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Cefoperazone/sulbactam has been shown to be efficacious for the treatment of
infections caused by Acinetobacter baumannii; however, the mechanism underlying
resistance to this synergistic combination is not well understood. In the present study,
two A. baumannii isolates, AB1845 and AB2092, were isolated from a patient with
hospital-acquired pneumonia before and after 20 days of cefoperazone/sulbactam
therapy (2:1, 3 g every 8 h with a 1-h infusion). The minimum inhibitory concentration
(MIC) of cefoperazone/sulbactam for AB1845 and AB2092 was 16/8 and 128/64 mg/L,
respectively. Blood samples were collected on day 4 of the treatment to determine the
concentration of cefoperazone and sulbactam. The pharmacokinetic/pharmacodynamic
(PK/PD) indices (%T>MIC) were calculated to evaluate the dosage regimen and
resistance development. The results showed that %T>MIC of cefoperazone and
sulbactam was 100% and 34.5% for AB1845, and 0% and 0% for AB2092, respectively.
Although there was no available PK/PD target for sulbactam, it was proposed that
sulbactam should be administered at higher doses or for prolonged infusion times to
achieve better efficacy. To investigate the mechanism of A. baumannii resistance to
the cefoperazone/sulbactam combination in vivo, whole-genome sequencing of these
two isolates was further performed. The sequencing results showed that 97.6% of the
genome sequences were identical and 33 non-synonymous mutations were detected
between AB1845 and AB2092. The only difference of these two isolates was showed
in sequencing coverage comparison. There was a 6-kb amplified DNA fragment which
was three times higher in AB2092, compared with AB1845. The amplified DNA fragment
containing the blaOXA 23 gene on transposon Tn2009. Further quantitative real-time−

PCR results demonstrated that gene expression at the mRNA level of blaOXA was−23

>5 times higher in AB2092 than in AB1845. These results suggested that the blaOXA 23−
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gene had higher expression level in AB2092 via gene amplification and following
transcription. Because gene amplification plays a critical role in antibiotic resistance in
many bacteria, it is very likely that the blaOXA−23 amplification results in the development
of cefoperazone/sulbactam resistance in vivo.

Keywords: cefoperazone/sulbactam, Acinetobacter baumannii, whole-genome sequencing, resistance
development, PK/PD indices

INTRODUCTION

Acinetobacter baumannii is a non-fermentative, gram-negative
opportunistic pathogen that can cause hospital-acquired
pneumonia (HAP), blood infections and urinary tract infection,
among others (Perez et al., 2007). The rapid spread of the
multi-drug-resistant A. baumannii has resulted in very limited
therapeutic options in the clinic. Sulbactam, a β-lactamase
inhibitor, has intrinsic antimicrobial effects against A. baumannii
by binding to penicillin-binding protein 2 (Peleg et al., 2008).
It is commercially available in a combined formulation
of ampicillin and cefoperazone. The clinical efficacy of
cefoperazone/sulbactam has been shown in previous work
(Xin et al., 2013; Sipahi et al., 2014; Xia et al., 2014). This
combination has recently been applied to treat critically ill
patients receiving continuous venovenous hemofiltration, and
11 of 14 patients survived (Gao et al., 2016). This combination
was also administrated to treat neurosurgical patients in a
pilot study, with the results showing that cerebrospinal fluid
penetration of cefoperazone/sulbactam could be enhanced after
neurosurgical impairment of the blood-brain barrier (Wang
et al., 2015). In a retrospective review of the outcomes for
patients with cefoperazone/sulbactam treated A. baumannii
bacteremia, 77% of the patients (27/35) presented successful
clinical efficacy (Choi et al., 2006). Because the combination has
been widely used in the clinic, the resistance rate was monitored
and observed to increase from 25.0 to 37.7% from 2004 to 2010
in China (Hu et al., 2016). However, the underlying mechanism
is not well understood in vitro or in vivo, for sulbactam alone
or the combination. Sulbactam alone has been reported to
cause resistance in A. baumannii via PBP3 mutation in vitro,
despite a lack of information regarding natural pbp3 mutations
in clinical isolates (Penwell et al., 2015). The detection and
expression of blaTEM−1 has been suggested to relate to the
minimum inhibitory concentration (MIC) of sulbactam in
A. baumannii (Waltner-Toews et al., 2011). The combination
resistance in Klebsiella pneumoniae in an in vitro study was
reported owing to two different mechanisms, loss of a 39-kDa
outer membrane protein and presence of TEM-2 β-lactamase
(Rice et al., 1993).

