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Bifidobacteria are common inhabitants of the human gastrointestinal tract that, despite
a long history of research, have not shown any pathogenic potential whatsoever. By
contrast, some bifidobacteria are associated with a number of health-related benefits for
the host. The reported beneficial effects of bifidobacteria include competitive exclusion
of pathogens, alleviation of symptoms of irritable bowel syndrome and inflammatory
bowel disease, and modulation of intestinal and systemic immune responses. Based
on these effects, bifidobacteria are widely used as probiotics by pharmaceutical and
dairy industries. In order to exert a beneficial effect bifidobacteria have to, at least
transiently, colonize the host in a sufficient population size. Besides other criteria such as
resistance to manufacturing processes and intestinal transit, potential probiotic bacteria
are tested for adhesion to the host structures including intestinal epithelial cells, mucus,
and extracellular matrix components. In the present review article, we summarize the
current knowledge on bifidobacterial structures that mediate adhesion to host tissue
and compare these to similar structures of pathogenic bacteria. This reveals that most
of the adhesive structures and mechanisms involved in adhesion of bifidobacteria to host
tissue are similar or even identical to those employed by pathogens to cause disease.
It is thus reasonable to assume that these structures and mechanisms are equally
important for commensal or probiotic bacteria and play a similar role in the beneficial
effects exerted by bifidobacteria.
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INTRODUCTION

The mammalian GIT is home to an extremely complex and diverse microbial ecosystem consisting
primarily of prokaryotes. This microbial community is collectively referred to as the gut microbiota
and exerts a number of profound effects on host health (Marchesi et al., 2016). During the first
period of life when newborns are exclusively breast-fed, members of the genus Bifidobacterium are
one of the predominant bacterial groups of the microbiota in the lower GIT (Yatsunenko et al.,
2012; Bäckhed et al., 2015; Walker et al., 2015). The major source for bifidobacteria is the intestinal
microbiota of the mother to which the newborn is exposed during (vaginal) delivery (Grönlund
et al., 2011; Matamoros et al., 2013). More recently, breast milk has also been shown to contain
viable bifidobacteria (Fernández et al., 2013; Jost et al., 2015). Although their relative proportion

Abbreviations: ECM, extracellular matrix; GIT, gastrointestinal tract; IECs, intestinal epithelial cells.
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decreases over time, bifidobacteria are still a subdominant group
amongst intestinal bacteria of adult humans (Arumugam et al.,
2011).

With the exception of Bifidobacterium dentium, which has
been associated with dental caries (Ventura et al., 2009),
bifidobacteria have to date not shown any pathogenic potential.
By contrast, a number of health promoting effects have
been attributed to the presence of bifidobacteria in the
GIT including improvement of symptoms of irritable bowel
syndrome, inflammatory bowel disease and infectious diarrhea,
modulation of intestinal and systemic immune responses, and
resistance against colonization by pathogens (Gareau et al., 2010;
Buffie and Pamer, 2013). Of note, a very recent study links
bifidobacteria in the gut microbiota to enhanced anti-tumor
immune responses and support of checkpoint-inhibition cancer
therapy using a monoclonal antibody (Sivan et al., 2015). Based
on these findings bifidobacteria are widely used as probiotics,
i.e., live microorganisms which when administered in adequate
amounts confer a health benefit to the host (Holmes et al., 2012;
Foligné et al., 2013).

Besides the health promoting effects, several criteria are
applied during selection of a suitable probiotic candidate strain
including stability during manufacturing processes, viability
during gastrointestinal transit and functionality at the desired
target site (Foligné et al., 2013). One of the classical selection
criteria for potential probiotic bacteria is adhesion to mucus
and/or IECs (Klaenhammer and Kullen, 1999; Tuomola et al.,
2001; Papadimitriou et al., 2015).

