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Biogenic amines (BAs) are molecules, which can be present in foods and, due to their
toxicity, can cause adverse effects on the consumers. BAs are generally produced
by microbial decarboxylation of amino acids in food products. The most significant
BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-
phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing
the excessive accumulation of BAs in foods is related to their impact on human
health and food quality. Quality criteria in connection with the presence of BAs in
food and food products are necessary from a toxicological point of view. This is
particularly important in fermented foods in which the massive microbial proliferation
required for obtaining specific products is often relater with BAs accumulation. In
this review, up-to-date information and recent discoveries about technological factors
affecting BA content in foods are reviewed. Specifically, BA forming-microorganism
and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk
associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors
influencing BA formation (temperature, salt concentration, and pH). In addition, the
technological factors for controlling BA production (use of starter culture, technological
additives, effects of packaging, other non-thermal treatments, metabolizing BA by
microorganisms, effects of pressure treatments on BA formation and antimicrobial
substances) are addressed.

Keywords: biogenic amines, fermented foods, lactic acid bacteria, decarboxylase activity, aw, pH, temperature

INTRODUCTION

Biogenic amines (BAs) are organic bases, which can be present in foods and can cause several
adverse reaction in the consumers. They are produced by microorganisms (mainly bacteria)
through the action of decarboxylases (carboxy-lyases EC number 4.1.1.1.), which act selectively
on specific amino acids in which they remove the carboxyl group with the formation of the
correspondent amine and CO2.

In relation to their amounts and their toxicological effects, the most important BAs in foods
are histamine (an heterocyclic amine deriving from histidine), tyramine and 2-phenylethylamine
(deriving from the aromatic amino acids tyrosine and phenylalanine, respectively), tryptamine

Frontiers in Microbiology | www.frontiersin.org 1 August 2016 | Volume 7 | Article 1218

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2016.01218
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fmicb.2016.01218
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2016.01218&domain=pdf&date_stamp=2016-08-12
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01218/abstract
http://loop.frontiersin.org/people/212680/overview
http://loop.frontiersin.org/people/110396/overview
http://loop.frontiersin.org/people/18039/overview
http://loop.frontiersin.org/people/213306/overview
http://loop.frontiersin.org/people/251386/overview
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01218 August 12, 2016 Time: 11:3 # 2

Gardini et al. The Impact of Factors on Biogenic Amine Content

(heterocyclic BA from tryptophan), putrescine (a polyamine
obtained through a direct decarboxylation of ornithine or
through the agmatine deiminase pathway, which follow the
decarboxylation of arginine to agmatine), and cadaverine (a
polyamine derived from lysine; Silla Santos, 1996; Landete et al.,
2008a; Tanaka et al., 2008; Marcobal et al., 2012; Wunderlichová
et al., 2014). In addition, other polyamines (spermine and
spermidine) can be produced with a more complex pathway,
which starts from putrescine (Bardócz, 2005; Kalač and Krausová,
2005).

There are two essential physiological reasons leading to
the activation of decarboxylative pathways. From one side,
decarboxylation is one of the responses of cells to acid stress
and the final balance of the pathway, which consists in the
loss of a carboxylic group, contributes to the intracellular (and
extracellular) pH increase (Connil et al., 2002; Tanaka et al.,
2008; Pereira et al., 2009; Perez et al., 2015). Furthermore, it has
been demonstrated that these pathways can bring supplementary
energy for the cells by energizing the protonmotive force
associated to the membrane (Figure 1). In fact, a net positive
charge is transferred outside the cell during the exchange between
precursor (amino acid) and BA (Molenaar et al., 1993; Konings
et al., 1997; Konings, 2006; Wolken et al., 2006; Pereira et al.,
2009).

The presence of dangerous amounts of BAs is associated
with a relevant growth (>7 log cfu/g) of decarboxylating
microorganisms. For this reason, some authors proposed
microbial quality indices based on food BA content as indirect
indicators of excessive microbial proliferation (Karmas, 1981;
Ruiz-Capillas and Jiménez-Colmenero, 2004; Baixas-Nogueras
et al., 2005; Özogul and Özogul, 2006; Al Bulushi et al., 2009).
Nevertheless, fermented foods requires (by definition) a massive
growth of microorganisms which are often responsible for

noteworthy BA accumulation, especially during the ripening
phase (when selected starter cultures can be replaced by
wild strains) or when natural (spontaneous) fermentations are
adopted (Suzzi and Gardini, 2003; Ancín-Azpilicueta et al., 2008;
Rabie et al., 2011a; Linares et al., 2012).

BAs can be produced both by Gram-positive and Gram-
negative bacteria (Landete et al., 2008a; Marcobal et al., 2012;
Wunderlichová et al., 2014). Also some fungi (yeast and molds)
are involved in BA accumulation (in particular cadaverine and
putrescine), but their role is debated and, for many aspects,
controversial (Caruso et al., 2002; Gardini et al., 2006; Kiss et al.,
2006; Tristezza et al., 2013; Qi et al., 2014).

In general, there is no legal regulation about the BA content
in food. This is mainly due to the individual toxicological
threshold, which can be extremely variable from few mg/kg
in sensitive person to some hundred mg/kg in healthy person
(Shalaby, 1996; McCabe-Sellers et al., 2006; Fogel et al., 2007;
Hungerford, 2010; Knope et al., 2014). The only exception is
the scombroid fish, because its richness in histidine and aptitude
to support the growth of decarboxylating microorganisms, for
which several national and international authorities define a
limit for histamine (Anonymous, 2001; The Australian and New
Zealand Food Standards Code, 2002; European Community
Commission Regulation, 2005; Prester, 2011). In alcoholic
beverages (wine, beer, etc.) the toxicity of BAs is enhanced by
the presence of ethanol, an inhibitor of mono amino oxidases
(Ancín-Azpilicueta et al., 2008). Nevertheless, the presence of
high amounts of BA can be related to scarce microbiological
quality of raw materials, during the improper storage of the
products, as well as an uncontrolled fermentation (Suzzi and
Gardini, 2003; Naila et al., 2010; Linares et al., 2012).

Recently, a qualitative risk assessment concerning BA in
fermented foods was conducted in the European Union

FIGURE 1 | Amino acid decarboxylation-antiporter reactions in which an amino acid is transported into the cell, where decarboxylation occurs.
A proton (H+) is consumed, and a carbon dioxide (CO2) is removed during the reaction, and the product (biogenic amines) is exported from the cell via an antiporter.
HDC, histidine decarboxylase; TDC, tyrosine decarboxylase; LDC, lysine decarboxylase; ODC, ornithine decarboxylase.
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(EFSA, 2011). According to this study, histamine was present in
detectable amounts in the 85% of the dairy fermented products,
83% of fermented vegetables, 45% of fermented meats, and 73%
of fish products. The higher concentrations of that were found in
fish sauces, dried anchovies, and cheeses. Tyramine was detected
in 75% of dairy products and 83% of fish products, but the higher
concentrations were found in meat product (fermented sausages
and cured meats) and cheeses. Similar results were characterized
in 2-phenylethylamine formation in various food products as
well. In addition, putrescine, cadaverine, and tryptamine were
most frequently detected in dairy food products.

This review summarizes the current state of knowledge of
the effects of the major environmental and process factors on
the decarboxylase activity of microorganisms. It also highlights
the strategies available to reduce the BA accumulation in food
products.

BIOGENIC AMINE TOXICITY AND
DECARBOXYLATING
MICROORGANISMS IN FOOD

The decarboxylation process can be catalyzed through two
biochemical pathways. The first is catalyzed by naturally
occurring endogenous amino acid decarboxylases present in
animal or vegetable cells and the second by exogenous enzymes
produced by various microorganisms under favorable conditions
(Halász et al., 1994).