Whole-genome sequencing is powerful and can reveal a
vast amount of DNA information from a global perspective.
The published complete genome sequences for many bacteria
are beneficial and efficient for strain-to-reference sequencing
and bioinformatics analysis (Mardis, 2008). They can be used
to identify resistance genes as well as minor changes in the
genome due to mutation, gene transfer, gene duplication, and
amplification. It has been seen as a basis for whole-genome

sequencing revealing the mechanism of bacterial pathogen
resistance that develops in patients (Snitkin et al., 2011; Wright
et al., 2014; Holt et al., 2015). Wright et al. (2016) sequenced 136
strains of A. baumannii isolated from patients and showed the
genome changes occurred mainly due to the single nucleotide
variance in protein coding regions and IS element. Genome
sequenced A. baumannii showed the colistin resistance was due
to the mutations in transcriptional regulatory genes (Cheah et al.,
2016). Susceptible S. aureus evolved resistance via a 35-point
mutation in 31 loci in a patient with a bloodstream infection
receiving vancomycin therapy (Mwangi et al., 2007). Tigecycline
resistance to A. baumannii has been reported to be due to
the deletion of three contigs in vivo (Hornsey et al., 2011).
Additionally, gene amplification was frequently detected due to
the antibiotic pressure. The evolution of β-lactamase resistance
was studied by exposing Salmonella typhimurium, which
contain low level β-lactamase resistance, in an environment
of progressively increasing concentrations of cephalosporin.
The results showed an amplification of blaTEM−1 gene copy
number followed by acquisition of gene mutations (Sun et al.,
2009). A genome-wide assay of E. coli strain in 78 different
antibiotic environments found that 56 genes were amplified to
fit the environment and reproducible increasing in MIC for
their corresponding antibiotics was detected (Soo et al., 2011).
The amplification of aminoglycoside resistance gene aphA1
in A. baumannii has been considered to be the mechanism
underlying the development of tobramycin in vivo (McGann
et al., 2014).

In the present study, two A. baumannii isolates,
AB1845 and AB2092, were collected before and after
cefoperazone/sulbactam therapy from a patient with HAP.
Pharmacokinetics/pharmacodynamics (PK/PD) was applied to
evaluate the dosage regimen and development of resistance.
Moreover, whole-genome sequencing was employed to
investigate the mechanism of cefoperazone/sulbactam resistance
of the two isolates developed in vivo.

MATERIALS AND METHODS

Medical Records and Treatment
This study was approved by the institutional review board
of Huashan Hospital affiliated to Fudan University. Written
informed consent was obtained from the patient. A 19-year-
old male patient with serious brain trauma was admitted
to Huashan Hospital (Shanghai, China). The patient had a
high fever with white blood cell counts out of the normal
range after being checked into bed for 48 h. Both chest
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X-Ray radiophotography and computed tomography showed
pneumonia. A. baumannii (AB1845) was isolated from the
sputum of the patient, revealing bacterial infection. Hence,
the patient was treated with meropenem 0.5 g q8h without
clinical efficacy. On day 6, the dosage regimen was changed to
cefoperazone/sulbactam (2:1, 3 g every 8 h with a 1-h infusion,
SULPERAZON R©, batch no. 95839116) for 20 days. The treatment
was stopped when body temperature and white blood cell counts
returned to the normal range; additionally, A. baumannii was
not detected in the sputum. However, the patient had a fever,
and A. baumannii (AB2092) was again isolated 4 days after
cefoperazone/sulbactam treatment. The cefoperazone/sulbactam
treatment was finally considered to have failed both clinically and
microbiologically efficacy.

Pharmacokinetics of
Cefoperazone/Sulbactam Treatment
Blood samples were collected before the first infusion,
immediately after the infusion (0 h), and at 0.5, 1, 2,
4, 6 h afterward on day 4 (i.e., steady state) of the
cefoperazone/sulbactam treatment. The drug concentration
was determined using the LC-MS/MS method (Zhou et al.,
2010), which was validated according to the CFDA guidelines
on bioanalytical method validation. The pharmacokinetic
parameters of the patients were calculated by Winnonlin (v6.0,
phoenix). The patient’s pharmacokinetic profiles of cefoperazone
and sulbactam were fit into a well-developed population PK
model (Chen et al., 2015). The PK/PD indice of cefoperazone
and sulbactam was %T>MIC, namely the percentage of the dosing
interval for which the plasma concentration of cefoperazone or
sulbactam above the MIC. It was calculated based on the drug
pharmacokinetic profile and MICs of the combination (Lips
et al., 2014).

