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Mapping disease transmission risk is crucial in public and animal health for evidence
based decision-making. Ecology and epidemiology are highly related disciplines
that may contribute to improvements in mapping disease, which can be used to
answer health related questions. Ecological niche modeling is increasingly used for
understanding the biogeography of diseases in plants, animals, and humans. However,
epidemiological applications of niche modeling approaches for disease mapping can fail
to generate robust study designs, producing incomplete or incorrect inferences. This
manuscript is an overview of the history and conceptual bases behind ecological niche
modeling, specifically as applied to epidemiology and public health; it does not pretend
to be an exhaustive and detailed description of ecological niche modeling literature and
methods. Instead, this review includes selected state-of-the-science approaches and
tools, providing a short guide to designing studies incorporating information on the type
and quality of the input data (i.e., occurrences and environmental variables), identification
and justification of the extent of the study area, and encourages users to explore and test
diverse algorithms for more informed conclusions. We provide a friendly introduction to
the field of disease biogeography presenting an updated guide for researchers looking
to use ecological niche modeling for disease mapping. We anticipate that ecological
niche modeling will soon be a critical tool for epidemiologists aiming to map disease
transmission risk, forecast disease distribution under climate change scenarios, and
identify landscape factors triggering outbreaks.
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INTRODUCTION

Human history has been shaped by information captured in maps. Concepts such as disease
occurrence, epidemics, and outbreaks implicitly have a geographic context. In fact, early stages
of epidemiology attempted to understand disease occurrence linking disease cases (e.g., human
cholera) with environmental features (e.g., a street pump) in a spatial perspective (Koch and
Denike, 2009). Understanding and anticipating the “where” of an outbreak may be a valuable tool
for effective public health interventions (Frieden, 2013) as well as for animal health. Thus, disease
mapping is key in understanding and anticipating disease occurrence and generating visual tools
for decision makers.
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Ecology has been proposed as an additional discipline to
assist the understanding of why a disease is present in a specific
place, but is absent in another (Peterson, 2008). Epidemiology
and ecology share goals: the World Health Organization [WHO]
(2015) defines epidemiology as “. . .the study of the distribution
and determinants of health-related states or events. . .” while Krebs
(1972) defines ecology as the study of the distribution and
abundance of species. Terminology for ecology and epidemiology
is similar as both disciplines attempt to study and understand the
distribution of organisms and their abundance. Such organisms
may include plants, animals, or even parasites (i.e., pathogenic
or not). At this point, both fields can complement each other;
ecology for example has grown through analytical methods and
conceptual bases, on the other hand epidemiology has developed
an impressive data compilation (Anderson, 1991). Unfortunately,
both fields usually work in isolation (Manlove et al., 2016).

Disease biogeography is an emerging field aiming to study the
geography of diseases including pathogens, vectors, reservoirs,
and susceptible hosts. Disease biogeography links ecology and
epidemiology by applying analytical tools from distributional
ecology for the study of epidemics. In modern ecology the
concept of “niche” is key, thus, we cannot talk about disease
biogeography without talking about the ecological niches of a
pathogen. This review was inspired by two key publications
in disease biogeography: “Natural nidality of transmissible
diseases, with special reference to the landscape epidemiology
of zooanthroponoses” by the Russian Academician Pavlovsky
(1966) and “Biogeography of diseases: A framework for analysis”
by the American Professor Peterson (2008). These pioneers
clearly define ideas, terms, and examples of the field of
disease biogeography. Pavlovsky and Peterson were the first
in developing the use of the ecological niche approach to the
study of infectious disease systems, using a diversity of diseases
and scenarios to explain why diseases are not distributed at
random and that some environmental factors may explain their
occurrence in time and space at coarse (i.e., fundamental niche)
or local scales (i.e., disease nidus or realized niche). While
Pavlovsky’s contribution was observational in nature, Peterson
developed a conceptual and methodological framework to
develop and interpret quantitative analyses on the biogeography
of diseases. Their work can be seen as a theoretical base for
applied landscape epidemiology and spatial epidemiology. We
aim to provide an overview of current tools and important
steps when mapping diseases using ecological niche modeling
approaches. This review is intended to serve as an introductory
guide for epidemiologists and researchers not familiar with
ecological niche modeling techniques.

DISEASE BIOGEOGRAPHY AS A NEW
PARADIGM IN EPIDEMIOLOGY

Here we will refer to the agents responsible for causing infectious
disease as parasites, including micro- and macro-parasites
(Hatcher and Dunn, 2011). Some of these parasites may not
cause disease in the host (e.g., non-pathogenic strains of Vibrio
cholerae). In addition to the study of parasites, epidemiologists

could be interested also in the vectors and reservoirs (Estrada-
Peña et al., 2014) to understand how the parasites are dispersed
and maintained in the landscape, respectively. Once ecological
features of parasites are defined, their geographic distribution
can be expressed in the form of maps, usually in the form of
disease risk maps (Peterson, 2008). In this review we will explore
the field of ecological niche modeling for understanding disease
distribution and posterior disease mapping.

In the late 20th century, in response to the limited unders-
tanding of disease dynamics from a biological perspective, a
new paradigm was proposed in epidemiology: eco-epidemiology
(Susser and Susser, 1996a). Eco-epidemiology is based on the
need to understand infectious diseases using an ecological
approach to help anticipate disease distribution. Although almost
three decades have passed since this idea was formally proposed,
there are still ambiguities in this approach. While Susser and
Susser (1996b) correctly state that disease systems include a set
of interconnected environmental factors, they did not define
and delimit the eco-epidemiology concept per se, which could
be a cause of the slow adoption of this term more broadly in
epidemiology and ecology (only ∼200 articles in 20 years with
this term were found in PubMed). The initial description of eco-
epidemiology includes the Chinese boxes idea, stating that disease
systems are a set of factors with a coherent hierarchy structure,
thus, alteration in the parasite system may cause disease only
if factors at higher levels of the structure are affected (Susser
and Susser, 1996b). However, from a biological perspective, this
approach seems inaccurate considering that in nature, when
considering parasites in ecosystems, there is not a chain-like
configuration. Instead, parasites in natural communities interact
with several species in the food web, thus, parasite systems appear
as part of an interconnected network of species (Hudson et al.,
2006). This was exemplified by Pavlovsky (1966) who used a series
of examples on the study of infectious diseases including yellow
fever (Flavivirus), plague (Yersinia pestis), tularemia (Francisella
tularensis), and leishmaniasis (Leishmania spp.) to demonstrate
the complexities in the biological interactions of parasite systems.
Later, Peterson (2008) proposed disease biogeography as the
branch of biology related to the geography of infectious diseases;
disease biography aims to identify the factors associated with
disease occurrence allowing us to understand and potentially
predict epidemics.

THE ECOLOGICAL NICHE OF
PARASITES

The Term Niche
Infectious diseases are, by definition, the complex association
between at least two organisms: pathogen and host. Infectious
disease requires the presence of all key actors in a disease
transmission system (e.g., parasite, vector, susceptible host;
Peterson, 2006b). Identifying the environmental factors which
allow the presence of one of these actors in the disease
system elucidates the ecology and geography of a specific
infectious disease (Peterson, 2007). Recognizing patterns of
species distributions and identifying the specific environmental
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requirements of species to persist in the long term has
been extensively studied in ecology with an empirical and
theoretical body that supports the study of distributional
ecology of organisms. However, disease biogeography is just
one component of multifaceted questions in understanding the
ecology of parasite transmission, and has been poorly addressed
in biodiversity research (Peterson et al., 2011).