It may be argued that adhesion is not important for probiotic
functionality since probiotic bacteria do not have access to host
tissue due to the thick mucus layer covering the (healthy) gut
epithelium. However, a number of bifidobacteria were shown to
adhere to mucus (He et al., 2001; Izquierdo et al., 2008) and utilize
host-derived mucins as a substrate for growth (Tailford et al.,
2015). Also, bifidobacteria are discussed as potential treatment
options for conditions with an impaired mucus layer (Whelan
and Quigley, 2013; Johansson, 2014) facilitating direct access of
(bifido)bacteria to the epithelium. Moreover, various bacterial
pathogens must overcome the mucosal barriers and gain access
to the epithelial layer to cause disease. For example, pathogenic
Escherichia coli strains and related organisms use pili, fimbriae,
and/or intimin with its translocated intimin receptor for adhesion
to epithelial cells (Niemann et al., 2004). Another example is the
interaction of InlA of Listeria monocytogenes with E-cadherin
on host epithelial cells which is crucially required for infection
(Stavru et al., 2011). Only once adhesion of these pathogens to
the epithelium has been achieved despite the presence of an intact
mucus layer, progression to later stages of infection and disease
are possible (Bhavsar et al., 2007).

On the other hand, a number of probiotic traits may be directly
linked to adhesion to host structures. One of the proposed health
benefits of bifidobacteria is resistance against colonization or
infection by pathogens. This may involve a variety of adhesion-
independent mechanisms such as competition for nutrients or
production of antimicrobial compounds (Buffie and Pamer,
2013; Lawley and Walker, 2013). Nevertheless, adhesion to IECs,
mucus and ECM components by commensal and probiotic

bacteria may also directly block access of pathogens to these
structures (Bernet et al., 1993; Collado et al., 2005; Candela
et al., 2008; Serafini et al., 2013) either by competition for
attachment sites or steric hinderance. Also, there are numerous
reports of immunomodulatory effects of bifidobacteria in vitro
and in animal models (Bermudez-Brito et al., 2012). All these
effects crucially depend on interaction with (and thus adhesion
to) epithelial cells, dendritic cells, monocytes, macrophages and
or other immune cells. Finally, even if not directly implicated
mechanistically, adhesion might contribute to beneficial effects
by allowing initial colonization or prolonging persistence of
(probiotic) bifidobacteria in the GIT.

FACTORS FOR ADHESION OF
BIFIDOBACTERIA TO HOST
STRUCTURES

A number of factors and structures involved in adhesion to
IECs, ECM components, and mucus have been identified in
bifidobacteria (Table 1). These studies have been performed
almost exclusively in in vitro model systems.

Adhesion to mucus is mostly analyzed using microtiter
plate assays with immobilized mucus with quantification of
adherent bacteria after metabolic labeling using radioisotopes or
fluorescent dyes (He et al., 2001; Izquierdo et al., 2008; González-
Rodríguez et al., 2012; Kainulainen et al., 2013). Similar assays
are performed to analyze adhesion to immobilized ECM proteins
(Kainulainen et al., 2013) or detection of ECM proteins bound to
bacterial cells or protein extracts by specific antibodies (Candela
et al., 2007, 2009, 2010).

The methods and cell lines used to determine adhesion to IECs
differ largely between studies and groups. The most widely used
cell lines are Caco-2, HT-29, and T84 (Guglielmetti et al., 2009;
Preising et al., 2010; Gleinser et al., 2012; González-Rodríguez
et al., 2012; Kainulainen et al., 2013; Grimm et al., 2014). In
studies that employ more than one cell line, absolute adhesion
of different strains may vary between cell lines but relative
differences between strains are usually conserved (Riedel et al.,
2006; Preising et al., 2010; Gleinser et al., 2012). One observation
is that, although there is considerable strain-to-strain variability,
strains of the species B. bifidum generally tend to adhere better
to IECs than strains of other species (Guglielmetti et al., 2008;
Gleinser et al., 2012). Detection of adherent bacteria is performed
by metabolic labeling using radionucleotides (Riedel et al., 2006;
Kainulainen et al., 2013), enumeration of colony forming units
of adherent bacteria (Gleinser et al., 2012; González-Rodríguez
et al., 2012), microscopic imaging and calculation of adhesion
indices, i.e., the ratio of adherent bacteria and cells (Guglielmetti
et al., 2008, 2009, 2010), or expression of fluorescent proteins
(Grimm et al., 2014). However, the method of quantification
does not seem to impact on adhesion itself as comparable results
are obtained using radioactive or fluorescent labeling and plate
counting (Riedel et al., 2006; Gleinser et al., 2012; Grimm et al.,
2014).