Bacterial Isolates and Susceptibility
Testing
Acinetobacter baumannii AB1845 and AB2092 were
isolated from the sputum of the patient before and after
cefoperazone/sulbactam therapy. Both isolates were stored
at −80◦C. The MIC was determined in cation-adjusted
Mueller-Hinton broth (Becton-Dickinson, Sparks, MD,
USA) using a broth microdilution according to Clinical
and Laboratory Standards Institute (CLSI) standards. The MICs
of the β-lactam/β-lactamase inhibitor combination, including
cefoperazone/sulbactam, carbapenems, colistin, and polymyxin
B, were determined.

Genome Sequencing and Analysis
Genomic DNA was extracted using a Genomic DNA Purification
Kit (Tiangen, Beijing, China) according to the instruction manual
and stored at −80◦C before sequencing. A 300-bp paired-end
library was constructed for the purified DNA sample following
the standard Illumina paired-end protocol. Cluster generation
was performed in C-bot, and sequencing was performed on
the Illumina Hiseq2500 with 150 cycles. The sequence reads

were cleaned using the FASTX toolkit1. Genome assembly
was performed using Velvet (Ver 1.0.15) (Zerbino and Birney,
2008). Putative protein-coding sequences were determined by
combining the prediction results of the glimmer 3.02 (Delcher
et al., 2007) and Z-Curve (Guo and Zhang, 2006) program. The
phylogenetic tree was constructed using PHYML (Guindon and
Gascuel, 2003) by concatenating orthologs based on the protein
sequences in the published genome. Functional annotation of
CDS was performed by searching the NCBI non-redundant
protein database and the KEGG protein database (Kanehisa
et al., 2016). Gene annotation was mapped to the A. baumannii
MDR-ZJ06 genome (from the phylogenetic tree) using Bowtie2
with default settings (Langmead and Salzberg, 2012). Single
Nucleotide Polymorphisms (SNPs) from alignments were called
using Samtools-0.1.16 (Li et al., 2009), and the output was
generated in the pileup format. Gene amplification was detected
by comparing the coverage of the reads in AB1845 and Ab2092
using the read depth method (Redon et al., 2006).

Quantitative Real-Time PCR Analysis of
blaOXA−23
The mRNA expression level of blaOXA−23 was quantified by
real-time PCR. AB1845 and AB2092 were cultured in cation-
adjusted Mueller-Hinton broth and collected during the early
log phase. Total RNA was extracted using a TaKaRa Mini
BEST Universal RNA Extraction Kit (TaKaRa Biotechnology,
Dalian, China) according to the manufacturer’s instruction.
Quantitative real-time PCR (qPCR) was performed using a
two-step process. RNA was first reverse-transcribed to cDNA
(TaKaRa Biotechnology, Dalian, China), and real-time PCR
was conducted on an ABI Vii7 (Applied Biosystems, Carlsbad,
CA, USA) using a TaKaRa SYBR R© FAST qPCR Kit with 40
cycles of denaturation for 5 s at 95◦C, annealing for 30 s at
50◦C, and extension for 20 s at 72◦C. The PCR primers for
the blaOXA−23 gene were F: CCGAGTCAGATTGTTCAAGGA
and R: TGTAGAGGCTGGCACATATTC; and those for 16S
rRNA were F: GGCGGCTTATTAAGTCGGATG and R:
TTCGTACCTCAGCGTCAGTATT. The melting curve analysis
was performed immediately after amplification to verify the
specificity of the PCR amplification products.

Fluorescence was measured at the end of the annealing-
extension phase of each cycle. A threshold value for the
fluorescence of all samples was set manually. The reaction cycle at
which the PCR product exceeded this fluorescence threshold was
identified as the threshold cycle (CT). The relative quantitation
was calculated by the 2-11CT method (Schmittgen and Livak,
2008). The student t-test was applied to evaluate the significance
of the gene expression level of the two isolates.

RESULTS

Antibiotic Susceptibility
Minimum inhibitory concentrations were obtained for
cefoperazone/sulbactam combinations, carbapenems, colistin

1http://hannonlab.cshl.edu/fastx_toolkit/
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and polymyxin B for the pre-therapy isolate AB1845 and
the post-therapy isolate AB2092 (Table 1). The MICs of the
cefoperazone/sulbactam combination were 16/8 mg/L for
AB1845; and the MICs of mono cefoperazone and sulbactam
were >128 mg/L and 32 mg/L. The results supported a synergistic
effect of the combination (FICI < 0.5, MIC of cefoperazone
was set at 128 mg/L for the FICI calculation). However, the
MICs of the combination and mono drugs were 128/64, >128,
and 128 mg/L for AB2092. The combination did not display a
synergistic effect on AB2092.