Natural polyamines represent the main amines found in
fresh food products (fish, fruits, vegetable, milk, and meat)
where they have a physiological role associated with cell growth
and proliferation (Bover-Cid et al., 2014). The intracellular
biosynthesis of endogenous amines such as the polyamines
spermine and spermidine and other amines like histamine
involves the incorporation of aminopropyl groups into their
precursor putrescine (Bardócz, 2005).

Exogenous BAs derive from decarboxylases secreted by
microorganisms, which are present naturally in food products,
introduced by contamination, or also added to foods as a starter
culture. The enzymatic decarboxylation process depends on
various factors such as the availability of the substrate in free
form, the presence of decarboxylase-producing microorganisms
and the medium conditions (pH, temperature, O2, etc.). The free
amino acid are either naturally present in the food or produced
via proteolysis both by endogenous proteases in the raw products
and microbial enzymes (Danquah et al., 2012). In fact, proteolysis
may play an important role in the release of free amino acids
from tissue proteins, which offer a substrate for decarboxylases
reactions (Shalaby, 1996).

Risk Associated to Biogenic Amines in
Food
The presence of BAs in food can constitute a risk to the consumer
health (Gram and Dalgaard, 2002; Gram et al., 2002; Özogul
et al., 2011). Ingestion of food containing high amounts of
BAs is implicated in various pharmacological and toxicological

reactions. In fact, BA intake can cause headaches, heart
palpitations, vomiting, and diarrhea. Moreover, hypertensive
crises have been reported after consuming food containing BAs,
such as cheese, wine, beer, and vegetables including sauerkraut,
broad bean, banana peel, and avocado (Moret et al., 2005; Maintz
and Novak, 2007; Hungerford, 2010).

Once the decarboxylase enzymes are synthesized by the
bacteria, BA production can continue even if the bacteria
are eliminated from the food product by cooking or other
technological treatment. The BAs produced are heat stable and,
once formed, are not destroyed by cooking, smoking, freezing, or
some other type of preservation techniques (Becker et al., 2001).

Under normal conditions in humans, exogenous amines
ingested with food are rapidly detoxified (Hornero-Mendez and
Garrido-Fernandez, 1997). The enzymes monoamine oxidase
(MAO) and diamine oxidase play an important role in this
detoxification process. However, the severity of BA toxicological
effects depends on the intake with food, on individual allergy
and on the consumption of MAO inhibiting drugs, alcohol, and
other food amines (Silla Santos, 1996; Sathyanarayana Rao and
Yeragani, 2009).

The BAs with the more severe acute effects for human health
are histamine and tyramine.

Histamine causes a symptomatology known as “scombroid
fish poisoning” consisting in flushing of the face, neck and
upper arms, oral numbness and/or burning, metallic taste,
headache, itchy rash, heart palpitations, asthma attacks, hives,
gastrointestinal symptoms, and difficulties in swallowing (Lehane
and Olley, 2000; Maintz and Novak, 2007; Hungerford, 2010;
Knope et al., 2014). This type of food intoxication often results
from consumption of scombroid fish (such as tuna, sardines,
anchovies, bonito, mackerel, etc.), which are rich in histidine,
because of the proliferation of histidine decarboxylative Gram-
negative bacteria. However, these BAs can also be found in
fermented products (wine, cheese, fish sauce, and fermented
meat) where it is mainly produced by lactic acid bacteria
(LAB).

Tyramine toxicity is known as “cheese reaction” because it
was initially observed following the consumption of cheeses
with high level of this BA (Shalaby, 1996). Tyramine has
a vasoconstrictor effect and causes dietary-induced migraine,
increased cardiac output, nausea, vomiting, respiratory disorders,
and elevated blood glucose (Shalaby, 1996; McCabe-Sellers et al.,
2006; Scheepens et al., 2010; Stadnik and Dolatowski, 2010;
Marcobal et al., 2012). This increase in blood pressure due to
tyramine can cause heart failure or brain hemorrhage (Naila et al.,
2010). Besides to these effects, tyramine has also been determined
to have an effect on the gut microbiota. The adherence of some
enteropathogens, such as Escherichia coli O157:H7, to intestinal
mucosa is increased in the presence of tyramine (Russo et al.,
2012). This type of food intoxication is usually associated with
the consumption of fermented foods because LAB are the most
efficient producers of tyramine (Shalaby, 1996; Ladero et al.,
2012).

As far as other BAs, putrescine and cadaverine have low
toxicological properties on their own (Košmerl et al., 2013).
However, they could potentiate the effects of histamine and
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tyramine toxicity by inhibiting their metabolizing enzymes
(Landete et al., 2007; Al Bulushi et al., 2009). Moreover,
putrescine and cadaverine can act as a precursor to the
formation of carcinogenic N-nitrosamines in the presence of
nitrite (Rauscher-Gabernig et al., 2012; De Mey et al., 2014).
High concentrations of putrescine have been linked to tumor
development such as promotion of CT-26 colon tumor cell
growth (Farriol et al., 2001).

Despite their cellular functions, the polyamine agmatine,
spermine, and spermidine catabolism and their excess levels can
lead to toxicity. It has been demonstrated that spermine and
spermidine could decrease blood pressure, inhibit blood clotting
and provoke respiratory symptoms and neurotoxicity resulting in
renal insufficiency (Pegg, 2013).

Even if 2-phenylethylamine is present naturally in several
mammalian tissues such as the brain, it is found in certain
foodstuffs (chocolate, cheese and red wine) and has been
known to trigger migraine attacks and increase blood pressure
(Panoutsopoulos et al., 2004; Souza et al., 2005).

Main Microbial Groups Involved in BA
Production in Foods
Among Gram-negative bacteria, spoilage microorganisms
belonging to enterobacteria and pseudomonads are known as
the major producers of histamine, cadaverine, and putrescine
(Ben-Gigirey et al., 2000; de las Rivas et al., 2007; Pircher
et al., 2007; Lorenzo et al., 2010). The genus Photobacterium
is often involved in the accumulation of histamine in fish
and seafood products, together with Aeromonas hydrophila
and enterobacteria such as Morganella morganii, Enterobacter
aerogenes, Raoultella planticola, and Klebsiella oxytoca (Morii
and Kasama, 2004; Veciana-Nogués et al., 2004; Kanki et al.,
2007; Al Bulushi et al., 2009; Fernández-No et al., 2010; Küley
et al., 2013). BAs produced by enterobacteria were also found
in fermented sausages, meat, and cheeses (Ruiz-Capillas and
Jiménez-Colmenero, 2004; Bover-Cid et al., 2009; Linares et al.,
2011).

The ability to produce BAs is widespread also among Gram-
positive bacteria. The decarboxylase activity has been found
in strains belonging to the genera Staphylococcus and Bacillus
(Landeta et al., 2007; Chang and Chang, 2012). However, the
attention has been mainly focused on LAB, which are commonly
present in the ripening microbiota of several fermented foods.
In fact, LAB can produce histamine, cadaverine, putrescine,
but, in particular, they are the most efficient producers of
tyramine (Arena and Manca de Nadra, 2001; Pereira et al., 2001;
Suzzi and Gardini, 2003; Pircher et al., 2007; Buňková et al.,
2009, 2011; Kuley and Özogul, 2011; Ladero et al., 2012). The
tyrosine decarboxylase of LAB is often able to decarboxylate
also phenylalanine (producing 2-phenylethylamine) even if with
a minor efficiency compared to tyrosine (Marcobal et al.,
2006a). This ability was confirmed by several authors which
also underlined that phenylalanine was used as substrate by
the enzyme only when tyrosine was not available (Beutling
and Walter, 2002; Pessione et al., 2009; Bargossi et al.,
2015b).

