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The Deepwater Horizon accident has brought oil contamination of deep-sea
environments to worldwide attention. The risk for new deep-sea spills is not expected
to decrease in the future, as political pressure mounts to access deep-water fossil
reserves, and poorly tested technologies are used to access oil. This also applies to
the response to oil-contamination events, with bioremediation the only (bio)technology
presently available to combat deep-sea spills. Many questions about the fate of
petroleum-hydrocarbons within deep-sea environments remain unanswered, as well
as the main constraints limiting bioremediation under increased hydrostatic pressures
and low temperatures. The microbial pathways fueling oil bioassimilation are unclear,
and the mild upregulation observed for beta-oxidation-related genes in both water and
sediments contrasts with the high amount of alkanes present in the spilled oil. The
fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most
predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being
present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked.
This mini-review aims at highlighting the missing information in the field, proposing a
holistic approach where in situ and ex situ studies are integrated to reveal the principal
mechanisms accounting for deep-sea oil bioremediation.
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DEEP-SEA OIL CONTAMINATION

Contamination of deep-sea environments with petroleum following accidental spills represents
a relatively emerging topic, which received worldwide attention after the Deepwater Horizon
(DWH) accident at the Gulf of Mexico in April 2010 (Joint Analysis Group [JAG], 2010) when
more than 500’000 tons of crude oil (+24% including gas; Reddy et al., 2012) were discharged
at ∼1500 m below surface level (bsl; U.S. Geological Survey, 2010). As political reasons will keep
pushing for deep-sea oil extraction, use of poorly tested technologies is not expected to decrease
the risk of future accidents (Jernelov, 2010; Thibodeaux et al., 2011).

Spilled oil reaches the deep sea through numerous ways. Surface-water spills form thin
layers which partially dissolve, emulsify and diffuse through the water column (Tkalich et al.,
2003), or sink due to the formation of heavier particles (tar) (Parinos et al., 2013). Dispersants
enhance oil solubility in water. Extensive injections of the dispersant COREXIT at deep sea
(about 3 × 106 L) during the DWH contributed to the formation of a large oil plume at
1000–1300 m bsl (Camilli et al., 2010) preventing petroleum-hydrocarbons from reaching the
surface (Kujawinski et al., 2011). Direct contact of the plume with the continental slope was
partially responsible for contamination of deep-sea sediments (Romero et al., 2015). Another
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vector for sinking oil is the “so-called” marine snow. Oil
contamination enhances phytoplankton production of
exopolysaccharides (EPSs, Patton et al., 1981), whose amphiphilic
nature favors hydrophobic-hydrophobic interactions with oil to
form particles including microbial biomass that sink downward
(Passow et al., 2012). This phenomenon represented the main
cause for oil transfer to the seafloor during the DWH (Federal
Interagency Solution Group, 2010; Ziervogel et al., 2014; Romero
et al., 2015). In situ oil burning, one of the most widely applied
strategies for oil-pollution control, is known to cause seafloor
contamination (Wang et al., 1999; Federal Interagency Solution
Group, 2010). Following mechanical oil recovery through
skimming, the unrecoverable oil fraction on the surface is
gathered within small areas for controlled burning, which
generates denser mixtures of the less volatile fraction of the
oil (resins, asphaltenes; Buist et al., 1997; Jézéquel et al., 2014).
Finally, geochemical data on the increased heavy-molecular-
weight polyaromatic hydrocarbons (PAHs) fraction in DWH
deep-sea sediments indicated that diesel exhaust from the 6000
vessels conducting safety operations cannot be excluded as
contamination factor (Romero et al., 2015; Figure 1).