In the following sections, the current knowledge on
bifidobacterial adhesion to host structures will be summarized
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TABLE 1 | Adhesive structures identified in bifidobacteria.

Structure/protein/property Species Evidence and role Reference

Type IVb (Tad) pili B. bifidum, B. breve, B. longum subsp.
longum, B. adolescentis

Genes expressed in vitro and in vivo, for
B. breve UCC2003: pili detected ex
vivo by transmission electron
microscopy, required for efficient
colonization of mice

O’Connell Motherway et al., 2011;
Westermann et al., 2012; Zhurina et al.,
2013; Bottacini et al., 2014; Duranti
et al., 2014, 2015

Type IVa pili B. adolescentis Genes expressed in vitro, regulation by
carbon source

Duranti et al., 2014

Sortase-dependent pili B. adolescentis, B. animalis subsp.
lactis, B. bifidum, B. breve, B. dentium,
B. longum subsp. longum, B. longum
subsp. infantis

Genes expressed in vitro and in vivo,
regulated by carbon source and
GIT-related stress, enhanced in vivo, pili
detected on different strains by atomic
force microscopy, heterologous
expression of pil2 and pil3 genes of
B. bifidum PRL2010 in L. lactis
enhance binding to ECM proteins,
expression of pil2 increases adhesion
to IECs

Foroni et al., 2011; O’Connell
Motherway et al., 2011; Westermann
et al., 2012; Turroni et al., 2013, 2014;
Bottacini et al., 2014; Duranti et al.,
2014, 2015; Wei et al., 2016

BopA B. bifidum Purified BopA inhibits and homologous
and heterologous expression increases
adhesion to IECs, role in adhesion
recently challenged as a BopA antibody
did not inhibit adhesion

Guglielmetti et al., 2008; Gleinser et al.,
2012; Kainulainen et al., 2013

Transaldolase B. bifidum, B. longum subsp. Longum Binds to mucus, protein present on the
surface of B. bifidum strains, protein
level in B. longum proteome increased
in vivo, differential expression of
different isoforms in the presence of
IECs

Yuan et al., 2008; González-Rodríguez
et al., 2012; Wei et al., 2014

DnaK B. animalis subsp. Lactis Binds to plasminogen Candela et al., 2010

Enolase B. bifidum, B. animalis subsp. lactis,
B. longum subsp. longum

Binds to plasminogen, in B. longum
subsp. longum increased expression
in vivo and in the presence of IECs,
plasminogen binding site identified

Candela et al., 2007, 2009; Wei et al.,
2014

Hydrophobicity Bifidobacterium sp. Surface hydrophobicity correlates
positively with autoaggregation and
adhesion to IECs

Pérez et al., 1998; Del Re et al., 2000;
Pan et al., 2006

and the involved factors will be compared to adhesion factors of
pathogens.

Pili
A wide range of Gram-positive and -negative bacteria possess
proteinaceous surface appendages termed fimbriae or pili (Proft
and Baker, 2009). In general, pili are adhesive structures that
are involved in biofilm formation, conjugation, motility, and
adhesion to biotic and abiotic surfaces (Maier and Wong, 2015).
These hair-like structures extend to some distance (up to 3 µm)
from the bacterial cell surface (Proft and Baker, 2009). It is
hypothesized that they are able to bridge the repulsive forces
between microbial cells and biological substrates, which under
physiological conditions are both negatively charged (Proft and
Baker, 2009). Pili are well-known for their role as virulence
factors of Gram-positive and -negative pathogens and are
important for initial attachment to host tissues (Telford et al.,
2006; Proft and Baker, 2009).