A disease system may include a pathogen species, a
vector species, and a host, or it may be more complex
including a vast number of competent vectors and host species
in the same locality, sharing the environmental conditions
suitable for them, sharing their ecological niches (Soberón,
2007). Furthermore, the parasites’ ecological niche is linked
to its geographic distribution (Soberón and Nakamura, 2009).
Establishing environmental variables able to track areas of
potential distribution of diseases was proposed in epidemiology
in the mid-20th century, using rudimentary techniques to
correlate parasites with environmental factors. It was found that
diseases do not occur randomly in space; hence the concept
of infectious disease nidality was defined in epidemiology as
the feature of an infectious disease to be constrained under
specific environmental conditions (Pavlovsky, 1966). The words
niche and nidality have the root word nidus which means nest.
The association between the parasite’s suitable environments and
geographic ranges is the base of the ecological niche modeling
field. If the environmental factors suitable for a parasite are
available outside the known range, an epidemic may appear in a
novel (suitable) area. This phenomenon is well known in invasion
biology (Peterson and Vieglais, 2001), while in epidemiology the
invasion by parasites is known as pathogen pollution (Anderson
et al., 2004) but has not been explored quantitatively in detail.

The term “niche” was used in ecology by Grinnell (1917) to
refer to the combination of environmental factors present in a
species’ range; he discussed how these factors may restrict the
distribution of species. Even though the word niche was first used
for a bird, the concept was successfully adopted by ecologists and
is today a key concept in ecology. However, the niche concept
suffered from ambiguity and incorrect use (Godsoe, 2010;
McInerny and Etienne, 2012; Warren, 2012). In fact, the concept
had four main stages before its current definition (Figure 1).
Grinnell (1917) used the term niche to refer to the environmental
factors required by a species for its distribution (Grinnellian
niche; Figure 1). Then years later Charles S. Elton defined niche
as the role of a species in an ecosystem and its interactions with
other species (Eltonian niche; Figure 1). Grinellian and Eltonian
definitions clearly were based on different points of view. G.
Evelyn Hutchinson attempted to reduce the ambiguity of the
niche concept, differentiating it as the fundamental niche and
realized niche (Hutchinsonian niche; Figure 1). The fundamental
niche was proposed as a hypervolume of environmental variables
that allow the species to exist without immigration, while
the realized niche incorporates the idea of the portion of the
fundamental niche actually used by the species due to negative
(e.g., competition) or positive (e.g., facilitation) biological
interactions with other organisms (Bruno et al., 2003). Finally,
Soberón and Peterson (2005) defined the niche concept using
the BAM framework and a body of empirical and theoretical

FIGURE 1 | Historical framework of the ecological niche concept.
(Grinnellian niche) The ecological niche idea originally focused on the abiotic
factors delimiting an organism’s occurrence. Under this scenario, all the
suitable abiotic conditions in the circle are accessible for the parasite.
(Eltonian niche) Ecological niche idea considered the parasite’s role in the
ecosystem and its interaction with other organisms. Under this scenario, the
entire area inside the circle is suitable and accessible for the parasite.
(Hutchinsonian niche) Ecological niche idea considered the abiotic factors
limiting the parasite’s presence (fundamental niche) and the biotic interactions
limiting the parasite’s presence (realized niche). Under this scenario, all the
overlapping area between circles (purple) is abiotically and biotically suitable
and accessible for the parasite. (Soberón and Peterson framework) The
modern ecological niche framework considering the access of the parasite to
abiotic and biotic factors allowing it to survive. Under this scenario, the
overlapping area between circles is abiotically and biotically suitable for the
organism, but due to dispersal limitations it occupies only a portion of
potential suitable areas (black). Blue denotes the abiotic factors (A), red
represents the biotic factors (B), while gray denotes the movement and
dispersal capacity (M) of the organisms to use the suitable areas. Modified
from Peterson et al. (2011).

background explaining this framework. Thus, the current
ecological niche term refers to the environmental conditions
in which a species can maintain populations in the long term
without need of immigration. The species, however, may not
use its entire niche due to biological or dispersal limitations.
According to Soberón and Peterson (2005), a missing component
in previous definitions of niche was the dispersal capability and
movement potential of species to reach suitable areas (BAM
framework of Soberón and Peterson; Figure 1). They suggest
that a species may have a broad fundamental niche, but may be
unable to use it entirely, due to biogeographic limitations (e.g.,
mountains, rivers, oceans acting as barriers). All the different
niche concepts reflect the considerable debate to define the term;
now a clear and delimited definition of a niche is available and
employed in ecological niche modeling (Warren, 2012).

The “BAM” Framework in Disease
Systems
The BAM diagram incorporates the dispersal capacity of parasites
when describing their niches. Dispersal abilities of parasites
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are key to understanding disease distributions. For example,
chikungunya virus (Alphavirus) was absent in the Americas
prior to 2013 due to an ocean functioning as natural barrier
between Asia and the Americas (Van Bortel et al., 2014).
However, global movement of humans allowed dispersal of
chikungunya into South, Central, and North America, as well as
the Caribbean, and resulted in a successful virus invasion. This
invasion demonstrates that the Americas have environmental
conditions falling inside the ecological niche of chikungunya,
but the virus was not previously present in the Americas due to
dispersal limitations. Once dispersal limitations are overcome or
the natural population dynamics change, pandemics may appear
(Pavlovsky, 1966; Hatcher and Dunn, 2011). To understand
which areas have the potential for disease dispersal under an
ecological niche approach, the BAM diagram is a powerful tool
that helps to (i) understand ecological processes, (ii) design
studies, and (iii) interpret experimental, virtual, or field research
(Soberón and Peterson, 2005; Peterson, 2008). Peterson et al.
(2011) discuss in detail the modern use of the ecological niche
concept using examples and mathematical terms. Here we briefly
describe the BAM framework.

“B”
B refers to biotic factors shaping the distribution of the
parasite (i.e., biocenose sensu Pavlovsky, 1966, or binomic
sensu Hutchinson; Soberón, 2007). This is a critical component
in the ecological niche of parasites considering that biotic
interactions between hosts and vectors may promote or limit
parasite occurrence even in environmentally suitable (i.e., A)
and accessible areas (i.e., M). Some biotic factors such as host
nutrition, density, behavior (e.g., cultural practice of kissing dead
bodies that may promote Ebola infections; Woźniak-Kosek et al.,
2015), and co-infections may benefit parasite presence. On the
other hand, some biotic factors may limit parasite occurrence
including host immunity (e.g., acquired immunity to V. cholerae
after an epidemic will reduce cases in the next cholera outbreak;
Koelle et al., 2005) and behavior (e.g., use of protective measures
to avoid sexually transmitted diseases). The biotic component
is critical to understand the ecology of parasite transmission,
and their effects are evident when developing studies at fine
geographic scales.

Pavlovsky (1966) studied the occurrence of parasites using
an ecological niche approach and proposes the concept of
“micronidus.” The micronidus is the term for the biotic factors
indispensable for the parasite’s cycle at a very fine scale; such
factors, however, should not affect estimations of the ecological
niche at coarse scales (Pavlovsky, 1966). The micronidus simply
occupies a specific portion of the parasite’s niche. Peterson et al.
(2011) identify these factors acting at a local scale and also ignore
them when modeling a species’ ecological niche at a coarse scale
with successful predictions. Empirical evidence suggests that the
micronidus may not be key for the parasites’ ecological niche
in general terms (Maher et al., 2010), such as when considering
climate conditions. Assuming that local biological interactions
are meaningless at coarse scales is referred to as the “Eltonian
Noise Hypothesis” (Peterson et al., 2011). The idea behind this
hypothesis is that biotic interactions at the individual level (e.g.,

host immunity) or the microhabitat required by a specific phase
in the parasite cycle (e.g., the humidity in the host burrow
required during the metamorphosis of Phlebotomus vectors)
may play a minor role when estimating the parasites’ niche at
coarse scales. Furthermore, biotic interactions are important only
when studying diseases at very fine spatial scales such as when
studying transmission dynamics within a population (Peterson
et al., 2011). This series of evidence and assumptions supports
the idea of mapping diseases based on climatic variables or other
environmental features.