There has been little to no effort in assessing the magnitude
of deep-sea oil contamination worldwide. Between 3200 and
8000 km2 of deep seafloor were impacted with up to 14% of
the DWH spilled-oil (Chanton et al., 2014), although ∼22%
could not be traced (Ramseur, 2010). The impact on deep-sea
life was striking. Deep-sea sediments were classified as low to
moderately polluted (Romero et al., 2015); pore-water from 1000
to 1400 m bsl exerted high toxicity levels and DNA mutagenesis
(Paul et al., 2013); primary production and carbon export to
the deep-sea was reduced (Prouty et al., 2016); in sea-food,
concentration of certain petroleum-hydrocarbons was 1000 times
above the threshold for human consumption (Sammarco et al.,
2013).

Hydrocarbons enter deep-sea areas also through several
geochemical routes (oil seeps, hydrothermal vents, gas hydrates,
asphalt volcanoes; Jørgensen and Boetius, 2007). Several
microorganisms proficiently use oil as an energy/carbon
source preventing its accumulation into marine environments
(Head et al., 2006). Natural niches characterized by fossil
hydrocarbons determine microbial community structures
featured by unique biochemical equilibria, which form over
a time-span of centuries (Jørgensen and Boetius, 2007).
Conversely, anthropogenically oil-affected sites are non-adapted
environments where overabundant carbon loads are discharged
within weeks/months. The enrichment of oil-degrading taxa
jump-starting bioremediation coincides with a net loss of
biodiversity (Kleindienst et al., 2015), which can hardly be
recovered until excess oil has been depleted. The oligotrophic
nature of marine environments (Garrison, 2015) limits oil
bioassimilation, which is further impaired at the deep sea by low
temperatures, O2 availability, and hydrostatic pressure (HP).

REVIEW OBJECTIVE

Lack of efficient oil recovery technologies at deep sea
implies that bioremediation represents the only mean to
combat contamination (Lu et al., 2012). The DWH spill was
investigated through in situ studies employing next-generation
sequencing techniques, which were partially backed-up by ex
situ experiments. Despite supplying unprecedented information,
both approaches failed to describe the exact metabolic routes
and constraints in deep-sea bioremediation. In situ studies
using molecular techniques could only provide information
on potential activities while, with no exception, ex situ studies
neglected the impact of one of the major drivers for biodiversity
in marine environments, i.e., HP (Ghiglione et al., 2012).

FIGURE 1 | The many ways through which accidentally-spilled petroleum-hydrocarbons reach the seafloor and deep-sea. HMW PAH, high molecular
weight polycyclic aromatic hydrocarbons.
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While previous overviews focused on microbial succession
(Kimes et al., 2014), marine snow formation (Joye et al., 2014)
and hydrocarbon fate (King et al., 2015) following the DWH,
this mini-review aims at highlighting the open questions
concerning the physiology of oil bioremediation at deep-sea HP
conditions.

IN SITU MOLECULAR STUDIES:
DEEP-SEA PLUME

Upon injection, DWH spilled-oil was composed of 74, 16, and
10% saturated, aromatic and polar hydrocarbons, respectively;
gas represented 24% of the spill, while oil comprised 76%
(alkanes being 32% of the total; Table 1). Fractionation
due to physicochemical factors (and dispersants application;

Kujawinski et al., 2011) resulted into different petroleum
mixtures affecting water and sediment. The oil plume was mainly
composed of gaseous and monoaromatic compounds (Table 1).
A hydrocarbon-dependent microbial community restructuring
was proposed for the plume. Following a first enrichment in
Oceanospirillales and Pseudomonas (May 2010), the relative
increase in aromatic hydrocarbons as compared to aliphatic
and cycloalkanes following partial cap closure (June 4, 2010)
coincided with a general shift in dominance to Colwellia,
Cycloclasticus, Pseudoalteromonas and methylotrophs lasting
until mid-August 2010 (Hazen et al., 2010; Valentine et al., 2010;
Kessler et al., 2011; Lu et al., 2012; Mason et al., 2012; Dubinsky
et al., 2013; Rivers et al., 2013; Kleindienst et al., 2015). Before
partial closure of the well, metagenomic (Hazen et al., 2010;
Lu et al., 2012; Mason et al., 2012) and metatranscriptomic
(Mason et al., 2012; Rivers et al., 2013) analyses evidenced

