the complexity
of metabolite separation (Zheng et al., 2011; Zhao and Hartung,
2015). In particular, for the total screening of the small molecules
in a biological system, MS non-targeted metabolomics is
a powerful tool for the identification of metabolite signals
present in spectra (Naz et al., 2014). The identification can be
partly completed by matching against metabolite and spectral
databases, such as METLIN (Smith et al., 2005), HMDB (Wishart
et al., 2013), or ChemSpider (Pence and Williams, 2010). To
describe the metabolic pathway of biological systems, it is also
possible to refer to databases such as KEGG (Kanehisa et al.,
2007), or Meta-Cyc (Caspi et al., 2007).

Nuclear Magnetic Resonance
Spectroscopy
NMR spectroscopy, instead, uses the intramolecular magnetic
field around atoms in molecules to change the resonance
frequency, thus allowing access to details of molecules’ electronic
structure and obtaining information about their dynamics,
reaction state, and chemical environment. Moreover, a minimal
sample preparation is necessary for biofluids, except for feces or
gut luminal content, which require the removal of undigested
material, dead microbes and other particles (Smirnov et al.,
2016). For feces in particular, samples are prepared using
methanol (for lipophilic compounds as lipids, cholate, small
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phenolic acids) or water (for aminoacids, glucose, glycerol)
(Jacobs et al., 2008; Lamichhane et al., 2015).

NMR spectroscopy is mainly useful to determine metabolic
fingerprints leading to the identification and quantification of
compounds in a non-targeted large-scale, in a non-destructive
way, and with a high reproducibility (Lenz et al., 2004; Smolinska
et al., 2012).

However, it is a relatively insensitive technique, and can only
detect metabolites in high concentrations. The annotation is
restricted to a limited number of lowmolecular weightmolecules,
and this is the major pitfall of this application (Jansson et al.,
2009; Zhao and Hartung, 2015). Indeed, sensitivity depends on
the natural concentration of the atoms in the matrix and, to
improve sensitivity, long times of analysis, higher magnetic fields,
and cryogenic probes are needed (Keun et al., 2002).

Another type of NMR spectroscopy is 1H (proton) NMR,
which is unbiased to particular metabolites (Dunn and Ellis,
2005), unlike the other techniques discussed above. The NMR
spectrum (chemical shift) depends on the shielding from
electrons orbiting the nucleus, whereas for 1H-NMR the chemical
shift is arranged as the difference between the resonance
frequency of the observed proton and that of a reference proton
in a reference metabolite (tetramethylsilane in solution, set at 0
ppm) (Dunn and Ellis, 2005).

The obtained spectra are complex and contain a wide
number of signals, and frequently pure metabolites can be
added to give a more in-depth clarification. This technique is
frequently employed in clinical and pharmaceutical research and
applications, in particular in the analysis of biofluids and tissues,
where 1H-NMR is used to detect the modulation of metabolites
in response to cellular stresses (Lindon et al., 2003). This has also
been reported by Bro et al. (2015), who used plasma to determine
breast cancer biomarkers, or by Villaseñor et al. (2014), who
described the global metabolic phenotyping of acute pancreatitis,
and by Dumas et al. (2016), who used this technique to study
metabolic syndrome and fatty liver disease.

Moreover, when there is the need to understand how the
diet or other external stimuli or diseases affect the microbiome
composition (i.e., gut, urine, salive), metabolite detection is
performed using this functional technique. In fact, several
research studies have been conducted using NMR and 1H-NMR,
for instance: Ndagijimana et al. (2009) described the effects of
symbiotic food on human gut metabolic profile; Martin et al.
(2012) studied the influence of gut metabolome on health and
diseases; Bjerrum et al. (2015) investigated the gut metabolic
biomarkers characterizing Chron’s disease, ulcerative colitis and
healthy subjects; Zhang et al. (2015) studied how the gut
microbiota metabolome could alleviate obesity in children; Laghi
et al. (2014) studied the antibiotic effect on vaginal microbiome;
and Holmes et al. (2008) analyzed urine samples to discriminate
metabolites across populations in order to identify major risk
factors for coronary heart disease and stroke.

Hence, MS and 1H-NMR are by far the most frequently
applied and the most powerful techniques in metabolomics
(Collino et al., 2012). Recent advances in NMR and MS
have allowed to evaluate at the same time thousands of
metabolites related to the “metabolome,” and to define

the end-points of metabolic processes in living systems
(Nicholson et al., 2005).

In particular, 1H-NMR is currently the most used analytical
technique for metabolite profiling compared to MS, while the
combination of 1H-NMR and MS technologies would result in a
better coverage of the completemetabolome (Bjerrum et al., 2015;
De Preter, 2015; Wissenbach et al., 2016). In fact, by coupling
metabolite separation technologies with spectrometry and
spectroscopy, it is possible to reach a multidimensional approach
leading to the structural identification of new metabolites (Chen
et al., 2008).

However, the challenge for metabolomics is not only to
discover unknown chemical structures, but also to generate
meta-information, (i.e., sample origin, tissue, experimental
conditions) in an accessible format (Weckwerth andMorgenthal,
2005). Thus, the structural identification of metabolites as
potential biomarkers associated with diseases will be a major
task of biological interpretation (Nassar and Talaat, 2004).
In fact, small molecule metabolites are able to provide new
mechanistic information on novel disease biomarkers, which
is extremely important, given the paucity of existing markers.
Moreover, metabolomics can induce significant progress in
the identification of metabolomic fingerprints (which could
be used as crucial diagnostic biomarkers) by producing a
comprehensive map of metabolic pathway regulations, which
represent the downstream expression of genome, transcriptome,
and proteome. This comprehensive map may help define the
phenotype of an organism at a specific time (Zhang et al.,
2012). Therefore, the analysis of metabolic differences between
unperturbed and perturbed pathways could provide insights on
the underlying disease prognosis and diagnosis (Zhang et al.,
2012; Figure 2).