Oenococcus oeni, Lactobacillus hilgardii, Lactobacillus
fructivorans, Pediococcus parvulus, Lactobacillus brevis are
responsible for amines accumulation in wine. Decarboxylating
strains of Lactobacillus curvatus, Enterococcus faecalis,
Enterococcus faecium, Lactobacillus fermentum, Lactococcus
lactis, Streptococcus thermophilus, and Lactobacillus paracasei
were isolated from cheese, meat, and sausage with high BA
content (Moreno-Arribas et al., 2003; Smit et al., 2008; Marcobal
et al., 2012; Russo et al., 2012; Wunderlichová et al., 2014).

Yeast strains belonging to various species including
Saccharomyces cerevisiae, Hanseniaspora uvarum, Candida
stellata, Kloeckera apiculata, Metschnikowia pulcherrima, and
Brettanomyces bruxellensis are also capable of aminogenesis
(Romano et al., 2007). Yeast strains isolated from grapes and
wines are able to yield high BA amounts (Caruso et al., 2002). In
addition, the fungus Botrytis cinerea is considered a producer of
BAs in grape must (Bäumlisberger et al., 2015).

The genetic organization of decarboxylase clusters has been
reviewed for tyramine (Marcobal et al., 2012), histamine (Landete
et al., 2008a), and putrescine (Wunderlichová et al., 2014).

ENVIRONMENTAL FACTORS
INFLUENCING BIOGENIC AMINE
FORMATION

The main environmental factors affecting microbial activities
in foods are temperature, salt concentration, and pH. These
factors can influence the formation of BAs in two ways. In
first instance, they are responsible for the overall metabolism
of the decarboxylating cells. In addition, the activity of
decarboxylases depends on the same parameters. The optimal
values of environmental factors for these two different aspects
can be different (Bargossi et al., 2015a) and the final
amount of BAs is the result of this double influence.
In other words, growth of aminobiogenetic bacteria is an
essential but not sufficient condition for BA production
(Marcobal et al., 2006b). Moreover, some decarboxylase can
maintain their activity independently of the integrity of the
microbial cells in a wide range of conditions. This has been
demonstrated for tyrosine decarboxylase in lactobacilli (Moreno-
Arribas and Lonvaud-Funel, 2001), histidine decarboxylase in
S. thermophilus (Tabanelli et al., 2012) and Gram-negative
bacteria such as Photobacterium phosphoreum, Photobacterium
damselae, M. morganii, and R. planticola (Kanki et al.,
2007).

In general, the data reported indicate a great variability in the
response of the cell decarboxylase systems to the environmental
factors, which reflects differences among species and genus
metabolic pathways, experimental conditions, type of matrix
(food) considered, but also it is the results of the great
heterogeneity characterizing decarboxylase activity, even within
strains of the same species.

Even if the environmental factors significantly affect the rate
and the entity of BA accumulation, in fermented foods their
modulation is often limited by the conditions, which allow
the fermentation and ripening processes (in turn linked to the
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“traditional” features of the products) and by health trends, as in
the case of the reduction of NaCl content.

Temperature
Temperatures close to the optimum growth values, promoting
cell metabolism and proliferation, generally favor the production
of BAs, which is often related to the number of cells present
in the system. However, the presence of high number of
decarboxylating cells is not a sufficient condition to explain the
final BA amount (Marcobal et al., 2006b, 2012).

Studies carried out in a model system using a E. faecalis EF37,
demonstrated that the increase of temperature from 16 to 44◦C
coincided with a faster growth and with a more rapid and intense
accumulation of tyramine (Gardini et al., 2001). More recently,
Bargossi et al. (2015a) studied the effect of temperature on the
activity of a pure commercial tyrosine decarboxylase extracted
from E. faecalis and found the highest decarboxylation efficiency
at a temperature comprised between 30 and 37◦C. By contrast,
Zhang and Ni (2014) found that a tyrosine decarboxylase from
L. brevis had its optimum temperature at 50◦C, but it was
rapidly inactivated at higher temperature. However, the activity
of the enzyme at the optimum temperature was rapidly decreased
during the permanence at 50◦C for an hour.

Cells of E. faecalis and E. faecium strains suspended in
buffered systems containing tyrosine and incubated at different
temperatures confirmed the maximum decarboxylase activity at
37◦C after 2 h of incubation. However, after 24 h the maximum
tyramine content was surprisingly found in the sample incubated
at the less favorable temperature (20◦C; Bargossi et al., 2015a).

Using an experimental design in which several parameters
were taken into consideration, Marcobal et al. (2006b) found
that the optimum temperature for tyramine production under
aerobic condition by E. faecium and L. brevis was 32◦C. By
contrast, under anaerobic conditions, the maximum tyramine
concentration was obtained at 22.0–24.5◦C.

The histidine decarboxylase of a cell free extract of a
S. thermophilus strain had its maximum activity at 50◦C.
It decreased rapidly at higher temperature (60◦C), while it
maintained a detectable activity at 5◦C (Tabanelli et al., 2012).
By contrast, active cells of the same strain produced more
rapidly histamine at 40◦C, while the BA accumulation was
limited or negligible at 25 and 20◦C within the incubation
period considered. In addition, an histamine producing strain
(S. thermophilus) incubated at low-temperature (4◦C) in milk
produced less histamine than did the same strain kept at
42◦C. This reduction was attributed to a lower activity of the
histidine decarboxylase enzyme rather than to a reduction in
gene expression or the presence of a lower cell number (Calles-
Enríquez et al., 2010).

Regarding Gram-negative bacteria, Morii and Kasama (2004)
studied in P. phosphoreum cell free extract the activity of two
different histidine decarboxylases and found that the inducible
enzyme had its maximum activity at 30◦C while the constitutive
one at 40◦C. The optimum growth temperature of the strain
was 25◦C while the specific activity of histidine decarboxylase
of cell free extracts was extremely high in the cells grown at
low temperature (7◦C). The histamine producing potential of the

Gram-negative bacterium Mycobacterium psychrotolerans was
studied in relation to the temperature in the range 0–20◦C.
Increasing temperature enhanced the rate of accumulation but
also the final tyramine accumulation (Emborg and Dalgaard,
2008). The optimum temperature for histidine decarboxylase
activity of bacteria belonging to different species (M. morganii,
R. planticola, P. phosphoreum, and P. damselae) ranged between
30 and 40◦C. It was still active at 5◦C but not at 60◦C (Kanki et al.,
2007).

Scarce reports are available concerning the relation between
other BAs (putrescine, cadaverine, and tryptamine) and
temperature. Generally, the accumulation of BAs, among
which cadaverine and putrescine increased with temperature
(Wunderlichová et al., 2014); nevertheless, prolonged storage
at low temperatures can result in accumulation of putrescine
explained by the metabolism of psychrotrophic pseudomonads
(Paulsen and Bauer, 1997).

Bubelová et al. (2015) studied the production of putrescine
and cadaverine in relation to temperature in Serratia marcescens.
They found that the maximum amount of these two BAs was
reached at 20–30◦C. If the production was compared to the
biomass (“yield factor”), the decarboxylase activity of the single
cells was maximum at 10◦C.

In general, the ability to produce BAs is limited by the
decreasing of the temperature. This implies that the control
of the cold chain during storage and commercialization is a
main tool to avoid the accumulation of undesired products
after manufacturing, especially in not fermented foods, such as
fishery products (Knope et al., 2014). Several authors stressed
the crucial effect of the storage temperature on the histamine
formation (and other BAs) in fish such as tuna (Veciana-Nogués
et al., 2004; Emborg and Dalgaard, 2006; Kanki et al., 2007)
and anchovies (Veciana-Nogués et al., 1997; Visciano et al.,
2007).