In fact, when estimating the ecological niche of a generalist
parasite, it is evident that climate conditions are crucial for
parasite establishment and biotic interactions may be ignored at
coarse scales. For instance, plague bacterium occurs in consistent
and measurable climatic conditions; in other words, the
environmental signature allows us to predict plague occurrence
in North American wild mammals with no information about
biological interactions (Maher et al., 2010). For example, Maher
et al. (2010) suggest that, after assessing 72 plague reservoirs,
plague occurs under predictable spatial and environmental
situations, and host species involved in the transmission cycle
are less relevant to maintain the parasite permanence than
climate. Parasites with broad niches (i.e., generalist species)
may maintain disease cycles under diverse environmental
conditions and consequently may affect a broad range of taxa
(e.g., plague, influenza (Influenzavirus A), leptospira (Leptospira
spp.); Pavlovsky, 1966; Tong et al., 2012). Parasites that use
different species of hosts and vectors are termed polyhostal and
polyvectored respectively (Pavlovsky, 1966) and can be modeled
including all the actors in the system or based on disease cases
only (Peterson, 2007).

Biological interactions between species at very fine scales are
complex. In co-infections, two parasite species within a host
may even interact; one parasite may limit the presence of other
parasite species (Pavlovsky, 1966). For example, after in vivo
experiments of multiple inoculations of the parasites Brucella suis
and Coxiella burnetii in guinea pigs, Mika et al. (1959) suggested
that one parasite species may show apparent competition-like
interactions. In such experiments, infected guinea pigs showed
faster recovery or even unapparent infections of C. burnetii
when the B. suis was present, as opposed to those with single
infections —suggesting that the presence of B. suis is protective
for C. burnetii. This mechanism is recognized and used in the
poultry industry through the use of non-pathogenic bacteria
to promote competitive exclusion against pathogenic strains of
Salmonella spp. (Revolledo et al., 2006).

“A”
The A factor on the BAM diagram represents the abiotic
conditions limiting survival of parasite populations in the long
term (i.e., geobiocenose sensu Pavlovsky, 1966, or scenopoetic
sensu Hutchinson; Soberón, 2007). The area of overlap between
the abiotic factors A with biotic factors B denotes which factors
allow for parasite presence (Figure 1). Examples of abiotic
conditions critical for parasite survival may include temperature
and humidity (e.g., bacterial diseases in plants), solar radiation
(e.g., viruses outside the host), and soil chemistry (e.g., fungi).
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Thus, abiotic environmental factors allowing for the occurrence
of parasites in a specific location can be measured at diverse
spatial scales.

“M”
Parasite occurrence may be constrained due to limited dispersal
abilities (e.g., short movements of soft ticks) and biogeographic
barriers (e.g., oceans). This key concept is termed movement
or M in the BAM framework and considers the geographic
accessibility of organisms. Changes in M affect the parasite’s
distribution and can be expressed as limitations of accessibility
(e.g., dengue virus was absent from Pascua Island due to the
isolation of this island, despite the vector being abundant; Perret
et al., 2003) or an increased potential of accessibility (e.g.,
ballast waters increased dispersal of V. cholerae; McCarthy and
Khambaty, 1994).

Identifying the environments suitable for an organism (A) is
feasible at different spatial scales from petri dishes to continental
extents (e.g., V. cholerae; see Huq et al., 1984 and Lobitz et al.,
2000). Characterization of the biotic component (B), allowing
for a parasite presence or absence, is much more complicated
due to temporal-spatial dynamics and complexities of biotic
interactions. In ecological niche models of large taxa (e.g., birds)
the B component is usually neglected, ignoring biotic interactions
in view of the robustness in predicting species occurrence,
and based on the assumption that biological interactions are
indistinguishable at coarse scales (Peterson et al., 2011). For
parasites, however, their strong dependence on other organisms
(i.e., the host) makes considering biotic interactions important
in estimating their areas of occurrence. Thus, the more we
understand about the natural history of a disease, the better the
ecological niche estimation and interpretation of model outputs;
however, modeling such complexities could be a challenge.

Parasites occur naturally with animals and plants and have
key roles in ecosystems. The presence of a parasite in a host
does not necessarily represent disease. In fact, there is growing
evidence that parasite diversity is an indicator of ecosystem health
(Hudson et al., 2006). When anthropogenic perturbations alter
parasite cycles or communities, disease outbreaks can appear
(Hatcher and Dunn, 2011). Parasites are usually considered
negative in the context of human populations. In fact, a
considerable amount of literature related to the distribution of
parasites is developed only under disturbed/epidemic events;
therefore limited knowledge exists about parasites in natural
and non-disturbed conditions. Human societies should maintain
pristine areas as reserves, including the greatest variety of biomes
possible, to understand parasite ecology for epidemic prevention
purposes (Pavlovsky, 1966).

FROM DISEASE REPORTS TO DISEASE
MAPS

The environmental space that a parasite is occupying (i.e.,
the existent fundamental niche; Peterson et al., 2011) can be
expressed in terms of geography. By identifying the suitable
environmental conditions for a parasite, we can identify the areas

in which a parasite can maintain populations in the long-term;
this helps to understand the geographic distribution of parasites
(Peterson, 2006b). Due to this link between the niche and the
distribution of species, the terms ecological niche modeling and
species distribution modeling are often used as interchangeable
terms. However, niches are characterized in an environmental
dimension, while geographic distributions are the expression of
the ecological niche in the geography (Warren, 2012).

Current Methods for Disease Mapping
Techniques to show disease distribution include choropleth
maps (i.e., coloration of political/administrative units with colors
according to categories of incidence, prevalence, or risk rates
established a priori) and proportional symbols (i.e., symbols
like circles with sizes classified according to predefined disease
occurrence categories). These methods are data descriptive and
easy to read and interpret, but fail to anticipate the parasite
occurrence in areas where no data are available.

Analytical tools have improved since early disease mapping in
the 19th century (Carpenter, 2011). However, when comparing
John Snow’s historical 1854 cholera map with current disease
mapping based on density analyses with novel tools and software
(e.g., Le Comber et al., 2011), it is evident that mapping
approaches in epidemiology have not substantially improved.
Indeed, epidemiology is dominated by studies using spatial
density of cases, spatial interpolations of reports, and geographic
distances to identify areas of potential disease-transmission risk
(Auchincloss et al., 2012). These epidemiological techniques are
a powerful source of information to show patterns of disease
surveillance and reporting effort; however, they have several
limitations in predicting disease risk. In fact, because spatial
interpolation maps base estimations on available geographic
coordinates solely, they should be considered as surveillance-
effort maps instead of disease-transmission risk maps.

Using maps based solely on spatial interpolation to identify
disease risk could be challenging. Mapping methods using
spatial distances usually base their analyses on straight lines
of geographic or even Euclidean distances (Auchincloss et al.,
2012), which may fail to capture the biological realism of disease
systems. Thus, spatial interpolation and cluster analyses are in
essence data driven and prone to sampling bias effects. Spatial
interpolations may attribute low parasite occurrence to an area
with no data. This type of analysis is thus prone to miss areas of
high disease risk because of surveillance gaps. For example, poor
countries with limited epidemiological surveillance may appear
healthier due to zero (i.e., lack of) cases reported, however, the
real situation may include high disease incidence.

For example, recent research proposed risk levels of human
Trypanosomiasis, a vector-borne protozoan parasite (Simarro
et al., 2011), where risk estimations were based on the spatial
density of human cases reported. To define close and distant cases
authors proposed a 30 km radius—a pragmatic value neglecting
the biology of the vector. In the Trypanosomiasis study, areas
with high number of reports are defined as of “very-high risk,”
while areas with no data are simply ignored by the model and
assumed in the “very-low” or no risk categories (Figure 2).
Additionally, the risk estimation was restricted to administrative
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FIGURE 2 | Trypanosomiais in central Africa based on density of reports. Areas with more reports are defined by the authors as of very high risk, while areas
with limited or no data are defined as very low risk of infection. Note that the estimation of “risk” was truncated based on administrative boundaries resulting in lack
of information for the Democratic Republic of the Congo. Figure from Simarro et al. (2011) published under the Creative Commons Attribution (CC BY) license.

boundaries, failing to include the natural history of this disease
caused by tsetse flies of the Glossina genus. This error was
later replicated with the same data and method by Simarro
et al. (2012) adding new countries. Both publications resulted
in two isolated studies that did not provide a complete history
on the biogeography of this disease in central Africa, but more
importantly the studies proposed no risk in broad areas where
no information is available, which may result in an incomplete or
incorrect message to public health authorities.