Data Analysis
Hence, statistic and bioinformatic techniques are used for
data mining complex metabolic profiles containing information
related to genetics, environmental factors, gut microbiota
activity, lifestyle, and eating habits. These strategies support
the complicated process of identifying new biomarkers, which
could indicate the individual response to specific physiological
factors and/or nutritional interventions, and manage the relevant
biological outcomes (Moco et al., 2013).

The application of biostatistics and mathematical approach
has a key role in the extraction of biologically meaningful
information from wide datasets. In computational analysis, the
problems derive from a small batch of samples in contrast
with the high number of detected metabolites, and in the
consequent high dimensionality of the data matrix (Weckwerth
and Morgenthal, 2005). Therefore, different statistical tools can
be employed to discriminate among the samples and within the
sample set (Worley and Powers, 2012).

In particular, diverse univariate and multivariate methods can
be used as parametric (i.e., Student t-test, multivariate linear
regression) or non-parametric (i.e., Mann-Whitney, Kruskal-
Wallis) tests. Moreover, these methods can be divided into
unsupervised techniques (i.e., principal component analysis
(PCA), hierarchical cluster analysis), and supervised techniques
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FIGURE 2 | Metabolomic application in human health to improve clinical and nutritional settings.

(i.e., linear discriminant analysis, k-nearest neighbor). Among
the supervised multivariate techniques, the partial least squares
discriminant analysis (PLS-DA) has proved to be a particularly
useful tool, in the presence of an irresolute sample separation
obtained from PCA as it offers the possibility to use a priori
information based on replicates (Raamsdonk et al., 2001;
Gromski et al., 2015). PLS-DA is also used for its ability to identify
potential biomarkers.

Moreover, statistical analyses of multivariate datasets allow
to visualize the biological and molecular consistency. This
consistency is based on the correlated functioning of metabolites
in response to external conditions. Finally, correlation networks
represent fingerprints of biochemical interactions, like the
regulation of enzyme activity, and the interplay of anabolism and
catabolism between the host and gut microbes (Weckwerth and
Morgenthal, 2005).

METABOLITES ASSOCIATED WITH
MICROBIAL METABOLISM OR
MICROBIAL–HOST COMETABOLISM

The gut microbiota operates in a combined way with the
host through the metabolic communication enacted by the

different bacterial genera and species responsible for metabolite
production (Table 2).

Bacterial Metabolism
SCFAs
Several substances present in the large intestine, including
indigestible oligosaccharides, dietary plant polysaccharides or
fibers, non-digested proteins and intestinal mucin are fermented
by the microbiota populations to produce SCFAs (Arora and
Sharma, 2011). In particular, clostridial clusters IV, XIVa (e.g.,
Eubacterium, Roseburia, Faecalibacterium, andCoprococcus spp.)
and Lactobacillus belonging to the phylum Firmicutes and the
groups of Actinobacteria (Bifidobacterium spp.) are the main
bacteria playing a central role in SCFAs metabolism (Nicholson
et al., 2012; van Zanten et al., 2014).

Acetate is an important SCFA present in the colon, which
could have a trophic effect on the colonic epithelium not only
by local action, but also by raising the mucosal blood flux.
Moreover, after transport to the portal circulation across the
colonic mucosa, acetate passes through the liver and is regained
in peripheral blood. Acetate’s effect at the ileal level exceeds that
of mixed SCFA (Scheppach, 1994). However, acetate is adsorbed
by tissues involved in the rise of cholesterol synthesis (Scheppach
et al., 1991). On the other side, propionate inhibits cholesterol

Frontiers in Microbiology | www.frontiersin.org 7 July 2016 | Volume 7 | Article 1144

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Vernocchi et al. Gut Microbiota Metabolome

TABLE 2 | Metabolites associated with microbial metabolism or microbial–host cometabolism.

Metabolites Bacteria Biological functions References

BACTERIAL METABOLISM

SCFAs: acetate, propionate, butyrate;

branched CFAs: iso-butyrate, valerate

and iso-valerate

Clostridial clusters IV and XIVa

Lactobacillus, Eubacterium,

Roseburia, Faecalibacterium,

Coprococcus

Increasing cholesterol synthesis

(acetate); gluconeogenesis

(propionate); energy source for

colonocytes (butyrate); cholesterol

synthesis inhibition; linked to:

cardiovascular disease, ulcerative

colitis, Crohn’s disease,

antibiotic-associated diarrhea,

obesity, metabolic syndrome, bowel

disorders and cancer

Harig et al., 1989; Scheppach et al.,

1991; Scheppach, 1994; Sabatino

et al., 2005; Binder, 2010; Donohoe

et al., 2011; Fukuda et al., 2011;

Nicholson et al., 2012; Chambers

et al., 2015

Organic acids: benzoate, hippurate,

phenylacetate, phenylpropionate,

hydroxybenzoate,

hydroxyphenylacetate,

hydroxyphenylpropionate

3,4-dihydroxyphenylpropionat and

D-lactate

Clostridium difficile, Faecalibacterium

prausnitzii, Bifidobacterium,

Subdoligranulum, Lactobacillus

Related to hypertension and obesity,

colorectal cancer, autism in children in

humans and diabetes in a rat model

Lord and Bralley, 2008; Calvani et al.,

2010; Qiu et al., 2010; Zhao et al.,

2010; Zheng et al., 2011; Nicholson

et al., 2012

Vitamins: vitamin B9, vitamin B2,

vitamin B12, niacin, pyridoxine,

vitamin K, vitamin B1, vitamin B5,

vitamin B8

Bifidobacterium bifidum,

Bifidobacterium longum subsp.

infantis, Bifidobacterium breve, B.

longum subsp. longum

Bifidobacterium adolescentis,

commensal Lactobacilli, Bacillus

subtilis Escherichia coli and

anaerobes, Bacteroidetes,

Fusobacteria, Proteobacteria,

Actinobacteria

Cellular metabolism Deguchi et al., 1985; Noda et al.,

1994; Roth et al., 1996; Bacher et al.,

2000; Perkins and Pero, 2002;