There is increasing evidence that bifidobacteria also encode
and express pilus-like structures on their cell surface. The
first report of pili in bifidobacteria was the presence of genes

encoding type IVb tight adherence (Tad) pili in B. breve UCC2003
(O’Connell Motherway et al., 2011). Since then, genes for Tad,
Type VIa, and/or sortase-dependent pili were found in basically
all sequenced genomes of bifidobacteria (Table 1). Interestingly,
in most cases bifidobacteria posses more than one pilus-coding
locus and B. dentium harbours as much as seven gene clusters for
sortase-dependent pili (Foroni et al., 2011).

Transcriptional analysis revealed that at least some of the
genes are expressed under in vitro conditions and are regulated
in response to substrate, presence of other bacteria, growth
phase, or stress conditions related to the GIT (Foroni et al.,
2011; Westermann et al., 2012; Duranti et al., 2014; Turroni
et al., 2014). Moreover, pilin proteins are present in the in vitro
proteome of B. bifidum S17 (Wei et al., 2016) and pilus-like
structures were observed on several bifidobacteria by electron
and atomic force microscopy (Foroni et al., 2011; O’Connell
Motherway et al., 2011; Duranti et al., 2014). Collectively, this
suggests that bifidobacteria possess functional pili. There is also
evidence that bifidobacterial pili have a role in colonization of
the host and attachment to epithelial cells. In B. breve UCC2003,
expression of the tad locus was up-regulated in the GIT of mice
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and is required for efficient colonization in the presence of a
competing microbiota (O’Connell Motherway et al., 2011). In
a B. adolescentis strain, expression of pilus gene clusterss and
presence of pili were enhanced when bacteria were isolated from
the murine GIT or grown on starch, cellobiose or maltodextrin,
i.e., substrates abundantly present in the GIT (Duranti et al.,
2014). Similarly, expression of two of the three sortase-dependent
pili clusters of B. bifidum PRL2010 is enhanced in the murine
GIT and in the presence of human IECs in vitro (Turroni et al.,
2013). Although a direct role for colonization and adhesion by
inactivation of the corresponding genes is missing (probably
due to the lack of appropriate genetic tools for the species
B. bifidum), heterologous expression of the two gene clusters
in Lactococcus lactis led to presence of pilus-like structures.
Moreover, the recombinant L. lactis strains displayed increased
adhesion to cultured IECs (pil2 cluster) and ECM proteins
laminin, fibronectin, fibrinogen, and plasminogen (pil2 and pil3
clusters; Turroni et al., 2013). Adhesion to fibronectin seems to
be mediated by sugar-binding domains of the pili since enzymatic
deglycosylation of fibronectin markedly reduced adhesion of the
recombinant L. lactis strains expressing the pil2 and pil3 gene
clusters of B. bifidum PRL2010 (Turroni et al., 2013).

Moonlighting Proteins
A rather obscure group of proteins involved in adhesion of
bacteria to host tissues are so-called moonlighting proteins
(Huberts and van der Klei, 2010). These proteins are
multifunctional and usually have an enzymatic role in bacterial
metabolism or other cellular processes but at the same time
are involved in totally unrelated biological functions (Huberts
and van der Klei, 2010). In more than 90 pathogenic bacteria,
proteins with a moonlighting function in virulence have been
identified (Henderson, 2014). Interestingly, a large number of
moonlighting proteins are cytoplasmic enzymes of the central
metabolism that lack secretion signals raising the question if
these proteins are actively exported to mediate virulence related
functions. The best characterized examples are adhesins of
pathogenic bacteria that are involved in primary attachment
to host tissue and are important for later stages of infection
(Henderson and Martin, 2011).