Spatial interpolations for disease mapping, including
kernel smoothing and kriging, attempt to describe biological
mechanisms driving parasite spread among populations, but
are strongly biased by surveillance effort (e.g., if most data were
collected close to roads; Kadmon et al., 2004). Because disease
maps may be used to guide surveillance and disease management
(Stevens and Pfeiffer, 2011), controlling, or at least recognizing,
sampling bias is critical. Additionally, spatial interpolations based
solely on geographic coordinates assume that the landscapes
where parasites occur are environmentally homogeneous, failing
to provide explanations for the environmental processes and
landscape variables triggering or limiting outbreaks.

Spatial Interpolation vs. Environmental
Interpolation
To improve on the limitations of disease maps based on density
and distance of geographic coordinates solely, ecologists started

linking environmental variables with disease occurrence. Thus,
environmental interpolations can be an alternative to spatial
interpolations (Peterson, 2014). Environmental interpolations
are the core approach in ecological niche modeling and include
two main characteristics. The first is descriptive; ecological niche
models attempt to identify the environment associated with the
parasite’s occurrence in the field or via laboratory experiments
of physiological tolerance to specific environmental variables
(Peterson et al., 2011). The second characteristic is predictive,
searching across areas of interest to identify environmental
combinations similar to those where the parasite occurs. Thus,
while geographic interpolations occur in the geographic space,
environmental interpolation is developed in multidimensional
environmental scenarios. By using ecological niche modeling
techniques we gain knowledge on the association of organisms
with environmental variables of interest, contributing to
our understanding of the parasite’s ecology and geographic
distribution (Peterson, 2006b). Additionally, with the knowledge
obtained from few observations, inferences may allow us to
identify areas environmentally suitable for the parasite in areas
without reports available (Peterson et al., 2004).

We highlight the differences between spatial and
environmental interpolation using data from the global
burden of cutaneous leishmaniasis (Pigott et al., 2014a). The
6,426 cutaneous leishmaniasis occurrences were plotted in the
geographic space using latitude and longitude as coordinates and
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then were plotted in the environmental space using temperature
and precipitation as coordinates (Figure 3). This procedure
reduced the original 6,426 geographic coordinates to 1,964 single
coordinates in environmental dimensions, allowing identification
of the environmental space used by the species. We then modeled

the potential areas for the occurrence of this vector-borne disease
using spatial and environmental interpolations (Figure 4). First
we developed maps based on simple geographic interpolation
using a density kernel estimation that identifies areas with
high or low number of occurrences under a specified radius.

FIGURE 3 | Global distribution of cutaneous leishmaniasis. (A) Visualization of 6,426 cutaneous leishmaniasis occurrences (red points) in the geographic
space. (B) Distribution of leishmaniasis in the environmental space. Some occurrences have identical environmental values and therefore resulted in 1,954 single
occurrences in the environmental space (red points). Notice the diversity of environments available across the globe (gray points) and the consistent, narrow,
predictable environmental space occupied by the disease. The environmental space (gray points) was generated using 10,000 random points globally to capture
values of temperature (x axis) and precipitation (y axis). Data obtained from Hijmans et al. (2005) and Pigott et al. (2014a).
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FIGURE 4 | Continued
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FIGURE 4 | Spatial and environmental interpolations of cutaneous leishmaniasis. (A) Kernel density estimation based on leishmaniasis occurrences from
Figure 3A falling in a pre-determined occurrence-distance radius, no environmental conditions are considered. Model constructed using default parameters in
ArcGIS 10.2 (ESRI, 2015). Notice that areas proposed as of risk (red) are overfitted to locations with abundant disease reports, while areas with low or no reports are
denoted as of low importance (see similarity with map in Figure 3A). The model does a poor job of predicting areas where data are absent (e.g., truncated areas in
South America). (B) Environmental suitability index based on environmental similarity with sites where leshimaniasis was reported; environmental conditions are
considered in this model. Model constructed using default in Maxent 3.3.3.k (Phillips et al., 2006) and bioclimatic variables Bio1 – Bio7 and Bio10 – Bio17 cell size of
∼4.5 km (Hijmans et al., 2005). Notice that suitable areas for disease occurrence are predicted in areas with a lack of data. Areas of high suitability, however, mirror
the areas with abundant disease reports; this is a form of model overfitting based on environmental values. (C) Environmental suitability index based on distance to
the niche centroid; environmental conditions are considered. Model constructed using default parameters in NicheA 3.0 with the same environmental variables as
above (Qiao et al., 2015a). Notice that suitable areas are estimated in the environmental space thereby reducing spatial overfitting; predictions do not reflect the
number of occurrences, but their position in an environmental cloud provides the highest values to points in central areas of the environmental space and low values
to most external disease reports (see distribution in the environmental space in Figure 3B). Estimations of low (blue) and high (red) represent values ranging between
0 – 7.25 (Kernel density), 0 – 0.86 (Maxent), and -1 – 0.99 (NicheA). Data obtained from Hijmans et al. (2005) and Pigott et al. (2014a).

Then we modeled the ecological niche of the disease using
two different methods: Maxent, that identifies the association
between occurrences and environmental variables weighted
by the number of occurrences, and NicheA, that identifies the
environmental space occupied by occurrences and weights the
occurrences based on their position in the environmental space,
thereby mitigating the effect of oversampled areas (Figure 4). In
this exploration, spatial interpolations were restricted to denote
high values only in areas with adequate data. The ecological
niche models from Maxent and NicheA, based on environmental
interpolations, found areas suitable for potential leishmaniasis
occurrence even in areas with gaps of surveillance.

Ecological niche modeling is now commonly practiced in
ecology and there are a number of sophisticated niche modeling
tools available to analyze a wide range of datasets. Modeling
techniques that link parasite occurrence with environmental
variables include: (i) those requiring presence-only data like
Bioclimatic Envelop Algorithm (BIOCLIM), Ecological Niche
Factor Analysis (ENFA), and Niche Analyst (NicheA); (ii)
regression models requiring presence plus true absences or
pseudoabsence data as Boosting Regression Trees (BRT),
Classification and Regression Trees (CART), Generalized Linear
Models (GLM), Generalized Additive Models (GAM), and
Random Forest (RF); and (iii) algorithms requiring presence-
background data including Maximum Entropy (Maxent), n-
dimensional hypervolume (Blonder et al., 2014), and Genetic
Algorithm for Rule-set Production (GARP). There is no “best
algorithm” that fits with all study case configurations. Instead,
several algorithms must be assessed in each study case to identify
those performing well under the specific conditions of the disease
system and available data (Qiao et al., 2015b). These modeling
algorithms have been explained and discussed with more detail
elsewhere (Elith et al., 2006; Franklin, 2009; Peterson et al., 2011).

REPORTS OF DISEASE PRESENCE

Ecological niche modeling generally needs records of sites where
the parasite is present to link the parasite’s occurrence with
the environmental features chosen by the researcher. Presence
records are critical and need to be accurate in terms of parasite
identification and geolocation. However, reports of parasite
presence may include some level of uncertainty (Figure 5). For
example, the parasite may be present in a site and it could be

correctly identified and georeferenced. But in some instances
the parasite may be reported as present in a location when in
reality the parasite is absent. This could be due to incorrect
diagnostic tests. This occurs with parasites that have sympatric
and taxonomically close species with similar morphological or
immunological characteristics. Another confounding factor is
the report of the presence of a parasite in a site where, in fact,
suitable conditions do not exist. This may occur in situations
where the parasite was translocated by the host. For example,
a human infected with Ebola in Africa can move to the Arctic
in less than 24 h, in this simple case, reporting the disease
detection in the Arctic may generate estimations that do not
resemble the parasites’ niche. Thus, using reports of parasite’s
presence including errors of identification and site of infection
will generate inaccurate risk models. Additionally, georeferencing
accuracy is an issue of disease mapping that deserves critical
attention (Auchincloss et al., 2012), but has been neglected when
modeling the potential distribution of infectious disease (but see
Nakazawa et al., 2010; Peterson and Samy, 2016).