Stanton et al., 2005; Pompei et al.,

2007; Smith et al., 2007; Rossi and

Amaretti, 2010; Magnúúsdóóttir,

et al., 2015

BACTERIAL TRANSFORMED COMPOUNDS

Bile salts: cholate, hyocholate,

deoxycholate, chenodeoxycholate,

α-muricholate, β-muricholate,

ω-muricholate, taurocholate,

glycocholate, taurochenoxycholate,

glycochenodeoxycholate,

taurocholate, tauro–α–muricholate,

tauro–β–muricholate, lithocholate,

ursodeoxycholate, hyodeoxycholate,

glycodeoxylcholate, taurohyocholate,

taurodeoxylcholate

Bacteroides, Clostridium,

Lactobacillus, Bifidobacterium,

Enterobacter, Eubacterium,

Escherichia

Absorption of dietary fats and

lipid-soluble vitamins, facilitate lipid

assimilation, maintain gut barrier

function, regulate triglycerides,

cholesterol and glucose by endocrine

functions and energy homeostasis.

Secondary bile salts linked to colon

cancer.

Lis et al., 1976; Russell and Setchell,

1992; Groh et al., 1993; Ridlon et al.,

2006; Dawson et al., 2009; Suhre

et al., 2010; Nicholson et al., 2012

Polyphenol: Hydroxycinnamic acids

and flavonoids

Lactobacillus, Bifidobacterium Secondary metabolites production Couteau et al., 2001; Clifford, 2004;

Manach et al., 2004; Taverniti and

Guglielmetti, 2012; Amaretti et al.,

2015; Marín et al., 2015; Raimondi

et al., 2015

Lipids: glycerol Bifidobacterium, Roseburia,

Lactobacillus, Klebsiella,

Enterobacter, Citrobacter, Clostridium

Intestinal permeability, glucose

homeostasis, promotion of chronic

systemic inflammation by LPS;

hyperinsulinemia improvement by

conjugated FAs, immune system

enhancement and lipoprotein profiles

alteration.

Holmes et al., 2011; Nicholson et al.,

2012

Amino Acids Colonic bacteria, Clostridium,

Peptostreptococcus anaerobius

ammonia production by deamination,

amines production by

decarboxylation

Moss et al., 1970; Clinton et al., 1988;

Macfarlane and Macfarlane, 1995
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synthesis (Scheppach, 1994; Wong et al., 2006). In fact, substrates
that can decrease the acetate/propionate ratio may diminish
serum lipids and consequently decrease the risk of cardiovascular
disease (Wong et al., 2006). Butyrate represents the major energy
source for colonocytes and has been studied for its role in
nourishing the colonic mucosa and preventing colon cancer by
promoting cell differentiation, cell-cycle arrest and apoptosis
of transformed colonocytes (Scheppach, 1994; Velázquez et al.,
1997; Walton et al., 2013).

Furthermore, butyrate improves insulin sensitivity and raises
energy consumption in obese mice submitted to dietary regimen
(Gao et al., 2009), and butyrate irrigation (enema) improves
inflammation in diversion colitis (Scheppach et al., 1992; Wong
et al., 2006). Butyrate and propionate, but not acetate, induce
the production of gut hormones and reduce food intake (Lin
et al., 2012). The treatment with acetate induces a marked
reduction in lipid accumulation in the adipose tissue, protects
against accumulation of fat in the liver, and improves glucose
tolerance (Yamashita et al., 2007). In obese subjects, propionate
significantly increases the release of post-prandial plasma peptide
YY and glucagon-like peptide-1 from colonic cells, and reduces
energy intake (Chambers et al., 2015). Chambers et al. (2015)
found that inulin-propionate ester administrated to overweight
adults significantly reduced weight gain, intra-abdominal adipose
tissue distribution, and intrahepatocellular lipid content, and
improved insulin resistance in the inulin control group.

Furthermore, other clinical studies demonstrated that the
administration of SCFAs has a positive effect on the treatment
of ulcerative colitis, Crohn’s disease, and antibiotic-associated
diarrhea and obesity, metabolic syndrome, bowel disorders, and
cancer (Harig et al., 1989; Sabatino et al., 2005; Binder, 2010;
Donohoe et al., 2011; Fukuda et al., 2011; Chambers et al.,
2015). The degradation of proteins and amino acids by gut
microbes also forms small amounts of branched chain FAs (iso-
butyrate, valerate and iso-valerate) (Macfarlane and Gibson,
2004). SCFAs can be detected by using both the GC-MS and
1H-NMR spectroscopy techniques.

Organic Acids
Several organic acids result from bacterial metabolism of dietary
polyphenols or unassimilated AAs or carbohydrates (Lord
and Bralley, 2008). High levels of organic acids in urines are
associated with microbial overgrowth (Lord and Bralley, 2008).
In particular, the hyperproduction of organic acids is associated
with the overgrowth of Clostridium difficile, Faecalibacterium
prausnitzii, Bifidobacterium spp., Subdoligranulum spp.,
Lactobacillus (Lord and Bralley, 2008; Nicholson et al., 2012).

Amongst organic acids, urinary hippuric acid may be a
biomarker of hypertension and obesity in humans, while
urinary 4-hydroxyphenylacetate and phenylacetate are potential
biomarkers of colorectal cancer (Nicholson et al., 2012).