Regarding fermented foods, the temperature of fermentation
and during ripening has to allow the microbiological activity
of the desired microbiota and the range within they can be
modulated is rather strict, defined by the protocols for the
production of the different fermented food typologies. The
temperature applied during the first 3 days of fermentation
of dry sausages influenced the BA accumulation (tyramine, 2-
phenylethylamine, cadaverine, and putrescine) during all the
ripening period (1 month) with increasing values in the presence
of higher temperature, which was between 15 and 25◦C (Gardini
et al., 2008; Bover-Cid et al., 2009). Higher fermentation
temperatures (and higher relative humidity) favored tyramine
and 2-phenylethylamine accumulation in the Spanish fermented
sausages Fuet and Llonganissa inoculated with L. curvatus
(Latorre-Moratalla et al., 2012). By contrast, no differences were
found in Turkish sausages ripened at 22 or 26◦C (Gücükoğlu and
Küplülu, 2010).

Ruiz-Capillas et al. (2007) found that tyramine was accumul-
ated in higher amounts in pressurized sliced cooked ham packaged
under vacuum when the storage temperature was higher. Also
fermented sausages stored after production under room
temperature were characterized by higher BA content than
refrigerated products (Komprda et al., 2001).

Frontiers in Microbiology | www.frontiersin.org 5 August 2016 | Volume 7 | Article 1218

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01218 August 12, 2016 Time: 11:3 # 6

Gardini et al. The Impact of Factors on Biogenic Amine Content

A higher tyramine content was found in salted duck
inoculated with E. faecalis stored at 20◦C compared with
the samples incubated at 4◦C; however, no differences were
found in the tyrosine decarboxylase gene expression indicating
an univocal effect of temperature on enzymatic activity (Liu
et al., 2014). Also in green fermented olives, the adoption
of a low fermentation temperature reduced the accumulation
of cadaverine and tyramine together with the formation of
“zapatera” defect (García García et al., 2004).

The application of thermal treatments (when possible) to
raw material such as milk before fermentation (pasteurization)
can contribute to the elimination of the wild decarboxylating
microbiota. The Gram-negative BA producers (enterobacteria
and pseudomonads) are rapidly inactivated by temperatures
higher than 60◦C. LAB are more resistant and require more
drastic thermal treatments. For this reason, usually cheeses
from pasteurized milk are characterized by lower BA content
(Schneller et al., 1997; Novella-Rodríguez et al., 2003; Novella-
Rodríguez et al., 2004; Marino et al., 2008). However, Ladero et al.
(2011) observed the survival in skim milk of a tyraminogenic
strain of L. curvatus after a treatment at 78◦C. Independently
of the cell viability, the information concerning the thermal
stability of decarboxylase is scarce. The histamine decarboxylase
produced by S. thermophilus maintained a residual activity after
treatments at 70 and 75◦ for 10 min (Tabanelli et al., 2012). In any
case, the pasteurization of milk does not avoid the presence of a
ripening microbiota, which can contribute to BA accumulation.
Pinho et al. (2001) found a relevant increase in BA content
of a Portuguese cheese (Azeitao) when the storage temperature
increased from 4 to 25◦C, related to the higher protease activity.
In addition, it has been observed that the BAs content was higher
in Dutch type cheese when the temperature of ripening and
storage increased (Buňková et al., 2010; Pachlová et al., 2012).

Salt Concentration
In general, increasing salt concentrations contribute to the
reduction of BA accumulation in foods, mainly reducing
the metabolic activities of decarboxylating microorganisms.
In particular, Gram-negative bacteria are more inhibited by
increasing salt concentrations than Gram-positive microbiota.
However, the health trend to reduce NaCl concentration is in
contrast with this possible tool to reduce BA accumulation in
foods.

The pure tyrosine decarboxylase tested by Bargossi et al.
(2015a) demonstrated a limited loss of its relative activity in the
presence of increasing amount of NaCl up to 10%. Only the
addition of 15% of salt determined a more marked reduction of
the decarboxylation potential, which remained, however, higher
than 50% of the activity recorded in the absence of salt added.

In an E. faecalis strain (EF37) grown on a synthetic medium,
the ability to accumulate tyramine and phenylethylamine was
inversely related to the NaCl concentration, in a range comprised
between 2 and 6%, while the proteolysis showed an optimum
between 2 and 3% (Gardini et al., 2001). In fermented
sausages inoculated with the same tyraminogenic E. faecalis
strain, increasing amounts of salt reduced the concentration of
tyramine, 2-phenylethylamine produced by enterococci, but also

limited cadaverine and putrescine production by enterobacteria
(Gardini et al., 2008; Bover-Cid et al., 2009).

The tyramine production of different strains of E. faecalis
and E. faecium was studied in buffered systems containing
tyrosine; the results indicated that E. faecalis partially reduced
its tyraminogenic potential of cells passing from 0 to 5% of
NaCl but the decarboxylation activity did not change significantly
increasing NaCl concentration up to 15%. On the other hand,
the same enzymatic activity in cells of E. faecium remained
quite constant independently of the NaCl concentration (Bargossi
et al., 2015a). Strains of Lactococcus lactis ssp. lactis and L. lactis
ssp. cremoris reached their maximum tyramine production in
synthetic medium only in the presence of the higher salt
concentration used in the trials (2%; Buňková et al., 2011); in
addition the same condition allowed the maximum tyramine
production rate as well as the lowest time for the production of
detectable amounts of the BA.

A different role of salt on the histidine decarboxylase activity
in a strain of S. thermophilus was highlighted in viable cells
and in cell free extract. While the production of histamine
was almost completely prevented in living cells by a salt
concentration of 2.5% (by limiting or inhibiting the growth
potential of S. thermophilus), the activity of the decarboxylase in
cell free extract was unaffected up to 5% NaCl and then slowly
decreasing, maintaining an activity, even if reduced, at 20–30%
NaCl (Tabanelli et al., 2012). The presence of NaCl led to an
up-regulation of histidine decarboxylase gene in the same strain
grown on skim milk, suggesting a potential role of this enzyme
also in osmoprotection mechanisms (Rossi et al., 2011). This
confirmed that the activation of decarboxylase systems is a part
of complex metabolic responses in the presence of different stress
conditions (Pessione et al., 2009).

A halophilic LAB strain of Tetragenococcus muriaticus isolated
from fish sauce produced histamine during the late exponential
growth phase, reached a maximum production of this BA at 5–
7% of NaCl, and was able to maintain a histidine decarboxylase
activity also in the presence of 20% of salt (Kimura et al., 2001).
On the other hand, the histamine decarboxylase activity of two
strains of P. phosphoreum decreased rapidly with the increase of
salt (2–5% of the optimum activity in the presence of 10% of
NaCl), while more resistant (40–50% of the optimum activity)
resulted the activity of the same enzyme in strains of R. planticola,
P. damselae, and M. morganii (Kanki et al., 2007). Using a strain
of P. phosphoreum, Morii and Kasama (2004) found that histidine
decarboxylase activity in cell free extract was higher at level of
5% NaCl, while the cells were not able to multiply (and produce
BA) under this salt concentration. Similar effects were described
also for Bifidobacteria (Lorencová et al., 2014). The hypothesis of
this possible enhancing effect on the BA production of NaCl has
been found by some authors in the essential role of Na+ ion in
the sodium/proton antiport system through which H+ ions are
removed from the cell (Pereira et al., 2009; Buňková et al., 2011;
Lorencová et al., 2014; Bubelová et al., 2015).

Serratia marcescens produced putrescine and cadaverine
with more efficiency in the presence of 1–3% NaCl (3–5 in
the yield factor was applied; Bubelová et al., 2015). Cells of
M. psychrotolerans produced more histamine when grown in the
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presence of 4% NaCl compared with lower salt concentration
(Emborg and Dalgaard, 2008) even if this salt concentration
slowed the growth of the strain. In other words, stressed cells
seem to activate the decarboxylating pathways in the framework
of more complex response systems. This make the potential of BA
production by each single cell more efficient. Also E. aerogenes
produced the maximum amounts of cadaverine, putrescine, and
histamine in the presence of the 3% of NaCl (Greif et al., 2006).