Algorithms could be calibrated using parasite, vector, or
reservoir occurrences plus environmental information. Data on
reservoir occurrence may come from the researcher’s fieldwork,
scientific literature, natural history museum collections, official
public health agencies, and laboratories. Data for vectors exist but
are scarce compared to data for vertebrate reservoirs (Peterson,
2014). Data for parasites are scarce and can be generated
by the researcher or can be obtained from health agencies,
scientific literature, or online repositories like Healthmap1,
but need considerable data cleaning to reduce errors and
uncertainty (Peterson, 2014). Georeferencing error in occurrence
points and distance between them is also informative when
determining the environmental variables required for ecological
niche modeling. No magic recipe exists to establish the
ideal or minimum number of reports for ecological niche
model calibration; it simply depends on the research question,
study design, the environmental variables considered, and data
available. Something to keep in mind is to avoid the modeler’s
spatial-bias (i.e., bias implicit when thinking in the geographic
space neglecting environmental dimensions; see Figure 3). For
example, the number of occurrences used for model calibration
could be numerous in the geographic space, but may be
meaningless when considered in the environmental space. To

1www.healthmap.org
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FIGURE 5 | Types of parasite presence reports. (A) The parasite was identified in a host population and it is reported as present. (B) There are incorrect reports
of parasite occurrence due to error in the identification of other parasites that generate cross reactivity to the diagnostic test. (C) Reports of parasite occurrence but
the infections occurred in a different location to that included in the site of diagnosis (e.g., from a traveler). Red: infected with the parasite. Pink: not infected with the
parasite but seropositive. Black: not infected.

show this, more than 600 occurrence points were generated for
a virtual parasite in mainland Australia, but when such points
are considered in environmental terms, for example the mean
temperature in June, all points have the same mean temperature
value (i.e., 12.5◦C; Figure 6). Thus, these abundant points from a
geographic perspective represent a single point in environmental
terms.

More points are always better during model calibration for
more informed and less variable forecasts (Escobar et al., 2013),
but a balance should exist between the number of geographic
occurrences and the environmental representativeness of them.
More important than the number of occurrences is their quality.
Several studies have utilized all the available occurrence data of
species in original format for model calibration without careful
data curation (e.g., Brito-Hoyos et al., 2013; Bárcenas-Reyes
et al., 2015). Indeed, failing to reduce pseudoreplicates (i.e., non-
independent samples), and the consequent overrepresentation
of environmental conditions, could produce models that simply
reflect biases in the surveillance effort. Figure 7 shows how a
single environmental value could be overrepresented in a model
due to sampling bias. In this example, it is evident how different
data curation approaches and assumptions could vary in the
use of occurrences from the original 45 occurrences to one
occurrence per pixel or even a single pixel to summarize the
same information. However, species found consistently in the
same environmental space, with occurrences frequently falling
in the same conditions, could be a classic case of an endemic
specialist species of narrow niche (e.g., Figure 6). Thus, it is
critical to differentiate between species with narrow niches and
narrow niches resulting from sampling bias. For example, a
forecast of bat-borne rabies in cattle in Mexico suffered model
overfitting, resulting in the estimations of narrow areas with
predictions of “high transmission risk” and areas with gaps of
surveillance predicted of “low” risk (Bárcenas-Reyes et al., 2015).
However, a reanalysis of the same data removing pseudoreplicate
occurrences and redundant variables, showed broad areas that
were now predicted to be at risk of rabies occurrence in cattle
(Figure 8).

REPORTS OF DISEASE ABSENCE

Early models to link parasites with landscape features included
logistic regressions. Logistic regressions, however, require the
identification of locations with the presence and absence of
the parasite. Most parasite presence data may be accurate
in terms of taxonomic identification and georeferencing due
to modern diagnostic methods and global positioning system
devices; the correct identification of parasite’s absence may be,
on the other hand, uncertain or incorrect (Peterson, 2014).
Using incorrect absence data for model calibration may reduce
the model fit by including locations where the parasite is or
may be present but is reported as absent. A parasite may
be reported as absent in a specific location due to many
reasons (Figure 9). The parasite may be present in the host
population, but it was simply undetected by the researcher
(MacKenzie et al., 2002); the parasite may be present but
it was eradicated recently; or the parasite could be present
but biogeographic barriers do not allow it to use the suitable
areas (Figure 1). Thus, calibrating ecological niche models
of parasites, vectors, or hosts using absence data may fail to
correctly capture the environmental signature of the target
species.

Because absence data are hard to collect from the
field, some approaches create dummy absence data sets
in order to provide regression models with the absence
data required for calibration. Some of these approaches
include the random generation of virtual absences
across the study area; such virtual absences are termed
pseudoabsences and lack biological meaning (Lobo et al.,
2007). To mitigate the error implicit in models requiring
absence data, new algorithms are available for mapping
diseases using only robust reports of parasites’ occurrence
including presence-only and presence-background algorithms.
Descriptions of such techniques have received broad attention
and are broadly accepted by the scientific community
(Franklin, 2009; Peterson et al., 2011; Pliscoff and Fuentes,
2011).
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FIGURE 6 | Distribution of occurrences based on a geographic dimension. Occurrences of a virtual parasite (n = 636) are dispersed across Australia (black
crosses). Mean temperature for June is variables in the country (background colors), occurrences however, do not have environmental independence: all points fall in
sites with identical temperature values (i.e., 12.5◦C). Temperature data obtained from http://www.worldclim.org/ (Hijmans et al., 2005).

ENVIRONMENTAL VARIABLES USED IN
ECOLOGICAL NICHE MODELING

Different environmental variables exist at diverse spatial
and temporal resolutions (Figure 10). The environmental
variables selected should respond to the specific scientific
question and should consider the parasite’s biogeography,
the spatial scale, the availability of parasite occurrence data,
and the spatial and temporal match between occurrences
and environmental variables. For global disease maps with
considerable georeferencing error, environmental variables may
include climate data, while for models at medium scale (i.e.,
continental-country size) with good referencing accuracy, remote
sensing data could be a valuable source of environmental
information to inform models (Peterson et al., 2011). At more
fine scales (e.g., forest, host’s body) variables may not exist
requiring their development by the modeler. Potential variables at
a fine scale (i.e., a forest, cropland, town block) are typically not
available, but drones capturing land reflectance are a promising
tool to generate fine scale environmental grids with spatial
resolutions at a centimeter scale (Figure 11). At a very fine
scale (i.e., the host) environmental variables could include
features of host’s skin, temperature range in the host surface,
epithelia type, among others of crucial importance for the
parasite to survive and maintain populations. However, biotic
interactions (B from the BAM diagram; Figure 1) also should
be considered at this microscale. Research on the distribution
of parasites at the fine scale is still a neglected field and
challenges include our limited understanding of competition,
mutualism, and facilitation among parasites in the host and host

FIGURE 7 | Example of occurrences represented in geographic and
environmental terms. Original reports of disease (green points) can be an
overrepresentation of environmental conditions associated with sampling bias.
The study area (grid) may require a resampling strategy to obtain only one
report per environmental cell to mitigate model overfitting in oversampled
areas (red points). In this study area four environmental values are present:
gray, pink, blue, and green. A more strict modeling approach (e.g., Qiao et al.,
2016) would require only one point per environmental value. Thus, in this
example, only one value representing the occupied environment (i.e., gray)
should be considered for modeling purposes. Source (Escobar and Peterson,
2013).

immunity and behavior during novel or recurrent infections or
co-infections.