Lactic acid is the main product in the lactic acid bacteria
(LAB) fermentation process. LAB are Gram+ and constitute a
heterogeneous group of microorganisms that can also produce
proteinaceous antimicrobial molecules, known as bacteriocins,
that can help the producer microorganism to outcompete other
bacterial species (Alvarez-Sieiro et al., 2016). Moreover, lactic

acid represents a secondary metabolite that can be converted by
clostridial cluster XIVa species into butyrate, or by clostridial
cluster IX into propionate (Louis et al., 2007), thus inducing
benefits by inhibiting both the propagation of harmful bacteria,
and the production of putrefactive intestinal products. Lactic acid
also participates in the intestinal peristalsis regulation (Sugawara
et al., 2016). Furthermore, lactic acid is correlated to healthy
vaginal microbiota, in fact it decreases in bacterial vaginosis, and
it’s produced by microbial species such as Lactobacillus crispatus
and Lactobacillus jensenii (Vitali et al., 2007, 2015; Cruciani
et al., 2015; Srinivasan et al., 2015). The detection of organic
acids is most commonly obtained using LC-MS and 1H-NMR
spectroscopy platforms.

Vitamins
Vitamins are indispensable micronutrients, essential for
biochemical reactions in all organisms. Humans are unable
to synthesize most vitamins, hence, most of them need to
be obtained exogenously, and some are produced by the gut
microbiota (Stanton et al., 2005; Rossi and Amaretti, 2010).

Recently, Magnúsdóttir et al. (2015), using the PubSEED
platform, assessed the genomes of 256 human gut bacteria
involved in the biosynthesis of eight B-vitamins: biotin, folate,
cobalamin, niacin, pantothenate, riboflavin, pyridoxine and
thiamin. In particular, the authors demonstrated that each of the
reported vitamins was produced by 40–65% of the 256 human gut
microbes (Magnúsdóttir et al., 2015). Moreover, the absorption of
some vitamins occurs in the small intestine after conjugation of
vitamins with molecules (intrinsic factors) which are produced in
the stomach. Since some vitamins are synthetized by the colonic
microbiota, they are not adsorbed by the colon but are excreted
in feces (Wilson, 2005).

Bifidobacteria strains have been recognized to be the strongest
vitamin producers (Deguchi et al., 1985; Noda et al., 1994;
Pompei et al., 2007), and in particular Bifidobacteria and
Lactobacilli have been proposed as possible folate producers
(Pompei et al., 2007; Kleerebezem and Vaughan, 2009). Folate
(vitamin B9) is involved in various essential metabolic functions,
such as DNA replication, repair and methylation, and synthesis
of nucleotides, vitamins and certain AAs (LeBlanc et al., 2013).
Folate is contained in leaf vegetables, cereals and liver.

The biosynthesis of thiamin (vitamin B1) consists of two
pathways that unite in the final step of thiamin monophosphate
production. Although thiamin diphosphate is the functional
version of thiamin, all phyla (in particular Bacteroidetes and
Fusobacteria), except Firmicutes are producers of thiamin
monophosphate (Magnúsdóttir et al., 2015). Vitamin B1 is
contained in pork meat, oatmeal, brown rice, vegetables,
potatoes, liver, and eggs.

Biotin (vitamin B8) can be synthesized de novo from
two pimeloyl precursors, namely malonyl-ACP and pimelate.
Fusobacteria, Bacteroidetes and Proteobacteria synthetize biotin
by different biochemical pathways, while Actinobacteria genomes
lack the essential role of biotin biosynthesis (Magnúsdóttir et al.,
2015). Vitamin B8 is contained in raw egg yolk, liver, peanuts and
green leafy vegetables.
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Riboflavin (vitamin B2) plays an essential role in cellular
metabolism, being the precursor of the coenzymes flavin
mononucleotide (FMN) and flavin adenine dinucleotide (FAD)
(Li et al., 2014). Microbial riboflavin biosynthesis has been
extensively described in Bacillus subtilis (Perkins and Pero, 2002)
and Escherichia coli (Bacher et al., 1996, 2000). Vitamin B2 is
contained in dairy products, bananas, popcorn, green beans and
asparagus.

Cobalamin (vitamin B12) is the only vitamin that is exclusively
produced by microorganisms, particularly by anaerobes (Roth
et al., 1996; Martens et al., 2002; Smith et al., 2007).

Besides, the production of niacin and pyridoxine appears to be
generated by Lactobacilli used in yogurt, cheese, and fermented
foods (Shahani and Chandan, 1979; Alm, 1982).

Pantothenate (vitamin B5) is a coenzyme A (CoA) precursor
and it can be synthesized de novo from 2-dihydropantoate and b-
alanine. Bacteroidetes and several species of Proteobacteria and
Actinobacteria have been demonstrated to be CoA producers
(Magnúsdóttir et al., 2015). This vitamin is also contained in
meat, broccoli, avocado. Detection of this vitamin is mostly
obtained using LC-MS and 1H-NMR spectroscopy platforms.

Furthermore, Vitamin K operates as a co-factor for the
enzymatic conversion of specific protein glutamyl to γ-
carboxyglutamyl residues. The daily requirement of vitamin
K is satisfied by dietary intake of phylloquinone and by the
production of polyisoprenyl-containing compounds synthesized
by the human gut microbiota (Suttie, 1995; Davidson et al., 1998;
Martens et al., 2002). Green leafy vegetables such as spinach, egg
yolks, and liver contain vitamin K.

Bacterial-Transformed Compounds
Bile Salts
The metabolism of bile salts is a well-known and basic skill of the
gut microbiota metabolism, particularly associated to the genera
of Bacteroides, Clostridium, Lactobacillus, Bifidobacterium,
Enterobacter, Eubacterium, and Escherichia (Ridlon et al., 2006;
Nicholson et al., 2012). Bacteria also contribute to the recovery
of bile salts escaping from active transport in the distal ileum
(Begley et al., 2006). The gut microbiota chemically modifies
bile acids through a wide range of reactions, resulting in the
formation of secondary and tertiary bile acids (Bortolini et al.,
1997). Bile salts contribute to the absorption of dietary fats and
lipid-soluble vitamins, facilitate lipid assimilation, maintain
gut barrier function and regulate triglycerides, cholesterol and
glucose by endocrine functions and energy homeostasis (Groh
et al., 1993; Ridlon et al., 2006; Dawson et al., 2009).