TABLE 1 | Detected oil fractions in water and sediment deep-sea samples after the Deepwater Horizon spill.
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an upregulation of genes related to hydrocarbon degradation,
although a consensus could not be reached. Upregulation of
genes or pathways related to monoaromatics or PAH degradation
was observed in all studies to different extents (Hazen et al.,
2010; Lu et al., 2012; Mason et al., 2012; Rivers et al., 2013).
Mason et al. (2012) found a higher level of gene and transcript
reads related to the degradation of n-alkanes rather than
aromatics, contrary to Hazen et al. (2010). The latter would
be in contrast with data from the same group indicating
that n-alkane and cycloalkane concentrations correlated with
the enriched communities before partial closure (Dubinsky
et al., 2013). Similarly, the upregulation of the cyclohexanone
degradation pathway as detected in Mason et al. (2012) was
negligible in Hazen et al. (2010). Upregulation of alkane-
1 mono-oxygenases responsible for n-alkane activation was
detected in all studies (Hazen et al., 2010; Lu et al., 2012;
Mason et al., 2012; Rivers et al., 2013). Following activation,
n-alkanes should enter beta-oxidation (Rojo, 2009), but genes
related to this pathway were only partially upregulated in
Mason et al. (2012) and Rivers et al. (2013). Upregulation of
anaerobic hydrocarbon degradation genes (Lu et al., 2012) was
consistent with that for nitrate reduction (Rivers et al., 2013),
although O2 levels were marginally affected at that time (Camilli
et al., 2010; Hazen et al., 2010). As 16S rRNA gene signatures
persisted long after the plume had dissipated (Joye et al., 2014),
such controversies concerning structure-function relationships
highlight the need for more data integration (Widder et al.,
2016).

While a microbial and molecular response to oil appears
evident, the actual metabolic routes following hydrocarbons
uptake are not. Lack of significant O2 respiration in the plume
early in the spill contrasts with the enhanced cell number
(Hazen et al., 2010; Mason et al., 2012; Kleindienst et al., 2015).
Sustained aerobic biodegradation would be expected to result in
increased CO2 production and decreased pH, but none of these
phenomena were reported. The ease of hydrocarbon degradation
would suggest the plume to be enriched in n-alkane degraders
as proposed for gaseous compounds (Valentine et al., 2010)
and the Oceanospirillales group found by Hazen et al. (2010),
but the preferential molecular response to aromatics brings this
hypothesis into question. The fate of n-alkanes (>C6) and the
lack of a strong beta-oxidation upregulation in the plume remain
unexplained.

Persistent O2 anomalies were observed following well closure
(July 15, 2010). Their strong intensity was used to track the
oil plume moving southwestward (Du and Kessler, 2012) and
associated with heterotrophic degradation of high-molecular-
weight organics rather than oil (Dubinsky et al., 2013)- possibly
due to marine snow formation after the spill (Ziervogel et al.,
2014)- or with aerobic degradation of gaseous hydrocarbons
(Kessler et al., 2011). The latter would be consistent with enriched
methylotrophs at that time (Kessler et al., 2011; Redmond
and Valentine, 2012; Dubinsky et al., 2013; Kleindienst et al.,
2015). However, actual CH4 respiration rates were inconsistent
throughout the spill (Crespo-Medina et al., 2014) and CH4
mono-oxygenase upregulation before May–June 2010 is still
under debate (Joye et al., 2014; Kimes et al., 2014; King et al.,

2015). Joye et al. (2014) suggest that some presently unknown
factor hampered CH4 respiration after mid-June. As it stands,
venting to the atmosphere could not be excluded (Rivers et al.,
2013).