The spatial scale must also be considered during variable
selection. Climate data are often required at broad scales to
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FIGURE 8 | Ecological niche model comparisons of bat-borne rabies in cattle in Mexico. (A) The continuous model reflects the sampling effort in terms of
numbers of rabies cases available (not shown) and high model overfitting from using all the 19 bioclimatic variables from Worldclim (Adapted from Bárcenas-Reyes
et al., 2015). Risk was defined in terms of Maxent suitability index as areas of high (red) and low risk (blue). (B) Binary ecological niche model with reduced
occurrences from filtering pseudoreplicated cases. This model was calibrated using principal components for a reduced number of variables. In this case, risk was
defined as the presence of suitable conditions for rabies occurrence (red) with an omission error of 5%. From Hijmans et al. (2005), Bárcenas-Reyes et al. (2015),
and Escobar (2016).

capture environmental signatures of species across space. Disease
maps generated at a local scale calibrated using climate data
may fail to clearly identify patterns of parasite occurrence, as
these data could be highly spatially autocorrelated at narrow
extents (Peterson and Nakazawa, 2007). For example, a study
of the spatial epidemiology of bat-borne rabies demonstrated
that using climate as environmental space could be too
coarse to explain the spatial distribution of vampire rabies
in small countries (Escobar and Peterson, 2013). However,
the status quo in ecological niche models in epidemiology
is a default utilization of the 19 bioclimatic variables of
Worldclim (Hijmans et al., 2005). In fact, Worldclim bioclimatic
variables have high correlation (Figure 12), resulting in model
overfitting and redundant information in the models (Peterson
et al., 2011). The limits between spatial scales are fuzzy;
more research in this arena is necessary given that most of
the literature in ecological niches is based on one robust
set of climatic variables with a decade of use (Hijmans
et al., 2005). Thus, attention is needed to identify the spatial
scale considered in each study (for more details in variable
selection and data sources see Peterson et al., 2011; Peterson,
2014).

Scale, Scale, Scale
Conceptual, methodological, or philosophical disputes may
emerge when discussing the factors defining a parasite’s ecological

niche. For instance, it is well known that in ecology debates
arise when scientific questions are addressed at different spatial
scales (Levin, 1992). In spatial epidemiology, debates dealing with
different spatial scales also occur (Astorga et al., 2015b). For
instance the environmental variables and assumptions required
to describe a parasite’s ecological niche are highly dependent on
the spatial scale.

The study of parasites may be expressed under diverse spatial
scales. For example, at a micro scale rabies virus affects nervous
tissues, in fact, rabies is diagnosed using samples from the
brainstem and cerebellum in view of the high replication and
detection of virus in these organs (Rupprecht et al., 2002). Thus,
rabies virus is not distributed at random in the host, instead
it occurs in specific tissues. Consequently, the environmental
requirements of rabies may be tractable at this tiny scale. At a
larger scale, rabies virus has a taxonomic signature, and even
with a diversity of potential hosts, the virus can be perpetuated
only in mammalian hosts, mainly Carnivora and Chiroptera.
Thus, rabies is not distributed at random among all taxa and the
physiological features of hosts have an environmental pattern for
the virus that may be tractable (Gough and Jorgenson, 1976).
Rabies virus can also have a landscape level signature. In bat-
borne rabies, the environmental features required by the virus
is a combination of soil, vegetation, and moisture requirements
defining the ideal habitat to find an infected host (Escobar et al.,
2013). Finally, at a more coarse scale, the potential distribution
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FIGURE 9 | Different configurations of parasite absence records. (A) True parasite absence as a consequence of inhabitable conditions. E.g., absence of
Tanapox virus in the Antarctic region due to the lack of suitable environmental conditions and absence of reservoirs and vectors (Monroe et al., 2014). (B) False
absence: parasite present but not detected. E.g., in situations in which countries lack adequate epidemiological surveillance systems (e.g., Dominican Republic
reports bat-borne rabies, while Haiti does not report this virus; both countries are located on the same island (Escobar et al., 2015a). (C) False absence: parasite
currently absent, but environmental conditions are suitable and vectors and reservoirs are present. The parasite is likely to invade if translocated from an infected
region to the free/suitable area (e.g., Chikungunya virus was absent in the Americas in early 2013, but was introduced later that year; Van Bortel et al., 2014). Thus,
models considering the Americas as unsuitable due to the absence of the virus failed to consider the disease biogeography. (D) False absence: the parasite is
present but not diagnosed due to low abundance or low sensitivity of diagnostic tests (e.g., Chikungunya virus may be present in some locations but due to the
symptoms is referred as dengue infection). (E) False absence: the parasite is present in the host population, but there is no evidence of disease (e.g., host population
has high immunity to avoid symptoms, however, shedding exists). (F) False absence: the parasite was or will be present, but at the time of the survey it was absent
(e.g., suitable conditions for the parasite occurrence exist, but the parasite was extinguished due to control measures or the susceptible host population was
removed by the parasite). Red: infected with the parasite. Gray: infected with the parasite but without symptoms. Black: not infected. Headstones: removed by the
parasite.

of rabies may be inferred at continental scales due to patterns of
host occurrence under climate conditions (Kim et al., 2014).

Scale complexities also occur for other pathogens like
Pseudogymnoascus destructans causing the white-nose syndrome
in bats. The fungus affects the hairless skin of hibernacula bats of
North America; again not distributed at random on the skin. This
parasite has been found mainly in bats, and six bat species appear
to be the most susceptible to the disease (Blehert et al., 2009).
At a larger scale, conditions inside a cave may offer variations in
humidity, temperature, wind speed, and substrate type that differ
in the level of suitability for the fungus growth. At a different
scale, the disease can also be tracked at landscape level including
soil, climate, and landscape features associated with caves where
the disease occurs (Flory et al., 2012). At a more continental
scale, ecological niche modeling can be employed to understand
patterns of distribution and invasion of this parasite based on
climate conditions (Escobar et al., 2014).

Cholera for instance has a special affinity to the intestinal
epithelia (Harris et al., 2012), thus, the environmental features
in vivo can also be tracked. At another scale, pH, salinity,
and temperature are associated with V. cholerae occurrence

(Huq et al., 1984). At a coarser scale, in situ environmental
requirements of this bacterium helped to predict its distribution
in seawater environments at a global scale (Escobar et al., 2015c).

In a model of rabies in livestock in three states of Mexico,
climatic data showed high homogeneity among neighbor cells as
a result of the interpolative nature of these data (Escobar, 2016).
In other words, climate data failed to capture fine scale patterns
of environmental variability, suggesting that the study area was
too small to calibrate an ecological niche model based on climate
solely. When remote sensing (e.g., land surface temperature)
and climate data (i.e., precipitation) were considered, the
environmental conditions across the study area were more
heterogeneous, capturing more information. However, at the
same spatial resolution (1 km), remote sensing data summarizing
primary productivity provided more landscape details (e.g.,
identification of water bodies; Figure 10). Thus, one should
be aware of incorrect comparisons between models at different
scales. In basic ecology, errors in conclusions associated with
comparisons at different scales is termed “the Beale fallacy,”
and has not been proposed until recently (Escobar et al., 2013;
Peterson, 2014). One model calibrated at landscape scale may
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FIGURE 10 | Continued

FIGURE 10 | Variability of three environmental data sets. (A) Bioclimatic
variables at ∼5 km resolution. Note broad areas with homogeneous
environmental values (i.e., high spatial autocorrelation; continuous areas of
similar color). The first three components accumulated 99.44% of the overall
variance from the 19 variables. Data obtained from Hijmans et al. (2005).
(B) Land surface temperature (LST) from satellite imagery and precipitation at
∼1 km. Note the increased heterogeneity of environmental values across the
study area. The first three components accumulated 97.79% of the overall
variance from 19 variables. Data obtained from http://worldgrids.org/ (Hengl
et al., 2015). (C) Vegetation index, NDVI, from the AVHRR sensor at ∼1 km
resolution. Note the high detail of information, even capturing areas with water
bodies in the south (blue). The first three components accumulated 81.32% of
the overall variance from 19 variables, thus, this data set provided less
correlation between variables. Data obtained from UMD (2001). Principal
components 1 (red), 2 (green) and 3 (blue) from the original variables. Source
(Escobar, 2016).

have a different pattern than a model developed at continental
scale. Defining a priori the study area extent is also a crucial
step during the study design of ecological niche models. Different
study areas can generate different ecological niche model results
(Barve et al., 2011). For example, Peterson and Samy (2016)
recently proposed that a detailed selection of the study areas,
to map Ebola in Africa, could be more informative, realistic,
and robust than a model calibrated in the entire continent
(Pigott et al., 2014b). Therefore, the study area extent should be
strongly supported by ecological, instead of political, pragmatic,
or administrative, reasons.