However, bacterial bile salt hydrolysis has recently been
considered as a risk factor for the development of colon cancer
because it causes the formation of harmful secondary bile salts
after an initial deconjugation step (De Boever et al., 2000). The
secondary free bile acids can diffuse through the lipid bilayer
of the membrane, thus being much more inhibitory for the
cells than the conjugated forms (Mayo and van Sinderen, 2010).
De Boever et al. (2000) have speculated a plausible mechanism
for the protective properties of probiotic Lactobacillus reuteri,
which could precipitate the deconjugated bile salts by a physical
binding, making the harmful bile salts less bioavailable. Bile

salts have antimicrobial activity on gut microbes with inhibitory
effects on Bacteroidetes and Actinobacteria microbial population
(Islam et al., 2011), but high levels of these biomarkers in serum
and urine are correlated with liver diseases (Bathena et al., 2015).
The LC-MS and 1H-NMR spectroscopy platforms are the main
techniques used to detect bile acids.

Polyphenols
Polyphenols are considerably bioactive components in the diet
(Manach et al., 2004). Hydroxycinnamic acids and flavonoids are
the two major classes of polyphenols. Fruits commonly contain
caffeic acid, representing the most abundant hydroxycinnamic
acid (Clifford, 2004). In particular, the chemically derived
chlorogenic acid is commonly present in apples, berries and
kiwifruit, in vegetables such as potatoes (Manach et al., 2004) and,
in high concentrations, in coffee (Clifford, 2004).

Recent studies have demonstrated that gut bacteria, including
strains of Lactobacillus and Bifidobacterium, can metabolize
chlorogenic acid to form caffeic acid and quinic acid (Couteau
et al., 2001; Taverniti and Guglielmetti, 2012; Amaretti et al.,
2015; Marín et al., 2015; Raimondi et al., 2015), while caffeic
acid is further metabolized to form the µ-coumaric acid
(3-hydroxycinnamic acid), 3-hydroxylphenylacetic acid and
dihydroxyphenylpropionic acid (Konishi and Kobayashi, 2004).
The 3,4- dihydroxyphenylacetic acid also derives from the
colonic catabolism of rutin (Jaganath et al., 2009). Conversely,
phenolic acid metabolites of rutin are not produced in germ-free
mice, implying that ring-fission products are generated only by
intestinal bacteria (Selma et al., 2009; Parkar et al., 2013). The
polyphenol detection is performed using LC-MS, GC-MS, and
1H-NMR spectroscopy platforms.

Lipids
Significant amounts of glycerol derive from daily dietary
intake and/or from in situ microbial production, or from
enterocyte desquamation. Some gut bacteria may anaerobically
reduce glycerol to 1,3-propanediol, with the production of
the intermediate 3-hydroxypropanal. The accumulation of this
metabolite leads to the formation of reuterin, which is known
for its antimicrobial properties (De Weirdt et al., 2010). Lipids
are also involved in intestinal permeability, in the regulation
of glucose homeostasis via intestine-brain-liver-neural axis, in
the promotion of chronic systemic inflammation by LPS, in
the improvement of hyperinsulinemia by conjugated fatty acids
(FAs), in the enhancement of the immune system, and in the
alteration of lipoprotein profiles. Bifidobacterium, Roseburia,
Lactobacillus, Klebsiella, Enterobacter, Citrobacter, Clostridium
genera have been recognized as the main actors in lipid
metabolism (Nicholson et al., 2012). The platform constituted of
LC-MS, GC-MS, and 1H-NMR spectroscopy is mainly used to
perform lipid detection.

Amino Acids
The bacterial fermentation of proteins, occurring in the distal
colon, leads to AAs fermentation products having some relevance
for health (Macfarlane and Macfarlane, 1995). For instance,
AAs deamination produces ammonia, whereas decarboxylation
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produces amines, which may have toxicological effects (Silla
Santos, 1996). High ammonia concentrations have been found
to act as tumor promoters (Clinton et al., 1988). Bacterial
degradation of AAs cysteine and methionine leads to the
formation of H2S, which is toxic and has also been reported to
be responsible for inhibition of butyrate oxidation in colonocytes
(Roediger et al., 1993). Furthermore, the anaerobic fermentation
of the aromatic AAs tyrosine and tryptophan by colonic
bacteria produces phenols and indoles respectively, which are
eventually excreted in the urine (Macfarlane and Macfarlane,
1997). Phenols, such as p-cresol, have been proposed to act as
procarcinogens in colon cancer (Bone et al., 1976). Interestingly,
gut bacterial production of p-cresol is significantly related to
autism (Clayton, 2012; De Angelis et al., 2013), and C. difficile
appears to be a significant p-cresol producer (Sivsammye and
Sims, 1990).

Finally, certain species of Clostridium (Moss et al., 1970) and
Peptostreptococcus anaerobius (Lambert and Moss, 1980) can
convert phenylalanine to benzoic acid in a multistep process
with phenylpropionic acid (toxic metabolic product) acting
as intermediate (Macfarlane and Macfarlane, 1997; Smith and
Macfarlane, 1997). The AAs are mainly detected using LC-
MS and 1H-NMR spectroscopy techniques, and also using
FT-ICR-MS.

BIOLOGICAL ACTION OF THE GUT
MICROBIOTA IN HEALTHY AND DISEASED
SUBJECTS

In recent years, growing attention has been targeted to the role
of the gut microbiota in the pathogenesis of gastrointestinal
(GI) diseases (Lozupone et al., 2012). The alteration of the
interplay between host and microbes at the gut level stimulates
perturbation of the homeostasis and leads to the development of
disorders.

The microbial ecosystem undergoes changes when the
equilibrium is broken, which leads to the modification of the
bacterial metabolic activity, and/or to transfers in the distribution
of local bacterial communities. In fact, the phylotype complexity
regulates the equilibrium between pathogenic and commensal
taxa at the GI interface (Prakash et al., 2011).