IN SITU MOLECULAR STUDIES:
DEEP-SEA SEDIMENTS

Deepwater Horizon sediments were investigated through
metagenomic analysis of seafloor (Mason et al., 2014) and
sub-seafloor (Kimes et al., 2013) samples in September–October
2010. Superficial samples (0–1 cm) within 5 km of the wellhead
were the most impacted, and were enriched in uncultured
Gammaproteobacteria and Colwellia-related organisms similar
to the ones in the plume, and in uncultured Rhodobacteraceae
(Mason et al., 2014). Highly impacted sediments showed
increased levels of monoaromatic degradation genes, no relation
with PAH and O2 respiration, thus partly resembling results
obtained for plume samples in May-June (Hazen et al., 2010;
Lu et al., 2012; Rivers et al., 2013). Sub-seafloor samples
(1–3 cm deep) close to the wellhead (0.5 and 6 km, Kimes et al.,
2013) were enriched in several Deltaproteobacteria, although
Alpha- and Gammaproteobacteria remained predominant
(Kimes et al., 2013). Enhanced expression of the bssA gene
was consistent with increased benzylsuccinate levels formed
via the fumarate pathway. Conversely, no alkylsuccinate or
alkylmalonate metabolites related to alkane degradation were
found despite the corresponding assA gene being upregulated
and alkanes up to n-docosane being detected (Kimes et al.,
2013), reflecting the uncertain fate of n-alkanes (>C6) in the
plume. Consistently, genes related to fatty acids metabolism were
poorly expressed in seafloor sediments close to the wellhead
(Kimes et al., 2013) and expression levels were comparable to
pre-spill samples (Kimes et al., 2013). One year later, n-alkanes
(C8–C38) were 10–1000 times more concentrated than PAH in
the sediments (Liu et al., 2012), suggesting that the degradation
of PAH was faster than that of n-alkanes (Yergeau et al., 2015;
Table 1).

As for the plume, CH4 respiration rates in sediments are
uncertain. After 1 year, the upper (0–2 cm) sediments located
2–6 km from the wellhead were populated by Actinobacteria,
Firmicutes, Chloroflexi and several type I methylotrophs (Liu
and Liu, 2013). Provided that CH4 levels in the plume were
low in October 2010 (Kessler et al., 2011; Crespo-Medina et al.,
2014), it appears unlikely that plume-related CH4 could persist
in sediments until May 2011. CH4 accumulation may result
from long-term anaerobic hydrocarbon degradation (Widdel and
Rabus, 2001), which would be in agreement with the presence of
Desulfobacterium (Liu and Liu, 2013). Alternatively, acetotrophic
methanogens may have been stimulated by an increase in acetate
produced by acetogenic hydrocarbon-degrading SO4-reducing
bacteria (SRB). Together with the upregulated nitrification in
September–August 2010 (Mason et al., 2014), the available data
suggest that persistent oil-contamination affects O2 seafloor
levels indefinitely, supporting anaerobic benthic microbial
activity.
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EX SITU MICROBIOLOGY AND
LAB-SCALE HP EXPERIMENTS