Enzymes of glycolysis with a moonlighting function in
adhesion of pathogens include aldolase (or transaldolase),
enolase, and glyceraldehyde-3-phosphate dehydrogenase
(Henderson and Martin, 2011). These proteins were detected
in proteomes of different bifidobacteria (Yuan et al., 2006,
2008; Ruiz et al., 2009; Gilad et al., 2011; Liu et al., 2011; Wei
et al., 2016; Zhu et al., 2016). Transaldolase, a cytoplasmatic key
enzyme of the bifidus shunt, was found to be present on the
surface of several B. bifidum strains (González-Rodríguez et al.,
2012). Using an in vitro binding assay the transaldolase could
be identified as a mucin-binding protein and the specificity of
this interaction was confirmed by increased mucus binding of
recombinant L. lactis strains expressing transaldolase (González-
Rodríguez et al., 2012). Enolase of different B. longum, B. bifidum,
B. animalis subsp. lactis and B. breve strains was shown to interact
with plasminogen (Candela et al., 2007, 2009; Wei et al., 2014).
Moreover, the plasminogen binding site in the B. lactis enolase

was shown to be homologous to that of Streptococcus pneumoniae
and specific amino acid residues crucial for plasminogen binding
have been identified (Candela et al., 2009). Another moonlighting
protein that serves as an adhesin for bifidobacteria is DnaK,
which has a primary function as a chaperone (Henderson and
Martin, 2011). For B. animalis subsp. lactis BI07, DnaK was
shown to bind plasminogen (Candela et al., 2007, 2010). Further
potential moonlighting proteins of B. animalis subsp. lactis BI07
with plasminogen-binding activity are glutamine synthetase,
bilesalt hydrolase, and phosphoglycerate mutase (Candela et al.,
2007).

For B. longum NCC2705, transaldolase was detected at higher
levels incubated in vivo in a rabbit intestinal loop compared to
in vitro growth (Yuan et al., 2008) and enolase and transaldolase
were more abundant in the proteome following co-cultivation
with IECs (Wei et al., 2014). Also, expression of DnaK and
enolase is upregulated in several bifidobacteria in response to
bile (Savijoki et al., 2005; Candela et al., 2010). This indicates
that bifidobacteria might be able to sense the conditions of
the intestinal environment and presence of IECs (or receptors
on IECs) and respond by enhancing expression of adhesive
molecules.

Other Adhesion Factors
A rather general, and non-specific property of bacteria that has
been associated occasionally with adhesion of pathogens to host
tissue is surface hydrophobicity (Hirt et al., 2000; Kouidhi et al.,
2010). Several studies have tested different strains and species of
bifidobacteria for hydrophobicity, autoaggregation and adhesion
to IECs (Pérez et al., 1998; Del Re et al., 2000; Pan et al., 2006).
Overall, the results suggest that (i) strains with higher surface
hydrophobicity show higher autoaggregation and adhesion to
IECs and (ii) B. bifidum strains tend to be more hydrophobic
than strains of other Bifidobacterium sp. This is in line with other
studies showing that B. bifidum strains adhere better to IECs than
strains of other species (Preising et al., 2010; Gleinser et al., 2012).

Other non-proteinaceous component of the bacterial
envelope that have been associated with adhesion to host tissue
of Gram positive pathogens are glycoconjugates including
exopolysaccharides, lipoteichoic, and wall teichoic acids
(Weidenmaier and Peschel, 2008; Tytgat and Lebeer, 2014; Tan
et al., 2015). Despite the presence of genes (potentially) involved
in biosynthesis of exopolysaccharides and teichoic acids in most
of the sequenced genomes of bifidobacteria (Hidalgo-Cantabrana
et al., 2014; Colagiorgi et al., 2015), a contribution to adhesion
have not been demonstrated conclusively so far. However, one
study links exopolysaccharide production of bifidobacteria with
adhesion to mucus by showing that purified exopolysaccharides
of two bifidobacteria reduced adhesion of intact bacterial cells of
these strains (Ruas-Madiedo et al., 2006).