In fermented sausages, BAs are accumulated during ripening.
However, the rate of accumulation decreases with the decrease
of aw due to the water losses. Products packaged under modified
atmosphere packaging (MAP), in which the weight losses were
inhibited, continued to accumulate BAs when the packaging
was carried out at high aw (0.92 and more; González-Tenorio
et al., 2013; Tabanelli et al., 2013). The Greek cheese Feta,
characterized by a high salt content, with a ripening carried out
in brine and with a low pH, was characterized by a noteworthy
amine concentration (about 200 mg/kg of tyramine, 90 mg/kg
of histamine, and 200 mg/kg of putrescine; Valsamaki et al.,
2000).

pH
Since the decarboxylation is a mechanism of cells to counteract
acidic stress, it is clear that several studies were focused on the
study of the relationships between pH and BA accumulation.
Also in this case, the effect of pH is different if the focus
is directed toward the activity of the pure enzyme or the
decarboxylase activity of the living cells. In any case, it has been
extensively demonstrated that the transcription of genes of many
decarboxylase clusters are induced by low pH and improves the
fitness of cells subjected to acidic stress (Pereira et al., 2009;
Pessione et al., 2009; Marcobal et al., 2012; Romano et al., 2012,
2014; Perez et al., 2015)

A commercial pure tyrosine decarboxylase had its maximum
activity in buffered systems at pH between 5 and 6 (Bargossi et al.,
2015a), while at pH 4 the same activity was extremely weak. The
tyrosine decarboxylase obtained from a strain of L. brevis had
its maximum relative activity at pH 5, while it maintained the
higher stability at pH 7.4, e.g., 92% activity retained after 7 days
of incubation (Zhang and Ni, 2014).

By contrast, a strain of E. faecalis under the same conditions
showed the maximum tyramine accumulation at pH 4 after 2 h of
incubation and pH between 4 and 5 after 24 h. In the same system,
a strain of E. faecium did not show relevant differences in its
decarboxylase activity at pH between 4 and 6. No pH differences
in relation to the production of tyramine were observed in whole
cells or cell free extract of L. brevis, with optimum activity at
pH 5 (in the range 2–9); however, the cell-free extract had a
higher activity compared with the whole cells (Moreno-Arribas
and Lonvaud-Funel, 2001). Two tyrosine decarboxylases from
E. faecalis and E. faecium (heterologously expressed in E. coli) had
their optimum pH for the activity at 5.5 and 6, respectively (Liu
et al., 2014).

The enhancing effects of lower pH on tyramine production
(as responses to acidic stress) was observed also in Enterococcus
durans (Fernández et al., 2007), E. faecium (Marcobal et al.,
2006a; Pereira et al., 2009). Similar effects were observed for the

histidine decarboxylase in L. lactis (Trip et al., 2012) and L. brevis
(Marcobal et al., 2006b).

The histidine decarboxylase of S. thermophilus has its
optimum pH at pH 4.5, measured in cell free extract, while
histamine accumulation by viable cell cultures was very low at
the same pH, due to the negative effect of acidity on the overall
metabolism of the strain (Tabanelli et al., 2012).

Regarding Gram-negative bacteria, the pure histidine
decarboxylase from P. phosphoreum had its higher activity at
pH 7; this value decreased at 6.0 for P. damselae and 6.5 for
M. morganii and R. planticola (Kanki et al., 2007). Morii and
Kasama (2004) found that an optimal histidine decarboxylase
activity was slightly lower (pH 6) in P. phosphoreum, while BA
production by cells of Enterobacter cloacae and E. aerogenes was
higher at pH 6 (Greif et al., 2006).

Cid et al. (2008) suggested that in fermented sausages,
the accumulation of tyramine by LAB (L. curvatus) started
immediately at the end of fermentation, when pH of the sausages
has already reached its minimum value. Other BAs, produced by
the same LAB, were produced more gradually only at a later stage
of ripening.

TECHNOLOGICAL FACTORS FOR
CONTROLLING BIOGENIC AMINE
ACCUMULATION

Use of Starter Culture
The addition of selected starter cultures is one of the main
tools able to counteract BA accumulation in fermented foods. In
first instance, the microorganisms used have to be characterized
by the absence of any decarboxylating activity. Then, they
had to be active in inhibiting the growth performances and
the aminobiogenetic potential of wild decarboxylating bacteria.
In addition, aspects such as the production of antimicrobial
compounds like bacteriocins, as well as the ability to degrade
BAs have to be considered (Ayhan et al., 1999; Bover-Cid et al.,
2000). The possibility of some microorganisms to metabolize BA
will be specifically discussed in Section “Microorganisms Able to
Metabolize Biogenic Amine.” The use of LAB cultures producing
bacteriocins can have an important potential in limiting BA
accumulation, even if further researches are needed to clarify
this potential. Recently it has been demonstrated that using
bacteriocinogenic strains of L. lactis it is possible to limit BA
production by S. thermophilus and E. faecalis (Tabanelli et al.,
2014).

The use of starter cultures has a consolidated application
in cheese and the selection of not decarboxylative cultures for
dairy products is well established since long time (Cogan et al.,
2007). The use of selected starter cultures aimed to limit BA
accumulation in dairy products has been recently reviewed by
Linares et al. (2012). The use of autochthonous starter has been
tested successfully in ewe’s milk cheeses by Renes et al. (2014)
who found a significantly lower BA content when L. lactis starter
cultures were used. These results confirmed the observation of
Novella-Rodríguez et al. (2002a) regarding goat cheeses. Also in
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Manchego cheese, the use of autochthonous starter cultures of
L. paracasei decreased the accumulation of BA, even if compared
with commercial starter cultures (Poveda et al., 2015).

European Food Safety Agency (EFSA) recommends that so-
called autochthonous strains (i.e., selected strains originating
from each specific fermented product) with suitable technological
profiles and reduced tendencies to produce BA should be selected
as starter cultures (EFSA, 2011). Recently, it was suggested to
use autochthonous starter cultures for fermentation of artisanal
sausages (Talon et al., 2007; Casquete et al., 2011). Latorre-
Moratalla et al. (2012) have extensively reviewed many of
these aspects relevant in fermented sausage production. The
addition of pure or mixed selected starter cultures can decrease
BAs accumulation in sausages. Mixed starters were reported
to perform better than single starters to control the growth
of different bacterial groups (Latorre-Moratalla et al., 2010b;
Naila et al., 2010). In fermented sausages, autochthonous starter
cultures determined BA reductions higher (Latorre-Moratalla
et al., 2010a; Casquete et al., 2011; Renes et al., 2014) than
commercial mixed starter cultures (Ayhan et al., 1999; Gücükoğlu
and Küplülu, 2010). In fact, Latorre-Moratalla et al. (2012)
reported that mixed starter cultures of amine negative strains
of LAB and coagulase-negative staphylococci, well adapted to
the meat fermentation environment, were the best choice to
reduce BA content in sausages. In order to avoid formation of
high level of BAs during fermentation of sausages, the use of
raw materials with low microbial counts is recommended. The
main level of BA production was during the first 3 days, when
a sharp pH decrease and the development of LAB occurred
during the fermentation process of dry sausages (Bover-Cid et al.,
1999). LAB used as starter cultures can induce rapid acidification,
thus inhibiting the growth of decarboxylating microorganisms,
resulting in decreasing formation of BAs (Zhang et al., 2013).
However, it is well known that the use of selected starter cultures
alone cannot assure the reduction or inhibition of BA production
(Parente et al., 2001).