None of the ex situ experiments on DWH deep-sea samples
applied HP (Hazen et al., 2010; Valentine et al., 2010; Bælum et al.,
2012; Redmond and Valentine, 2012; Gutierrez et al., 2013b;
McKay et al., 2013; Mason et al., 2014; Yergeau et al., 2015;
Dombrowski et al., 2016). Despite the persistence of n-alkanes
and mild beta-oxidation upregulation, ex situ14C-experiments
reported high n-alkane degradation in sediment (Mason et al.,
2014) and water samples (Yergeau et al., 2015). Oiled beach
sands were enriched in Gammaproteobacteria (Alcanivorax,
Marinobacter) and Alphaproteobacteria (Rhodobacteraceae;
Kostka et al., 2011). While some Rhodobacteraceae were found
in deep-sea waters (Dubinsky et al., 2013) and sediments
(Mason et al., 2014), neither Marinobacter nor Alcanivorax
were enriched, contrary to other Alteromonadales and
Oceanospirillales (Hazen et al., 2010; Dubinsky et al., 2013;
Yang et al., 2014). Other hydrocarbonoclastic Oceanospirillales
as Thalassolituus, Oleiphilus, Neptunomonas, or Oleispira were
only reported because they consist of species closely related
to the Oceanospirillales group identified in the plume (97%,
Oleispira antarctica and T. oleivorans; Hazen et al., 2010). These
isolates degrade long-chain hydrocarbons (Joye et al., 2014),
which were not particularly enriched in the plume (Table 1).
Low temperature was proposed to account for this (Redmond
and Valentine, 2012), although species as O. antarctica are
psychrophilic (Yakimov et al., 2003) and many of these genera
populate hydrocarbon-seeps in the Gulf of Mexico (King et al.,
2013).

The reason why these predominant hydrocarbonoclastic
genera were not enriched at deep-sea is currently unknown.
A moderately piezophilic Marinobacter hydrocarbonoclasticus
strain could grow on C16 at 35 MPa (∼3 times higher than
DWH plume HP; Grossi et al., 2010). As Alcanivorax abundance
in bathypelagic water (Gutierrez et al., 2013b) and sediments
was low (Kimes et al., 2013) and unrelated to hydrocarbons
(Kimes et al., 2013) its contribution to deep-sea bioremediation
was considered negligible (Gutierrez et al., 2013b). Alcanivorax
isolates were obtained from decompressed water samples
(Gutierrez et al., 2013b) resembling results and HP conditions for
oil mousses (Liu and Liu, 2013) and beach sands (Kostka et al.,
2011). Alcanivorax species isolated from 2682 to 5000 m bsl (up
to 50 MPa, Liu and Shao, 2005; Lai et al., 2011) could not grow
below 10◦C, i.e., at much higher temperature values than those
registered for these depths (<4◦C). Another Alcanivorax strain
was isolated from 668 m bsl (∼6.7 MPa, Lai et al., 2013). However,
the isolation protocols employed in these studies did not apply
HP. The first HP experiments on Alcanivorax were reported
by the present group (Scoma and Boon, 2016; Scoma et al.,
2016a,b). A mild increase to 5 MPa (∼500 m bsl) was sufficient
to impair cell replication in Alcanivorax dieselolei and A. jadensis.
Increase to 10 MPa in A. dieselolei (approximately the oil plume
HP) further impaired growth, in concomitance with a general
downregulation of its genome expression. The few upregulated
pathways related to protein translation, energy production and

Na+ transporters (Scoma et al., 2016a,b). Similarly, in the type
strain Alcanivorax borkumensis SK2 the increased cell damage
at 10 MPa was consistent with the intracellular accumulation of
the piezolyte ectoine, and further studies on hypo- and hyper-
osmotic stimulation highlighted that enhanced cell metabolism
or integrity did not improve growth at 10 MPa (Scoma and Boon,
2016).

Hydrostatic pressure affects enzyme folding (Oger and Jebbar,
2010), cellular components (Bartlett et al., 1995) and functions,
which may be gradually downregulated, triggered (Clouston and
Wills, 1970; Kalchayanand et al., 2002; Ishii et al., 2004) or
non-linearly induced (Pagàn and Mackey, 2000). Sphingobium
yanoikuyae growth was suddenly impaired at >8.8 MPa when
supplying naphthalene (or glucose, Schedler et al., 2014).
A. borkumensis cultures growing on C12 were inactivated at
5 MPa but could grow at 10 MPa (Scoma et al., 2016b). Both
growth and C16 degradation rates were reduced at 15 MPa in
Rhodococcus qingshengii (Schedler et al., 2014). HP impact on
oil biodegradation rates has been critically overlooked. Hazen
et al. (2010) proposed half-lives of 6 days for plume-related
n-alkanes supported by ex situ ambient pressure experiments,
while in situ measurements indicated 1 month half-lives for
water-soluble petroleum-hydrocarbons (Reddy et al., 2012). The
main constraints to deep-sea oil bioremediation are yet to be
elucidated. Injection of 3 × 106 liters of COREXIT dispersant
at deep sea implies that bioavailability was considered a major
issue. The negligible degradation rates of its key components
and its unknown effect on deep-sea environments (Kujawinski
et al., 2011) challenge this assumption. Understanding whether
biosurfactant production or microbial adhesion to hydrocarbons
is limited by HP and/or temperature may already assist
policymakers in establishing efficient protocols for deep-sea
bioremediation.