The intestinal gut dysbiosis is associated with a plethora
of children and adult diseases, including genetic (i.e., cystic
fibrosis [CF]), inflammatory (i.e., inflammatory bowel
diseases and syndrome [IBDs, IBS], Chron’s [CD], ulcerative
colitis [UC], and celiac disease), metabolic (i.e., diabetes,
obesity and non-alcoholic fatty liver disease [NAFLD]), and
allergic (i.e., atopic dermatitis, food allergies) disorders (Del
Chierico et al., 2012), and neuropathologies (i.e., autism)
(Figure 2).

Indeed, metabolomics is an approach allowing to perform a
careful diagnosis of diseases, since metabolite profiles have a high
resolution power, which enable to separate the groups based on
microbial community profiles (Dicksved et al., 2008). Moreover,
metabolites represent the terminal enzymatic process signature
occurring in the gut, and the molecules within the pathways

range allow to distinguish healthy from diseased subjects, as well
as among disease phenotypes (Jansson et al., 2009; Table 3).

Inflammatory Bowel Disease/Inflammatory
Bowel Syndrome (IBD/IBS)
As concerns inflammatory diseases at GI tract, it is well known
that the microbiota results to be abnormal both in IBD and
IBS, showing decreased levels of Actinobacteria and Firmicutes,
and high levels of Proteobacteria compared to healthy subjects
(Kinross et al., 2011; Carroll et al., 2012; Mukhopadhya et al.,
2012; De Preter et al., 2013).

Irregular microbial fermentation leads to a high production
of hydrogen (in IBS), indole, phenols and others (Kumar et al.,
2010). In fact, bacteria release volatile organic compounds
(VOCs), determined by SPME-GC-MS, as by-products of
metabolism. Hence, the rising acceptance of the gut microbiota
involvement in the pathogenesis of IBD has led to the use of fecal
matrix as a sample to determine metabolite profiling (Walton
et al., 2013). Indeed, specific microbial VOCs profiles can provide
specific biomarker candidates for diagnostic purposes (Schöller
et al., 1997; Lechner and Rieder, 2007; Bunge et al., 2008).

Walton et al. (2013) observed differences among patient
categories (IBD, UC, and CD) based on compounds detected in
fecal samples, such as SCFAs and their corresponding alcohols,
esters, and molecules, such as indoles and phenols, acetone and
sulfur compounds.

The concentrations of propanoic and butanoic acids, revealed
by using GC-MS, represent a source of energy affecting colonic
mucosal growth, and these concentrations were found to be
higher in CD subjects, compared to healthy controls (Best and
Laposata, 2003), while acids such as oleic, stearic, palmitic,
linoleic and arachidonic were higher in the ileum of CD patients
(Jansson et al., 2009). Ahmed et al. observed an increase of
esters in diarrhea predominant IBS patients using the SPME-GC-
MS technique (Ahmed et al., 2013). On the other side, Walton
et al. (2013) detected high levels of indole, phenol and p-cresol,
generally considered to be toxic for the gut, in CD andUC groups
compared to controls.

Moreover, Jansson et al. (2009), using FT-ICR-MS, detected
several masses related to metabolites within the tyrosine
metabolic pathway, which differentiated CD from healthy
controls. In particular, dopaquinone (a dopa oxidation product
and intermediate in the melanin formation from tyrosine)
was significantly elevated in CD patients compared to healthy
subjects. The authors also indicated that tryptophan and
phenyalanine were related to the ileum CD phenotype. It was
also observed, using 1H-NMR spectroscopy, that AAs in CD
patients with active disease showed a different profile (i.e.,
alanine, isoleucine, leucine, and lysine) compared to CD patients
in remission (Marchesi et al., 2007). Furthermore, metabolites
related to bile acids pathways (i.e., glycocholate) were found in
CD patients in remission (Jansson et al., 2009).

Other studies (Marchesi et al., 2007; Bjerrum et al., 2015;
De Preter, 2015; De Preter et al., 2015) using 1H-NMR and
GC-MS showed a depletion of bacterial products, such as
SCFAs, branched chain FAs, dimethylamine and trimethylamine,
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and high levels of AAs, suggesting a breakdown of the
normal bacterial ecology that induces dysbiosis, as a cause
or a consequence of the disease in IBD. Le Gall et al.
(2011), using Denaturing Gradient Gel Electrophoresis (DGGE),
discriminated UC patients from controls, and also found a
correlation between the gut microbiota composition and the
metabolite composition (high levels of cadaverine and taurine).
Besides, UC patients with high levels of AAs showed low fecal
concentrations of Faecalibacterium prausnitzii and therefore a
small amount of butyric acid, since this bacteria is an SCFA
producer (De Preter et al., 2015).

The correction of somemicrobial fermentations by antibiotics
or diet could improve symptoms and abnormal fermentation,
which, in some IBS cases, is believed to underlie food intolerances
(Nanda et al., 1989). Furthermore, using NMR spectroscopy
analysis of urine, it is possible to discriminate IBD patients from
controls based on metabolite content of hippurate (Stephens
et al., 2013). The levels of hippurate were found to be
lower in IBD patients compared to controls, suggesting that
hippurate is a biomarker of IBD. In particular, hippurate or N-
benzoylglycine is a mammalian-microbial co-metabolite deriving
from the microbial fermentation of dietary aromatic compounds
(polyphenols, purines, or aromatic AAs) to benzoic acid, further
conjugated to glycine in the liver (Williams et al., 2010).

Obesity
There is evidence that obese and healthy children (HC) show
a different gut microbiota profile. Several mechanisms are
involved in the energy metabolism regulation and represent
the link between the gut microbiota and the metabolic disease
pathophysiology, such as energy harvesting from the diet, fat
storage regulation, and energy homeostasis of peptide synthesis
(Cani and Delzenne, 2009; Krajmalnik-Brown et al., 2012).