The production of BA in wine is mainly associated with the
activity of LAB (Lonvaud-Funel, 2001). For this reason, particular
attention has been posed on the selection of starter cultures
used for malolactic fermentation. Strains of O. oeni, the main
responsible for the conversion of malic acid into lactic acid in
wine, can produce histamine (Lonvaud-Funel and Joyeux, 1994;
Guerrini et al., 2002) and tyramine (Gardini et al., 2005) and
selected strains without this potential should be used for the
conduction of this process in winemaking (Moreno-Arribas et al.,
2003).

Also in the production of sauerkraut, the use of starter cultures
can contribute to the reduction of BA content (Kalač et al., 2000;
Rabie et al., 2011a).

Technological Additives
The use of some additives is widespread to improve the
appearance and the quality of the final product such as
development of the typical color of the cured meat, inhibition of
mold growth and decrease of toxic compounds in the product.
Thus, the effects of these additives on BA generation are
important.

The scarcity of sugars, and in general poor nutritional
environments, has been often associated to higher BA
accumulation, being decarboxylative pathways secondary
transport system providing metabolic energy (Konings, 2006).
For this reason, the in vitro production of BAs has been tested by
several authors in relation to sugar supply. Buňková et al. (2012)
found the maximum tyramine accumulation by E. durans in the
presence of the higher lactose concentration (5%). A less clear
effect of this sugar was observed for L. lactis: increasing lactose
concentration did not result in higher tyramine concentration
and this was attributed to the excess of metabolic energy obtained
by primary fermentation (Buňková et al., 2011). Higher amount
of tyrosine were produced by S. thermophilus in the presence of
limiting amounts of lactose (0.1%; La Gioia et al., 2011). Also
Landete et al. (2008b) observed that increasing concentration
of fructose and glucose progressively inhibited the histamine
accumulation of enological LAB belonging to the species
L. hilgardii, P. parvulus, and O. oeni.

In industrial formulations, especially in fermented sausages,
sugars (mainly glucose, sucrose, and lactose) are added in
order to improve the LAB fermentation process. González-
Fernández et al. (2003) investigated the influence of three
decarboxylase negative starter cultures in relation to different
composition and concentration of sugars, on the presence
of BAs in chorizo, a typical Spanish dry fermented sausage.
The highest concentrations of BAs were found at the end of
the ripening process in the control sausage with no starter
culture irrespective of the use of different sugar concentrations.
However, when a starter culture and sugar concentrations equal
to 0.5% or 1% were used, the presence of BAs in the sausage
decreased considerably in comparison with control and low
sugar concentration sausages. The production of high amounts
of putrescine (223–252 mg/kg) and tyramine (64–102 mg/kg)
was observed when the concentration of sugar in the sausage
was only 0.1%, even in sausages with a starter culture added.
Bover-Cid et al. (2001a) also found contents of tyramine and
cadaverine significantly higher in sausages without sugar in
their formulation. They concluded that sugar omission is not
recommended since it might increase BA accumulation during
the manufacture and storage of slightly fermented sausages. The
amount of sugar added can be a key factor in determining
the equilibrium among the microbial communities during the
fermentation step of sausages favoring the accumulation of
different BAs. The modulation of sugar addition between 0 and
1.4% determined the maximum tyramine content at intermediate
level, in correspondence with the maximum LAB and enterococci
growth. By contrast, at the extreme levels (0 and 1.4%), the
accumulation of putrescine and cadaverine was higher, associated
with the best performance of enterobacteria (Bover-Cid et al.,
2009). High accumulation of cadaverine and putrescine were
observed also in chorizo in the presence of low sugar addition
(0.1%) even in the presence of starter cultures added (González-
Fernández et al., 2003).

The use of essential oils as aroma and flavor ingredients
has increased recently because of the growing consumer
demand for natural products as natural food preservatives and
the replacement of synthetic additives in the food industry.
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Wendakoon and Sakaguchi (1993) reported that antibacterial
activity of essential oil such as eugenol present in clove
might delay the BA formation of E. aerogenes in mackerel
muscle extract. No amines were observed in blue fish burgers
treated with thymol, lemon extract, and grapefruit seed extract
combination with MAP (Del Nobile et al., 2009). Özogul
et al. (2015) investigated the impact of carvacrol at different
level (0.1, 0.5 and 1 ml/100 ml) on BAs production by
foodborne pathogens including, Staphylococcus aureus, E. coli,
Klebsiella pneumoniae, E. faecalis, Pseudomonas aeruginosa,
Listeria monocytogenes, A. hydrophila, and Salmonella Paratyphi
A in histidine decarboxylase broth. The results of this study
showed that all bacteria tested were able to decarboxylate more
than one amino acid and that carvacrol was able to reduce BAs
formation depending on its concentration and bacterial species.
Cai et al. (2015) reported low BAs content, especially histamine,
putrescine, cadaverine in red drum (Sciaenops ocellatus) filets
treated with 4 ml/l clove, cumin, and spearmint oils. In addition,
Bozkurt (2006) reported that the levels of histamine, putrescine,
and tyramine in sucuk (Turkish dry-fermented sausage) were
lower in sausages with green tea extract than control. In Gouda
cheese, the addition to curd of Zataria multiflora essential oil,
whose major constituent was carvacrol (71.1%) determined a
significant reduction of tyramine and histamine in the final
product (Gorji et al., 2014).

In this perspective, spices can affect BA contents in food.
Spices are often defined as aromatic, dried plant substances
used in foods for flavoring and coloring. Komprda et al.
(2004) reported that high content of red pepper, together with
starter cultures, contributed to the lower BA content in dry
fermented sausages. Red pepper contains capsaicin, known to
prevent the growth of some bacteria (Hirasa and Takemasa,
1998). The effects of a variety of spices including ginger,
garlic, green onion, red pepper, clove, and cinnamon were
investigated to reduce BA contents in myeolchi-jeot, Korean
salted and fermented anchovy (Mah et al., 2009). The greatest
inhibitory effect on BA production was found in the culture
treated by garlic extract while the other spice extracts showed
minor effect in reducing BA contents. In particular, ginger
extract reduced putrescine contents while red pepper extract
decreased cadaverine accumulation. Since garlic contains allicin,
antimicrobial component, its efficacy is probably related to the
presence of this molecule. Other studies (Shakila et al., 1996)
reported that clove and cinnamon reduced histamine production
of M. morganii by 95%.

Effects of Packaging on Biogenic Amine
Formation
There is evidence that oxygen can affect the BA production. For
example, it has been demonstrated that E. durans (Buňková et al.,
2012) and L. lactis (Buňková et al., 2011) tyramine accumulation
is favored by anaerobic conditions. A similar trend was reported
also by Cid et al. (2008) using a strain of L. curvatus. However,
the main technologies for food preservation based on atmosphere
modification are focused on oxygen exclusion. Nevertheless, in
such strategy, the principal aim, in relation to BA presence, is

not the inactivation of decarboxylase activity but the inhibition
of microbial population with decarboxylating properties.

In this perspective, the atmosphere used for packaging can
affect the qualitative and quantitative formation of BAs. MAP and
vacuum packaging (VP) play an important role in the selection
of spoilage microorganisms and, particularly, on decarboxylating
bacteria (Curiel et al., 2011).