PARASITE, VECTOR, RESERVOIR: WHAT
TO MODEL IN THE DISEASE SYSTEM?

Ecological niche modeling is a useful tool to understand the
ecology of diseases caused by novel or poorly understood
parasites (e.g., Ebola and Marburg viruses; Peterson et al.,
2004). Researchers may need to identify the ecological factors
driving epidemics (Bhatt et al., 2013), propose potential
vector species in a disease system of unknown vectors (e.g.,
candidate vectors for Chagas disease in Brazil; Gurgel-Gonçalves
et al., 2012), or to identify the best candidate species to
be the reservoir of an emergent parasite (e.g., candidate
reservoirs for Tanapox virus in equatorial Africa; Monroe
et al., 2014). Thus, ecological niche models can be calibrated
using parasites, vectors, or reservoir occurrences. We also
could use reports of human or animal disease for modeling
as they summarize the entire disease system (in ecological
niche modeling termed black-box models sensu Peterson, 2007;
Figure 13).

Once a parasite’s ecological niche has been characterized,
this information can be used to anticipate suitable areas for
the parasite outside the known range or in the future. This
approach was described and patented by Peterson and Vieglais
(2001), and today it is applied in spatial epidemiology to
identify potential areas for epidemics (Peterson et al., 2004,
2014; Zhu and Peterson, 2014). Using a parasite’s niche to
identify novel areas of potential spread is based on the
assumption that its ecological niche will remain consistent
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FIGURE 11 | Remote sensing data of temperature collected using drone technology. (A) Potato crop field in Ecuador where thermal images were collected.
(B) RC-drone PIXTIM, DJI Wookong-M autopilot with GPS receptor and 12 min flight autonomy used for data collection. (C) Resulting temperature image at 2 cm
spatial resolution. Images courtesy: Danilo Yanez and Emile Faye. © Emile Faye – IRD.

through time. In simple terms, the ecological niche will not
evolve. Empirical evidence supports the idea that ecological
niche will remain consistent (Peterson et al., 1999; Peterson,
2006a, 2011; Warren et al., 2008). In fact, it is considered that
a parasite’s niche remains constant even if strains change in
virulence. For example, Toxoplasma gondii strains may increase
in virulence after passage through animals; the niche in abiotic
terms, however, remains (Pavlovsky, 1966). Abiotic changes
in ecological niches at coarse scales are rare (Soberón and
Peterson, 2011; Petitpierre et al., 2012). Ecological niche models
usually suggest that diseases such as malaria (Plasmodium spp.;
Peterson, 2009), leishmaniasis (Peterson and Shaw, 2003), and
cholera (Escobar et al., 2015c) would increase their distribution
under current climate change trends. How parasites adapt
to novel environmental conditions and changes in virulence
deserves future research, and experimental studies covering a
long generational time of the parasite, more than “human”
time, are necessary to understand niche evolution and changes
in environmental tolerances of parasites. Such studies may be
feasible in some taxa in view of their short generation time (e.g.,
bacteria).

RISK MAPS: WHAT IS RISK? HOW DO
WE MAP IT?

Diseases could be a complex combination between the parasite’s
abundance and strain, vector abundance and activity, and host
immunity and force of infection. In fact, even when all the actors
required in a disease system are present in a site, the disease
may be absent, for example due to hosts with high immunity.
Furthermore, defining the disease risk spatially is complex.
Current literature, however, is crowded with the use of “risk”
without a clear definition of the risk. Authors can overuse this
concept in the title of manuscripts even when factors associated
with risk are not contemplated in the study, making it difficult to
identify literature related to mapping disease risk. When mapping
disease risk, we suggest that risk should be quantifiable and
defined for every study case, specifying if risk is proposed as: (i)
the density of previous disease cases; (ii) the suitable areas for the
occurrence of parasite, vector, or reservoir (Figure 14); or (iii)
the factors associated with the susceptibility and vulnerability of
the population of interest (e.g., low immunity, lack of health care,
human behavior that facilitates transmission).
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FIGURE 12 | Correlalogram from the Worldclim variables. Correlation
between variables was explored for the 19 Worldclim bioclimatic variables
obtained from Hijmans et al. (2005) as in Escobar (2016). Size of ellipsoids
denotes high (broad) and low (narrow) variability, direction of ellipsoids
represents positive (right) or negative (left) association, colors denote
correlation coefficient values to identify high negative (red), low (yellow), and
high positive (blue). Analysis was developed using NicheToolBox
(Osorio-Olvera, 2016).

In ecological niche models, risk areas can be considered as
areas with suitable environmental conditions for the occurrence
of the parasite, vectors, and/or reservoirs (Figure 14). Risk
delimitation in environmental terms can be complemented with
factors acting at local scales. We strongly promote the use
of the “disease-transmission risk” or “parasite-exposure risk”
concepts, considering that even when the parasite is present in
a population, disease per se may be absent (i.e., asymptomatic
hosts) making the use of the term “disease risk” a strong
assumption of exposure, infection, and symptomatology. Novel
parasite discovery should not be considered as a true report
of a pathogen (e.g., Bai et al., 2011), simply because recently
discovered parasites may not be pathogenic. In the same context,
a parasite found inside an arthropod does not prove that the
arthropod acts as vector transmitting the parasite. But in both
cases, risk may be “assumed” in terms of the potential of the
parasite or the arthropod to participate in a disease system due
to similarities (i.e., taxonomical, morphological, behavioral) with
known pathogens or vectors. Noise also appears in reports of risk
from emerging diseases. Emergent diseases could be hidden in the
past but appear in modern times due to social circumstances, like
an increment in surveillance effort, better diagnostic methods, or
perhaps the entry of a new susceptible population to the parasite’s
niche. Under this scenario, even when the risk of infection was
always present in the population, there was no consideration
of risk. In summary, the term risk must be defined in each
study, as it is context dependent and because its assumptions
and features change according to the population of interest. For

public health, for example, risk could be generalized to: “No
people, no risk.”

Adding Risk Factors to Suitability Maps
Suitability maps of parasites could be complemented with
information on factors associated with the facilitation of
their transmission, including biotic interactions (Figure 14).
Recently, Anderson (2016) discussed the positive influences that
information resembling parasite/hosts interactions could have
in ecological niche models, resulting in more detailed, place-
and time-dependent, realistic predictions. For example, Samy
et al. (2014) modeled the potential occurrence of Mycetoma
disease, an infectious skin and bone disease that had been linked
to the presence of trees from the Acacia genus. Mycetoma
models were more accurate when Acacia records, a plausible
tree reservoir, were added to the model. Also, Astorga et al.
(2015a) used an ecological niche model of bat-borne rabies
in Chile and, as a post processing step, added a dog-density
surface to refine the predictive map and incorporate a risk
dimension in terms of potential spillover of rabies from bats
to dogs. The result was a risk map with an assertive and
more informative forecast of bat rabies spillover events in dogs.
Another example of supplementing an ecological niche model
with variables of potential risk includes the use of air passenger
flow between countries in view of the robustness of air traffic
to explain epidemic spread (Brockmann and Helbing, 2013).
Passenger flow via air transportation complemented a niche
model for the identification of potential areas for chikungunya
virus occurrence in countries across the Americas (Escobar
et al., 2016b). Finally, a recent study used ecological niche
modeling enriched with human density data and nighttime light
satellite imagery to successfully estimate areas for human rabies
transmission (Escobar et al., 2015b).