In a study on mouse models, Zhang et al. (2011), using
LC-ESI-Q-TOF/NMR, found in urine increased excretion of
hippurate, 4-hydroxylphenylacetic acid and phenylacetylglycine,
and decreased excretion of acetate and lactate, related to body
weight gain and to an alteration of gut microbial changes
(Veselkov et al., 2009). Moreover, Paul et al. (2016) identified,
with the support of 1H-NMR metabolomics, a maternal
metabolic signature that may be related to programming
offspring obesity risk in rats. In particular, pregnant rats showed
high levels of circulating ketone bodies and free FA (FFA),
especially associated with gestational diabetes (Catalano, 2010).
The branched chains AA (BCAA) have also found to be related to
increased insulin resistance (Scholtens et al., 2014). In humans,
FFA are transferred through the placenta from mother to child
and are used for lipogenesis. FFA, together with the circulating
ketons, may play an important role in the early deposition
of excess of body fats in offspring. The production of these
molecules in serum metabolome is normalized when it is
associated to diet enriched with oligrofructosaccharides (FOS)
and to gut microbiota modulation (Paul et al., 2016). Respondek
et al. (2013) studied the effects of FOS on the composition of
the fecal microbiota and the metabolic parameters in animal
models of diet-induced obesity (Respondek et al., 2013). The
authors firstly found that the strains particularly stimulated

by FOS were Clostridium coccoides, Ruminococcus torques, and
Dorea longicatena, and the fecal metabolites modulated by
the supplementation, analyzed by using LC-ESI-TOF-MS, were
primary bile acids (i.e., cholic and chenodeoxycholic acid) and
secondary bile acids (i.e., lithocholic acid).

Cystic Fibrosis (CF)
Regarding CF disease, the majority of studies on the microbiota
metabolome concern lung and the upper airways. It was observed
that in CF the production of isoprene is associated to either
Gram+ and Gram- species (Kuzma et al., 1995), while the
production of hydrogen cyanide is prevalently associated to
Pseudomonas aeruginosa, (Carterson et al., 2004; Cody et al.,
2009). Robroeks et al. (2010) analyzed exhaled breath samples
by GC-TOF-MS, and they managed to discriminate between
CF and healthy controls, mainly based on the presence of C5–
C16 hydrocarbons and N-methyl-2-methylpropylamine. Barker
et al. (2006) reported a significantly lower level of dimethyl
sulfide (probably associated to microbial metabolism), detected
by GC-MS in CF patients compared to controls. On the other
side, Montuschi et al. (2012), using 1H-NMR forexhaled breath
condensate (EBC) analysis, detected significantly higher values
of ethanol, acetate, 2-propanol and acetone in CF patients, which
differentiated them from controls, whereas acetate, ethanol, 2-
propanol and methanol were found to be relevant metabolites
for distinguishing between patients with stable CF and patients
with unstable CF. Moreover, 2-Propanol, which represents an
enzyme-mediated product of acetone reduction, was detected in
a breath sample of CF colonized by P. aeruginosa (Wang et al.,
2006). The high level of ethanol in EBC samples of CF, detected
byMS basedmetabolomics, could also be related to the decreased
capacity of P. aeruginosa to oxidize ethanol to acetate (Wang
et al., 2006). On the contrary, elevated acetate concentrations in
healthy subjects may reflect resident bacteria in the oral cavity,
such as Streptococcus mutans, debasing pyruvate into metabolic
end products, such as acetate and lactate (Korithoski et al., 2008).

Non-alcoholic Fatty Liver Disease (NAFLD)
Several VOCs, including ethanol, seem to be produced by colonic
bacteria and may have toxic effects on the host after intestinal
absorption and delivery to the liver via the portal vein (Raman
et al., 2013). Moreover, Raman et al. (2013), using SPME-GC-MS,
identified esters (i.e., ethyl propanoate, butyl butanoate, methyl
pentanoate, methyl acetate) in fecal samples of obese NAFLD
patients more frequently than in healthy controls.

The bacterial production of SCFAs and ethanol by several
gut microbes is well known, but very little is known about
bacteria and biochemical pathways that may be involved in
ester production in the intestinal microbiota, even though most
of the esters linked to NAFLD are derivatives of short chain
aliphatic alcohols and carboxylic acids (Raman et al., 2013).
Also Del Chierico et al. (2016) evaluated the gut microbiota
profiling of NAFLD and obese patients. The authors evidenced,
with the support of multivariate analysis, that OTUs such as
Oscillospira, Ricknellaceae, Parabacteroides, Bacteroides fragilis,
Sutterella, and Lachnospiraceae, and metabolites such as 4-
Methyl-2-pentanone, 1-butanol and 2-butanone (detected with

Frontiers in Microbiology | www.frontiersin.org 13 July 2016 | Volume 7 | Article 1144

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Vernocchi et al. Gut Microbiota Metabolome

SPME-GC-MS), discriminated NAFLD from healthy subjects
(Del Chierico et al., 2016).

Celiac Disease
As regards studies on celiac disease, it was clearly shown that
metabolic differences between controls and celiac patients exist
(Calabrò et al., 2014).

The main differences detected coupling MS-and NMR- based
metabolomics approaches in celiac patients compared to controls
were lower levels of several AAs, as asparagine, isoleucine,
methionine, proline, and valine, and also methylamine, pyruvate,
creatinine, choline, methyl glutarate, lactate, lipids, and
glycoproteins, and higher levels of glucose and 3-hydroxybutyric
acid in serum and acetoacetate in the urine of celiac patients
(Calabrò et al., 2014). The same authors also found higher levels
of some metabolites related to the gut microbiota in the urine,
such as: indoxyl sulfate, meta-[hydroxyphenyl] propionic acid
(m-HPPA), and phenylacetylglycine. In fact, M-HPPA in urine
mostly originates from the gut microbiota, being one of the
many products of the microbial mediated breakdown of plant
phenolic compounds, such as caffeic acid and its conjugate
chlorogenic acids (Phipps et al., 1998). Besides, Di Cagno et al.
(2011) analyzed, using SPME-GC-MS and 1H-NMR, VOCs,
and AAs of fecal and urine samples of treated (gluten free diet)
celiac children. The samples showed higher levels of free AAs
(proline, methionine, histidine, and tryptophan) and lower levels
of SCFAs, as butyric, isocaproic, and propanoic acids compared
to controls. In this study, it was also found that the levels of some
alcohols, such as 1-octen-3-ol, ethanol and 1-propanol were
higher in treated celiac children compared to controls and it was
hypothesized that when alcohol production is correlated with
intestinal bacteria synthesis this may also induce endotoxemia
(Cani et al., 2008).