Besides the abovementioned pili and moonlighting proteins
no specific adhesins such as intimin, internalins, lectins,
fibronectin-binding proteins as described for a number of
pathogens (Niemann et al., 2004; Kline et al., 2009) have been
characterized for bifidobacteria. A bioinformatic screen of the
genome of B. bifidum S17 yielded a number of proteins with
domains such as fibronectin type III domain, concanavalin A-like
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lectin, and collagen triple helix repeat domains, suggesting that
bifidobacteria might have similar adhesins (Westermann et al.,
2012). A definite role of the corresponding proteins in adhesion
to host structures has yet to be demonstrated.

One specific protein that has been suspected to play a role in
adhesion of bifidobacteria to IECs is BopA, lipoprotein of the cell
envelope specifically found in B. bifidum strains (Guglielmetti
et al., 2008; Gleinser et al., 2012). However, BopA contains the
characteristic domains of a solute-binding protein and is part of
an operon that encodes a putative oligopeptide ABC-transporter
(Gleinser et al., 2012). Moreover, a recent study has challenged
the idea that BopA serves a function in adhesion by showing that
blocking BopA using a specific antibody does not affect adhesion
of B. bifidum MIMBb75 to IECs (Kainulainen et al., 2013). Thus,
BopA might be another example for a moonlighting protein but
whether it has a role in adhesion of B. bifidum strains to intestinal
tissue in humans needs to be elucidated in further studies.

CONCLUSION

A large number of Bifidobacterium sp. strains were shown
to adhere to IECs, mucus, and/or ECM proteins. For some
bifidobacteria, adhesive structures have been characterized
and include pili and different moonlighting proteins.
Lactobacilli, another group of potential probiotic, Gram-positive
microorganisms use exactly the same structures to adhere to the
same target sites on host tissues (Vélez et al., 2007; van Tassell
and Miller, 2011). Pathogenic microorganisms employ similar or
even identical structures to adhere to host structures. The genus
Bacteroides contains highly abundant commensal species as well
as opportunistic pathogens that even may cause cancer (Wexler,
2007; Sears et al., 2014). Both commensal and pathogenic strains
were shown to adhere to IECs, ECM, or mucus (Brook and
Myhal, 1991; Ferreira et al., 2002; Macfarlane et al., 2005; de

O Ferreira et al., 2006; Huang et al., 2011; Ferreira Ede et al.,
2013) and pili, specific ECM-binding proteins, EPS etc. (Brook
and Myhal, 1991; de O Ferreira et al., 2006; Pumbwe et al., 2006;
Ferreira Ede et al., 2013) are involved in the process. Collectively,
this illustrates that both pathogenic and commensal, in some
cases even beneficial, bacteria employ the same strategies to
attach to host structures. There is no doubt that adhesion of
pathogens to host tissue is required or helps to promote infection.
Bifidobacteria are generally regarded as safe microorganisms,
which despite intensive studies of the past decades have not
shown any pathogenic potential whatsoever. Instead, there are a
number of health-related benefits associated with bifidobacteria.
Although definitive proof is missing in most cases, it is reasonable
to assume that adhesion to host tissue by beneficial bacteria
are also required for or support their health-promoting effects.
Moreover, the impressive number of different adhesion factors
encoded by individual strains of bifidobacteria suggests that
adhesion to host tissue is important for bifidobacteria to colonize
and strive in the highly competitive ecosystem of the GIT.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This study was partially supported by the German Academic
Exchange Service/Federal Ministry of Education and Research
to CUR (Grant D/09/04778). CW was supported by a by
Ph.D. fellowship of the “Landesgraduiertenförderung Baden-
Württemberg.” The funders had no role in the decision to publish
or the content of the manuscript.

REFERENCES
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al.