EVALUATION OF DISEASE MAPS

Spatial epidemiologists should acknowledge the effort of
ecologists in developing tools, conceptual bases, and variables
for ecological niche modeling. The body of literature for these
methods has been, however, inspired mainly from the fields
of ornithology and biological conservation (Franklin, 2009;
Peterson et al., 2011). In this regard, disease mapping is
different in limitations and assumptions because parasites occur
in complex systems incorporating several species and because
incorrect predictions may have negative implications in human
and animal health. Models developed to guide public health
interventions should have an intense and robust validation
process before publication.

Contrasting with the large debate on algorithm performance
and software development in ecological niche modeling for
modeling biodiversity (Elith et al., 2006; Fitzpatrick et al., 2013;
Blonder et al., 2014; Qiao et al., 2015b), little attention has been
paid to the critical step of model evaluation (but see Muscarella
et al., 2014). Nowadays, the gold standard test for ecological
niche model performance uses the area under the curve (AUC)
of the receiver operating characteristic (ROC) metric. AUC
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FIGURE 13 | Ecological niche modeling workflow for a “black-box” analysis. Disease cases or reports of the pathogen from active or passive surveillance
were used. (Bottom left) Information about the disease occurrence was generated based on passive or active surveillance, then (arrow), occurrences were curated
to remove erroneous reports and obtain the final map of locations. (Top left) Environmental conditions of the study area were generated or collected from climate or
remotely sensed data repositories, then (arrow), environmental variables were curated to remove redundant variables or erroneous layers. (Center) Environmental
variables were used to create a multivariate environmental space where the niche of the species was estimated using the available occurrences of the parasite
(dashed line box). (Right) Once the niche was defined, estimations were projected to the geographic space to construct suitability maps or geographic distributions
models. Figure 1 from Escobar et al. (2016a) reproduced by permission of John Wiley and Sons.

ROC sensu stricto employs parasite’s presence and absence for
model evaluation. As described above, true absences are hard
to obtain. To solve this problem, a common practice is to use
virtual absences to feed the ROC metric, resulting in questionable
evaluations (Lobo et al., 2007; Peterson et al., 2008; Golicher
et al., 2012). This may be acceptable when modeling the potential
distribution of, for example, an endangered plant or other non-
lethal organism. But if the goal of an ecological niche model
is to anticipate the potential distribution of Ebola or rabies
viruses, models require deep assessment avoiding artificial data.
Additionally, modelers use the AUC ROC metric to evaluate
model predictions based on the points employed during model
calibration, which may be not challenging for the algorithm,
considering that points used to create the model are used to
validate it, thereby lacking statistical independence (Hurlbert,
1984). The AUC ROC metric also fails to identify those models
that over predict the potential areas for disease occurrence (which
is not too bad) or those models that under estimate the areas in
which suitable conditions for the parasite exist, but the model
simply neglects them (which is dangerous for virulent parasites)
(see Lobo et al., 2007).

In a recent study, researchers used ecological niche modeling
and a detailed set of Aedes aegypti and A. albopictus occurrences
to determine the spatial limits of dengue fever and chikungunya
at global scale (Kraemer et al., 2015). The model resulted in
important inferences about the potential distribution of these
vectors. The model evaluation process was based on a metric
requiring presence and absence data, but absence data were not
available. To solve this, authors generated their own absence data
via random points across the world, reducing the robustness

of the test. The study generated models that mainly reflect
the areas with reports (i.e., high model overfit). In this study,
Chile, for example, was predicted unsuitable for A. aegypti, but
the current lack of vector reports in this country is the result
of aggressive efforts of authorities for vector eradication and
active epidemiological surveillance. A. aegypti, however, has been
recorded recently, again, in Chile in Arica and Camarones with
reports including adult female mosquitoes and larvae (Instituto
de Salud Publica, 2016).

Three alternative metrics can be employed to evaluate
presence-only ecological niche models including Akaike
information criterion (Warren and Seifert, 2011), cumulative
binomial probability test (CBP; i.e., identifies if models are
predicting occurrences better than by random using an
independent set of occurrence data not employed during model
calibration) (Peterson et al., 2011), and Partial ROC, a new
metric incorporating both ROC AUC and CBP approaches
(Peterson et al., 2008; Peterson, 2012; Escobar et al., 2013).
Nevertheless, more efforts are needed to test the abilities of
these and new metrics to discriminate among different model
hypotheses.

FINAL REMARKS

In this manuscript we describe how ecology, especially
the parasite’s ecological niche, is key to understanding the
biogeography of disease systems. Ecological niche models of
parasites may help us to respond to ecological and distributional
questions related to epidemic potential. However, epidemiology
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FIGURE 14 | Continued

FIGURE 14 | Example of an ecological niche modeling application
including a vector and a reservoir. The ecological niche of a complex
disease system may include a vector and a reservoir. Identifying the potential
environmental overlap between the vector and the reservoir can inform
potential areas for the effective pathogen occurrence. This scenario is more
informative than the black-box approach, because more information is
available (i.e., data about the vector and reservoir). (A) Ecological niche model
of a vector (yellow ellipsoid) and a reservoir (blue ellipsoid). (B) Niche overlap
between vector and reservoir (red polyhedron) denotes areas of potential
pathogen cycle. (C) Projection of overlapping niches into the geographic
space (red areas). Data obtained from http://worldgrids.org/ (Hengl et al.,
2015).

has largely failed to adopt the conceptual bases that help to
correctly design and interpret ecological niche models for disease
mapping.

The use of ecological niche modeling methods for disease
mapping should be based on a clear understanding of the BAM
framework and its diversity of plausible configurations (Peterson,
2008; Saupe et al., 2012). Strikingly, click-and-run software
dominates the ecological niche modeling practice and users argue
that their selection of the method was “because [it] had been
validated in peer-review publications,” showing that modelers
basically develop predictions without a clear understanding of the
process (Joppa et al., 2013). In epidemiology, several ecological
niche models have been generated through a “recipe” without a
clear justification of the study area extent and inclusion criteria
for the data employed (e.g., Abedi-Astaneh et al., 2015; Ali
Hanafi-Bojd et al., 2015; Hanafi-Bojd et al., 2015; Gholamrezaei
et al., 2016). This practice has been criticized (Anderson, 2014)
and more detailed study designs have been encouraged (Peterson,
2014).

Five main questions have been identified for the study design
of ecological niche modeling of diseases (Escobar, 2016): (i)
Which occurrences to use and why? (e.g., pathogen or reservoir,
occurrence inclusion criteria) (ii) Where to calibrate the models
and why? (i.e., study area extent) (iii) Which variables should
be employed and why? (iv) What algorithms will be explored
and why? and (v) How models will be evaluated and why?
(e.g., evaluations based on information theory or independent
data sets). These questions could help to guide early stages
of study designs and could be a helpful tool for readers and
reviewers aiming to differentiate between good and incomplete
research. Answers to these questions must be based on the
research question, the empirical data available, and the natural
history of the disease. Here we have explained how the ecological
niche of parasites could be studied at different spatial scales,
but parameters and variables required need to be generated at
very fine scales. The results of the models could be used to map
areas of potential transmission risk. Risk is a complex term,
but to facilitate its utilization in spatial epidemiology, it should
be defined and quantified clearly in each study case. Control
and eradication of diseases demand first an understanding of
its niche to interrupt the system on any stage or component.
Ecological niche modeling shows a promising future in modern
epidemiology, but their usefulness lays on the quantitative
robustness and biological realism of their products.
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