In another study, saliva samples have been analyzed, using
SPME-GC-MS, revealing high levels of non-anal, 4-methyl-2-
hexanone, and ethyl-acetate in treated celiac children (Francavilla
et al., 2014). These findings suggest the presence of microbial
metabolic activities at the oral cavity level (by Firmicutes,
Actinobacteria and Bacteroidetes) that may also affect the
synthesis of VOCs (Kusano et al., 2013).

Food Allergies
Finally, the gut microbiota is believed to be associated with
food allergies. In particular, the prevalence of atopic diseases,
including eczema and asthma, suggests that the modulation of
the immune response mechanisms in the gut can directly affect
the development of allergic diseases and the development of
tolerance (Watanabe et al., 2003; Penders et al., 2007). Moreover,
the advent of dysbiosis during the early post-natal period may
further pre-dispose individuals to later inflammatory, immune,
and allergic disorders (Francavilla et al., 2012).

However, there is still little scientific evidence on the relation
between the gut microbiota metabolome and food allergy. A
study by Francavilla et al. (2012) describing the metabolome
of infants with cow’s milk allergy, was conducted using the
combinate of SPME-GC-MS and 1H-NMR techniques on a
group of children fed with hydrolyzed formula with no lactose

(CMA-NL), and a group of children fed with lactose-containing
(CMA-L) formula compared with controls. The authors found
that the addition of lactose to the formula resulted in a significant
increase of Bifidobacteria and LAB counts, and a decrease
of Bacteroides/Clostridia. Consequently, the levels of SCFAs
increased, especially for acetic and butyric acids, in controls and
CMA-L compared to CMA-NL infants. The same trend was
found for lactic acid and threonine.

Neuropathology
The composition of the intestinal microbiota plays a key role
in neuro-gastroenterology, which deals with the interactions
between the central nervous system and the gut (gut–brain axis).
Numerous neuropathological diseases, such as autism spectrum
disorder (ASD), are probably associated with the gut microbiota
and thus the possibility to influence this connection is alluring
(Holmes et al., 2011), even if to date there are still few studies
investigating this field. De Angelis et al. (2013) used SPME-
GC-MS and 1H-NMR to study the fecal microbiota and the
metabolome of children with Pervasive Developmental Disorder
Not Otherwise Specified (PDD-NOS), and children with ASD
compared to healthy controls. The authors found an altered
composition of the microbiota and VOCs, which were partially
different between children with PDD-NOS and ASD. The main
biological significance of this work was related to the increased
levels of Clostridum in PDD-NOS and ASD and the decreased
levels of some health promoting bacteria (i.e., Bifidobacterium)
and metabolites, such as free AA and SCFAs in PDD-NOS,
in ASD children compared to controls (De Angelis et al.,
2013). Furthermore, Kidd (2002) found that subjects with ASD
together with their non-ASD siblings, presented with a deep
alteration in the tryptophan–nicotinic acid and sulfur metabolic
pathways (Kidd, 2002; Oresic et al., 2008). Important metabolic
phenotype differences were observed between ASD and controls
with perturbations in the relative patterns of urinary metabolites
related to the gut microbiota (Kidd, 2002).

Hsiao et al. (2013) used GC- and LC-MS platforms to
study the oral treatment with human commensal Bacteroides
fragilis (that corrects gut permeability) to modulate the microbial
composition and the related defects in communicative behaviors
in mouse models with maternal immune activation (MIA),
showing GI barrier defects and microbiota alterations in
displaying features of ASD. The authors detected the presence of
indolepyruvate 4-ethylphenylsulfate and p-cresol in mice serum
metabolome, presumably deriving from microbial metabolism.
Furthermore, since B. fragilis improves intestinal health, it
could also have a role in regulating intestinal permeability and
metabolic homeostasis (Nicholson et al., 2012).

CONCLUSIONS AND PERSPECTIVE

The challenge of systems medicine is to interpret the body
structure as a whole system and not as a sum of single
parts (Moco et al., 2013). To pursue this aim, the wide
range of top-down systems biology analyses should be used to
interpret the metabolic interactions between the host and its gut
microbiota, and to comprehend how these interactions affect
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the physiological and pathological conditions. Furthermore, the
combination of these techniques with genome analysis may lead
to a holistic view of the metabolic pathways, which can also be
backed up using mathematical models and statistical assessment
of data. In fact, by managing data it is possible to achieve a higher
level of biological understanding. Therefore, novel algorithms
and statistical analysis need to be improved to integrate the
“omics” data, and a stochastic model of metabolic networks needs
to be introduced to lead to a novel knowledge of co-regulation in
biochemical networks.

The metabolomics approach may identify physiological and
clinical biomarkers that are not obtainable using targeted
methods (Weckwerth and Morgenthal, 2005).

In conclusion, the generation of new gut microbiota
biomarkers will offer the chance to associate complex metabolic
pathways with the etiology of different diseases, in order
to evaluate the causal relationship between metabolites and
pathogenesis. Moreover, these novel biomarkers could lead to the

development of mechanistic hypotheses that could be targeted to
the development of nutritional and personalized therapy tools in
early disease prediction in asymptomatic conditions, and enable
a more accurate prognosis of the disease progress.
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