(2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. doi:
10.1038/nature09944

Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al.
(2015). Dynamics and stabilization of the human gut microbiome during the
first year of life. Cell Host Microbe 17, 690–703. doi: 10.1016/j.chom.2015.
04.004

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., and
Gil, A. (2012). Probiotic mechanisms of action. Ann. Nutr. Metab. 61, 160–174.
doi: 10.1159/000342079

Bernet, M. F., Brassart, D., Neeser, J. R., and Servin, A. L. (1993). Adhesion of
human bifidobacterial strains to cultured human intestinal epithelial cells and
inhibition of enteropathogen-cell interactions. Appl. Environ. Microbiol. 59,
4121–4128.

Bhavsar, A. P., Guttman, J. A., and Finlay, B. B. (2007). Manipulation
of host-cell pathways by bacterial pathogens. Nature 449, 827–834. doi:
10.1038/nature06247

Bottacini, F., O Connell Motherway, M., Kuczynski, J., O Connell, K. J., Serafini, F.,
Duranti, S., et al. (2014). Comparative genomics of the Bifidobacterium breve
taxon. BMC Genomics 15:170. doi: 10.1186/1471-2164-15-170

Brook, I., and Myhal, M. L. (1991). Adherence of Bacteroides fragilis group species.
Infect. Immun. 59, 742–744.

Buffie, C. G., and Pamer, E. G. (2013). Microbiota-mediated colonization
resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801. doi:
10.1038/nri3535

Candela, M., Bergmann, S., Vici, M., Vitali, B., Turroni, S., Eikmanns, B. J., et al.
(2007). Binding of human plasminogen to Bifidobacterium. J. Bacteriol. 189,
5929–5936. doi: 10.1128/JB.00159-07

Candela, M., Biagi, E., Centanni, M., Turroni, S., Vici, M., Musiani, F., et al.
(2009). Bifidobacterial enolase, a cell surface receptor for human plasminogen
involved in the interaction with the host. Microbiology 155, 3294–3303. doi:
10.1099/mic.0.028795-0

Candela, M., Centanni, M., Fiori, J., Biagi, E., Turroni, S., Orrico, C., et al. (2010).
DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human
plasminogen receptor upregulated in response to bile salts. Microbiology 156,
1609–1618. doi: 10.1099/mic.0.038307-0

Candela, M., Perna, F., Carnevali, P., Vitali, B., Ciati, R., Gionchetti, P.,
et al. (2008). Interaction of probiotic Lactobacillus and Bifidobacterium
strains with human intestinal epithelial cells: adhesion properties,
competition against enteropathogens and modulation of IL-8 production.
Int. J. Food Microbiol. 125, 286–292. doi: 10.1016/j.ijfoodmicro.2008.
04.012

Colagiorgi, A., Turroni, F., Mancabelli, L., Serafini, F., Secchi, A., van Sinderen, D.,
et al. (2015). Insights into teichoic acid biosynthesis by Bifidobacterium
bifidum PRL2010. FEMS Microbiol. Lett. 362:fnv141. doi: 10.1093/femsle/
fnv141

Frontiers in Microbiology | www.frontiersin.org 5 August 2016 | Volume 7 | Article 1220

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01220 August 3, 2016 Time: 16:2 # 6

Westermann et al. Adhesion Factors of Bifidobacteria

Collado, M. C., Gueimonde, M., Hernández, M., Sanz, Y., and Salminen, S.
(2005). Adhesion of selected Bifidobacterium strains to human intestinal mucus
and the role of adhesion in enteropathogen exclusion. J. Food Prot. 68,
2672–2678.

de O Ferreira, E., Araújo Lobo, L., Barreiros Petrópolis, D., dos S Avelar, K. E.,
Ferreira, M. C., e Silva Filho, F. C., et al. (2006). A Bacteroides fragilis
surface glycoprotein mediates the interaction between the bacterium and the
extracellular matrix component laminin-1. Res. Microbiol. 157, 960–966. doi:
10.1016/j.resmic.2006.09.005