FUTURE PERSPECTIVES

The limited literature on lab-scale oil degradation under HP
(Schwarz et al., 1974, 1975; Grossi et al., 2010; Schedler et al.,
2014; Scoma and Boon, 2016; Scoma et al., 2016a,b) does
not explain how microbes cooperate/compete for petroleum-
hydrocarbons, extracellular metabolites, O2 or nutrients.

The main structure-function mechanisms shaping microbial
communities following deep-sea spills are unclear. Cell growth in
the plume was proposed as a main response to oil release (Hazen
et al., 2010; Mason et al., 2012; Kleindienst et al., 2015). However,
metadata also indicated an enhanced response to stress (Hazen
et al., 2010; Rivers et al., 2013) including starvation (Lu et al.,
2012; Rivers et al., 2013), carbon storage (Rivers et al., 2013), and
resistance to metals (Hazen et al., 2010; Lu et al., 2012). Similar
results were obtained with sediments (Kimes et al., 2013; Mason
et al., 2014; Yergeau et al., 2015). The M. hydrocarbonoclasticus
tested at 35 MPa by Grossi et al. (2010) used C16 to feed
both growth and the accumulation of intracellular wax esters.
However, microbial dynamics may respond to compounds not
typically analyzed in field samples as polar compounds (Reddy
et al., 2012).
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State-of-the-art technology can already be used to face the
problem of deep-sea oil bioremediation by integrating molecular,
physiological, and biochemical tools in a fully controlled
environment. In situ hydrocarbon degradation rates must be
confirmed by ex situ HP experiments in vivo and in vitro. Recent
reports on methanotroph enrichments stressed the importance of
cultivation techniques (Dedysh et al., 2012), supporting the use of
synthetic communities to highlight the contribution of different
individual genera to biodegradation activities. Some microbial
representatives produce EPS to increase oil bioavailability for
the benefit of the whole community (Gutierrez et al., 2013a).
Enriched communities may be composed of opportunistic
microbes which do not contribute to oil remediation. Defining
the exact role of primary oil degraders with respect to other
genera is key to addressing the specific requirements of each
representative, and may explain how deep-sea areas are evolving
following oil spills. Continuously operated HP systems may
prevent accumulation of toxic compounds and provide more
accurate data on microbial kinetics (Zhang et al., 2010, 2011).
Isotopic experiments under HP should clarify whether oil fuels
cell division, production of secondary metabolites or other
unexpected activities. Improved biodegradation rates through
the supply of critical nutrients should be compared with the
impact of dispersants. The fate of tar components should be
characterized, together with the role of SRB in long-term exposed
sediments. These considerations must extend to temperature,
as warmer seas may possess a different microbial potential
(e.g., the warm bathypelagic Mediterranean sea). Deep-sea
HP and low temperature impact the physicochemical state of

the oil (Reddy et al., 2012) affecting its bioavailability. Low
temperature is expected to slow microbial kinetics and select for
psychrophiles (Atlas and Bartha, 1972). Provided that deep-sea
oil bioremediation is affected by the interplay between several
biological and physical factors, laboratory experiments must
consider HP and temperature simultaneously to mimic deep-sea
conditions.
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