CO2 is the main gas used as bacteriostatic agent. Different
concentrations of this gas in MAP have been applied to
prolong shelf-life of foods by inhibiting microbial growth of
Enterobacteria and H2S-producers bacteria (Lopez-Caballero
et al., 2002), histamine forming bacteria (Özogul and Özogul,
2006), Pseudomonas spp. (Li et al., 2014), Lactobacillus sakei
(Devlieghere et al., 1998) and psychrophilic microorganisms
(Arashisar et al., 2004). The CO2 concentration (>60%) in the
MAP caused significant reductions in the contents of total BAs in
barramundi filets (Yassoralipour et al., 2012) and sardine (Özogul
and Özogul, 2006). Rodrigues et al. (2016) also indicated that
lower production of putrescine and cadaverine was observed in
MAP (80% CO2/20% N2) and VP samples of rainbow trout. Yew
et al. (2014) investigated the major BA profile in Indian mackerel
packed in different carbon dioxide compositions (30, 60, 80, and
100% CO2) with content 5% O2 and corresponding N2 level. Each
amine responded differently to different CO2 levels. Histamine
concentration was reduced by 6.4, 8.5, 70.3, 78.8, and 90.2% in
fish packed under VP, 30, 60, 80, and 100% CO2, respectively.
In particular, histamine and tyramine increased rapidly in fish
packed under VP and 30% CO2. This was attributed to the
presence of histidine and tyrosine decarboxylase bacteria that
cannot grow in the presence of increasing CO2 concentration
(Barakat et al., 2000).

LAB, due to their capacity to grow under high concentrations
of CO2, constitute a substantial part of the natural microbiota
of MAP meats (Chouliara et al., 2007). Curiel et al. (2011)
demonstrated that under vacuum conditions or MAP (20%
CO2 and 80% N2) the enterobacteria producing putrescine,
cadaverine, and agmatine were inhibited. In addition, the
packaging under vacuum did not reduce significantly the
tyraminogenic potential of strains of Carnobacterium divergens.

Zhang et al. (2015) evaluated the effect of air and MAP on
the shelf life of chilled chicken. The putrescine and cadaverine
content of gas mixture-packaged samples was significantly
lower than that of the air-packaged samples during the
storage period. The production of these BAs was slowed
as the CO2 content increased, indicating that the increasing
concentration of CO2 inhibited the growth of putrescine and
cadaverine producing bacteria. The results are in agreement
with those reported by Rodriguez et al. (2015) who investigated
the effect of CO2 concentration on the formation of BAs
in shredded cooked chicken breast filet packed in modified
atmosphere. They reported that the putrescine and cadaverine
are affected by storage time and CO2 concentration. Putrescine-
producing bacteria are more CO2-resistant. The correlation
between BA formation and bacterial growth showed that
putrescine and cadaverine concentrations could be used as
quality indicators as their formation is related to total viable
count.
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Nowadays the most widely used active packaging technology
for food is oxygen scavengers which eliminate oxygen in the
packaging and in the product or permeating through the
packaging material during storage (Alvarez, 2000). Mohan et al.
(2009) investigated the effect of O2 scavenger on the formation
of BAs during chilled storage of seer fish (Scomberomorus
commerson) and indicated that the use of O2 scavenger with
the proper maintenance of chilled storage temperature helped
in reducing the formation of BAs and also reduced the risk of
Clostridium botulinum toxin. Similar results using commercial
O2 scavengers were reported by Mohan et al. (2008) for catfish
(Pangasius sutchi) steaks and Goncalves et al. (2004) for gilthead
sea bream (Sparus aurata).

Naila et al. (2010) indicated that active packaging, VP
and MAP inhibit formation of BAs more effectively than air
packaging, through inhibition of BA forming bacteria or enzyme
activity.

Other Non-thermal Treatments
Food irradiation can be used to increase the safety and shelf life
of foods by reducing microbial growth. Gamma-irradiation has
been reported to reduce BAs contents in food due to the delay
in the initial growth of adventitious microorganisms (Kim et al.,
2003, 2004). Low levels of BAs by gamma irradiation in pepperoni
sausage during storage were observed (Kim et al., 2005a).
Gamma irradiation at 5, 10, or 15 kGy reduced putrescine,
cadaverine, agmatine, histamine, tryptamine, spermine, and
spermidine during fermentation of low-salt fermented soy
paste (Kim et al., 2005b). Rabie et al. (2010) investigated
the effects of different doses (2, 4, and 6 kGy) of gamma
irradiation on BA formation in Egyptian fermented sausages.
Histamine was detected in irradiated samples, immediately after
irradiation, but not afterward and low levels of all BAs were
observed during storage period especially in products treated
at 6 kGy. Similar results were obtained for Blue cheese (Rabie
et al., 2011b). Chub mackerel (Scomber japonicus) in chilled
storage, after irradiation followed by vacuum packing slowed
down the formation of BAs (Mbarki et al., 2009). Özogul
and Ozden (2013) reported that radiation levels of (2.5 and
5 kGy) had similar effects on reducing the BA content except
for agmatine and tryptamine. Although radiation caused an
increase in spermine, agmatine, and tryptamine content in
sea bream muscle, the putrescine and cadaverine contents in
this product significantly decreased following the radiation
process.

Pulsed electric fields (PEF) is a non-thermal method of
food preservation that uses short pulses of electricity for
microbial inactivation and causes minimal detrimental effect
on food quality attributes (Quass, 1997). Previous studies
have proven that PEF treatment can be useful in the
sterilization of fruit juice under various conditions (Gurtler
et al., 2010; Guo et al., 2014). They observed a clear
microbial inactivation, depending on the juice, microorganisms,
treatment conditions, and equipment. In addition, increasing
the electric field strength (>600 kV/m) improved the inhibition
of microorganism growth in tilapia during storage (Ko et al.,
2016).

Microorganisms Able to Metabolize
Biogenic Amine
Many microorganisms can produce amino oxidases, which are
the enzyme responsible for BA detoxification. These enzymes
metabolize BAs firstly by deamination, with the production of
NH3 and H2O2 in the presence of oxygen. The aldehydes formed
is further reduced to the corresponding acids which can be
then transferred to the central metabolism of the cells (Cooper,
1997). This metabolic pathway can be used as a source of NH3
in nitrogen poor media. These enzymatic activities have been
evidenced in vitro in several microorganisms. Leuschner et al.
(1998) found these abilities widespread among Kocuria (former
Micrococcus) varians. In addition, they isolated amino oxidase
positive Brevibacterium linens strains, which were used for the
production of a surface ripened Munster cheese, causing the
reduction of BA (Leuschner and Hammes, 1998).

Amino oxidase activity was found also in Bacillus amyloli-
quefaciens and Bacillus subtilis (Zaman et al., 2010, 2011). Among
LAB, many strains of Lactobacillus, Pediococcus, and Oenococcus
showed these ability in culture media (García-Ruiz et al., 2011).
Similar activities were observed in vitro also in Lactobacillus casei,
Lactobacillus plantarum (Fadda et al., 2001; Herrero-Fresno et al.,
2012), and in L. sakei in ensiled fish slurry (Dapkevicius et al.,
2000). Herrero-Fresno et al. (2012) demonstrated also that the
use of two strains of L. casei with high degradation rates for
histamine and tyramine could reduce the accumulation of these
BAs in Cabrales-like mini-cheeses.

Also staphylococci were able to deaminate tyramine and
histamine in vitro (Martuscelli et al., 2000; Zaman et al., 2011).
However, the activity of selected staphylococci in real food
systems was limited by the presence of other nitrogen sources
easily available for these bacteria, such in the case of dry
fermented sausages (Gardini et al., 2002). In addition, in real
complex food systems, the BA reduction by an amino oxidase
positive L. casei strain cannot be clearly ascribed to an effective
BA deamination or to a specific antagonism of the strains toward
decarboxylating microorganism (Nishino et al., 2007). More
interesting results were obtained in a nitrogen poor matrix such
as wine, in which the use of strains of L. casei and Pediococcus spp.
(García-Ruiz et al., 2011), as well as L. plantarum (Capozzi et al.,
2012), determined a BA deamination.