Del Re, B., Sgorbati, B., Miglioli, M., and Palenzona, D. (2000). Adhesion,
autoaggregation and hydrophobicity of 13 strains of Bifidobacterium
longum. Lett. Appl. Microbiol. 31, 438–442. doi: 10.1046/j.1365-2672.2000.
00845.x

Duranti, S., Milani, C., Lugli, G. A., Turroni, F., Mancabelli, L., Sanchez, B.,
et al. (2015). Insights from genomes of representatives of the human gut
commensal Bifidobacterium bifidum. Environ. Microbiol. 17, 2515–2531. doi:
10.1111/1462-2920.12743

Duranti, S., Turroni, F., Lugli, G. A., Milani, C., Viappiani, A., Mangifesta, M.,
et al. (2014). Genomic characterization and transcriptional studies of the
starch-utilizing Bifidobacterium adolescentis 22L. Appl. Environ. Microbiol. 80,
6080–6090. doi: 10.1128/AEM.01993-14

Fernández, L., Langa, S., Martín, V., Maldonado, A., Jiménez, E., Martín, R.,
et al. (2013). The human milk microbiota: origin and potential roles
in health and disease. Pharmacol. Res. 69, 1–10. doi: 10.1016/j.phrs.2012.
09.001

Ferreira, E. O., Falcão, L. S., Vallim, D. C., Santos, F. J., Andrade, J. R. C., Andrade,
A. F. B., et al. (2002). Bacteroides fragilis adherence to Caco-2 cells. Anaerobe 8,
307–314. doi: 10.1016/S1075-9964(03)00008-8

Ferreira Ede, O., Teixeira, F. L., Cordeiro, F., Araujo Lobo, L., Rocha, E. R., Smith,
J. C., et al. (2013). The Bfp60 surface adhesin is an extracellular matrix and
plasminogen protein interacting in Bacteroides fragilis. Int. J. Med. Microbiol.
303, 492–497. doi: 10.1016/j.ijmm.2013.06.007

Foligné, B., Daniel, C., and Pot, B. (2013). Probiotics from research to market:
the possibilities, risks and challenges. Curr. Opin. Microbiol. 16, 284–292. doi:
10.1016/j.mib.2013.06.008

Foroni, E., Serafini, F., Amidani, D., Turroni, F., He, F., Bottacini, F., et al. (2011).
Genetic analysis and morphological identification of pilus-like structures in
members of the genus Bifidobacterium. Microb. Cell Fact. 10(Suppl. 1), S16. doi:
10.1186/1475-2859-10-S1-S16

Gareau, M. G., Sherman, P. M., and Walker, W. A. (2010). Probiotics and the gut
microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7,
503–514. doi: 10.1038/nrgastro.2010.117

Gilad, O., Svensson, B., Viborg, A. H., Stuer-Lauridsen, B., and Jacobsen, S.
(2011). The extracellular proteome of Bifidobacterium animalis subsp. lactis
BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 11,
2503–2514. doi: 10.1002/pmic.201000716

Gleinser, M., Grimm, V., Zhurina, D., Yuan, J., and Riedel, C. U. (2012).
Improved adhesive properties of recombinant bifidobacteria expressing the
Bifidobacterium bifidum-specific lipoprotein BopA. Microb. Cell Fact. 11, 80.
doi: 10.1186/1475-2859-11-80

González-Rodríguez, I., Sánchez, B., Ruiz, L., Turroni, F., Ventura, M.,
Ruas-Madiedo, P., et al. (2012). Role of extracellular transaldolase from
Bifidobacterium bifidum in mucin adhesion and aggregation. Appl. Environ.
Microbiol. 78, 3992–3998. doi: 10.1128/AEM.08024-11

Grimm, V., Gleinser, M., Neu, C., Zhurina, D., and Riedel, C. U. (2014).
Expression of fluorescent proteins in bifidobacteria for analysis of host-
microbe interactions. Appl. Environ. Microbiol. 80, 2842–2850. doi:
10.1128/AEM.04261-13
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