Finally, some authors suggested the possibility to use purified
amino oxidase in foods with negligible results (Hobson and
Anderson, 1985; Dapkevicius et al., 2000). More interesting
reductions were observed in wine using fungal amino oxidases
(Cueva et al., 2012).

Effects of Pressure Treatments on BA
Formation
Among the alternative processes to thermal treatment for
food preservation, the field of high pressure processing, better
known as high hydrostatic pressure (HHP) or high pressure
homogenization (HPH), is one of the most scientifically explored.
Given the antimicrobial effects of HHP, this technology can
modify the microbiota of treated foods both quantitatively
and qualitatively, affecting also the food matrix characteristics
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(Georget et al., 2015). Novella-Rodríguez et al. (2002b) studied
the differences in BA formation in goat cheeses by using
pasteurized and pressurized milk and found no significant effects
between the two trials on tyramine, histamine, and putrescine
accumulations. The treatment at 400 MPa or 600 MPa of 21- and
35-day ripened cheeses determined a significant increase of both
aminopeptidase activity and free amino acid concentration. By
contrast, the total BA concentration was higher in the not treated
cheeses, especially in samples treated at 600 MPa (50% and more
of BA reduction; Calzada et al., 2013). In other words, HHP
treatment reduced the population of potentially decarboxylating
microorganisms, limiting BA accumulation also in the presence
of a higher concentration of precursors. Novella-Rodríguez et al.
(2002a) used HHP to accelerate cheese ripening, founding no
differences in tyramine content between treated and not-treated
goat cheese samples when 400 MPa were applied; however, in
the same work, a prolonged treatment at 50 MPa increased the
tyramine content.

Ruiz-Capillas et al. (2007) studied the BA formation in sliced
dry-cured “chorizo” sausage, HHP treated at 350 MPa for 15 min,
during chilled storage at 2◦C and found a significant reduction
of tyramine, putrescine, and cadaverine concentrations. The
reason for this decrease was found in the higher susceptibility of
decarboxylating microorganisms. However, during the storage,
BAs continued to increase, probably due to the residual
decarboxylases, whose activity was independent on the cell
viability. Ruiz-Capillas et al. (2007) described a positive effect of
HHP treatment of 400 MPa for 10 min on tyramine accumulation
in vacuum packaged cooked sliced ham, with an increase of the
shelf-life by at least 35 days. Similar results were observed by
treating at 500 MPa/10 min Hungarian dry fermented sausages
cut in 5 cm long pieces under vacuum (Simon-Sarkadi et al.,
2012). Under these conditions, BA content was reduced during
the storage.

In addition to HHP, also HPH can be a strategy to control
the presence of decarboxylating microorganisms in raw materials
such as the milk used for cheese making. Lanciotti et al.
(2007) demonstrated that a HPH milk treatment at 100 MPa
can significantly reduce the BAs accumulation compared with
the thermal treated milk, due to a deep modification of the
microbiota during ripening.

Antimicrobial Substances
The use of substance with antimicrobial properties can modify
the BA profile of foods interfering with the equilibrium
among microbial population rather than affecting directly the
decarboxylase efficiency. Nitrate and nitrite salts are commonly
used in fermented sausages for different purposes. In fact, they
influence the color, the flavor and the oxidation of cured meat.
In addition, they are used for controlling hazardous bacteria,
such as clostridia. Nevertheless, their action can also interfere
with BA accumulation. The addition of increasing concentration
of nitrite (up to 150 mg/kg) reduced tyramine and cadaverine
accumulation in Sucuk, a Turkish fermented sausage (Gençcelep
et al., 2008). Opposite results were obtained in a Spanish not
fermented cured meat (Lacon) in which the addition of nitrate
and nitrite significantly increased the BA content (Lorenzo

et al., 2007). This trend was explained by the fact that the
addition of nitrite favored the selection of a superficial microbiota
mainly constituted by LAB with relevant decarboxylative activity.
The addition of nitrite reduced also the BA content in fresh
beef, pork, and poultry meats stored at 4◦C (Jastrzębska et al.,
2016). These latter authors tested, under the same condition,
also a weak acid (sorbic acid) whose effectiveness was rather
limited. The use of two weak acids (sorbate and benzoate), in
combination with clove, inhibited the decarboxylative action
of an aminobiogenetic E. aerogenes strain isolated from fish
(Wendakoon and Sakaguchi, 1993). Benzoate and sorbate were
also used to limit BA production during the storage of two
different type of fishery products (cod roe and pearl mullet filets,
respectively; Lapa-Guimarães et al., 2011; Gençcelep et al., 2014).

Also sulfur containing antimicrobials were used to control
BA accumulation in foods. Bover-Cid et al. (2001b) added
sodium sulfide (maximum concentration 1000 mg/kg) to
ripened sausages and observed a contradictory effect on BA
accumulation. In fact, while the cadaverine content was inhibited
by the addition of sulfide, tyramine, and putrescine accumulation
was strongly enhanced. Jastrzębska et al. (2016) observed a
contribution of sodium metabisulphite to the reduction of BA
content in fresh meats. However, the most relevant matrices in
which sulfur compounds play a key role in the reduction of BAs
are the alcoholic beverages. In particular, in wine it is known
the potential aminobiogenetic potential of the LAB responsible
for malolactic fermentation (Lonvaud-Funel, 2001; Landete et al.,
2005). Some authors demonstrated that the addition of SO2
when malate was completely converted into lactate prevented
amine formation in subsequent stages (Vidal-Carou et al., 1990;
Marcobal et al., 2006c). A similar effect of SO2 on tyramine
accumulation was evidenced in a model system inoculated with
an O. oeni strain (Gardini et al., 2005). The control of BA
accumulation due to SO2 is related to the inhibiting effect on cell
metabolism rather than to the repression of the decarboxylases
activity (Landete et al., 2008b). Interesting results were obtained
in wine using lysozyme instead of SO2. In fact, using this enzyme
in Rioja wines subjected to malolactic fermentation, a drastic
decrease of histamine content was found (López et al., 2009).

CONCLUSION

Even if the presence of BAs in food (and the risks associated
with them) is known since a long period (Gale, 1946), systematic
studies regarding their presence have been carried out only in
relatively recent times. The reviews of Shalaby (1996) and Silla
Santos (1996) had the merit to collect the fragmented information
about this issue and were the starting point for a drastic
multiplication of scientific publications regarding the presence
of BA in food products and the elucidation of the metabolic
and genetic drivers of their production by microorganisms.
Combining the words “biogenic amine” and “food” the number
of publication selected by the Web of Science passed from about
500 in the year 2000 to more than 4500 in 2015.

This increasing scientific effort allowed obtaining a deeper
knowledge about the genetic and biochemical mechanisms
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responsible for BA production by foodborne microorganisms,
but also furnished important information about the possibility to
reduce their accumulation in food and the risks associated with
their presence.

The possible ways reviewed here to achieve this goal in
food are mainly based on two strategies, which always are
strictly interacting each other: the modulation of process
and environmental factors including storage and distribution
conditions and the control of the microbiota associated with
fermented foods.

While the studies regarding the genetic bases of
microorganism decarboxylating activity have brought to relevant
steps forward and new insights on this topic, the role of
environmental and technological factors on the overall activity
of aminobiogenic microorganisms and on their decarboxylases
requires deeper researches aimed to improve the possibility of
intervention on the food processes in the perspective of the
reduction of the risks associated to the BA presence.

For the fermented foods, from a strictly microbiological
point of view, more information is available regarding
the possible role of selected starter cultures aimed to
overcome and inhibit decarboxylating microbiota. Further
work is required to evaluate the real potential and optimize
the use of microbial cultures able to degrade BAs and
detoxifying them through the action of amino oxidases. In this
perspective, also the use of bioprotective cultures producing
bacteriocins or other antimicrobial substances needs greater
attention due to their not fully explored potential in this
field.
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