Interestingly, AB1845 and AB2092 also developed
meropenem resistance with MIC increased from 16 to 64 mg/L,
although the bacteria only exposed to meropenem for a
short term (0.5 g every 8 h for 4 days). The isolates also
developed resistance to imipenem and doripenem. Since
both cefoperazone and meropenem are β-lactam antibiotics,
the increased MIC in both cefoperazone/sulbactam and
carbapenems may imply the similar underlying resistance
mechanism. The isolates were only sensitive to colistin
and polymyxin B, indicating an alternative choice for the
AB2092 treatment. The MICs of the antibiotics are shown in
Table 1.

TABLE 1 | The minimum inhibitory concentrations (MICs) of different
antibiotics for AB1845 and AB2092.

Antibiotics MIC (mg/L)

AB1845 AB2092

Cefoperazone/sulbactam 16/8∗ 128/64

Cefoperazone >128 >128

Sulbactam 32 128

Meropenem 16 64

Imipenem 16 64

Doripenem 32 128

Colistin 2 2

Polymyxin B 1 1

∗FICI = 0.375; FICI = MIC(A)/MIC(A in combination) + MIC(B)/MIC(B in combination). The
bold values showed the increasing MIC of AB1845 compared with AB2092.

Pharmacokinetics and
Pharmacodynamics (PK/PD)
Plasma concentrations of cefoperazone and sulbactam at steady
state were determined using the validated LC-MS/MS method,
and the data were fitted into a developed population PK model
(Figure 1). The pharmacokinetic parameters of cefoperazone and
sulbactam are summarized in Table 2. The T1/2 of cefoperazone
was 4.1 h, which was a bit longer than the reported 1.8 h (Reitberg
et al., 1988). This could attribute to liver dysfunction (Boscia et al.,
1983) according to the medical records of the patients. The T1/2
of sulbactam was 1.3 h, which was comparable to the published
data (Reitberg et al., 1988).

Pharmacokinetic/pharmacodynamic indices were calculated
to evaluate the drug dosage regimen. The %T>MIC was the most
predictive PK/PD index for cefoperazone and sulbactam (Cooper
et al., 2011; Sy et al., 2015), and the MIC of the combination was
used for the %T>MIC calculation. In this study, the %T>MIC was
100% for cefoperazone and 34.5% for sulbactam for AB1845; and
the %T>MIC was 0% for both cefoperazone and sulbactam for
AB2092.

Whole-Genome Sequencing of AB1845
and AB2092
The two isolates were initially typed by PFGE of ApaI-digested
genomic DNA and shown to be the same strain. Whole-genome

TABLE 2 | Pharmacokinetic parameters of cefoperazone and sulbactam.

Parameters Units Cefoperazone Sulbactam

T1/2 h 4.1 1.3

Tmax h 1.4 1.3

Cmax mg/L 129.6 37.2

AUC0−8 mg h/L 529.1 66.5

AUC0− inf mg h/L 766.0 68.3

Vd L 15.5 26.6

CLt L/h 2.6 14.6

MRT0−8 h 2.6 1.5

MRT0− inf h 5.7 1.6

FIGURE 1 | The pharmacokinetic profiles of cefoperazone (A) and sulbactam (B). The dots in (A,B) are the concentration determined by LC-MS/MS (before
the first infusion on Day 4 and 0.5, 1, 2, 4, 6 h after the infusion), and the curves are the profiles fitted to the population pharmacokinetic model. The red lines were
indicated the concentration for the MIC of AB1845.
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FIGURE 2 | Phylogenetic tree of AB1845 and AB2092 with 16 complete
genomes of A. baumannii isolates in ftp://ftp.ncbi.nlm.nih.gov/
genomes/archive/old_genbank/.

sequencing produced 12,050,346 and 12,191,576 pairs of 150-
bp reads for AB1845 and AB2092, respectively. Assembly of the
AB1845 and AB2092 genomes resulted in 132 and 131 contigs
larger than 500 bp, comprising 4.0 megabases of sequence and
representing a median 930-fold coverage. The AB1845 draft
assembly has been deposited in GenBank (accession number
LVYA00000000), and raw sequence reads for AB1845 and
AB2092 have been submitted to NCBI’s Sequence Read Archive
under the study accession number SRP072783.

Automated gene prediction detected 3,811 and 3,810 putative
coding sequences (CDSs) for AB1845 and AB2092, respectively.
A phylogenetic tree was constructed, and the genome similarity
was compared (Figure 2). The 3,718 CDSs were homologous
(defined as a BLASTN e-value ≤ 1e−10) to the genome of
A. baumannii MDR-ZJ06, which was a multi-drug-resistant
isolate belonging to International clone II and wide spreading
in China (Zhou et al., 2011). MDR-ZJ06 was used as a reference
genome for annotating genes in AB1845 and AB2092 (Figure 3).
The results showed that the two isolates possess 97.6% similarity
to MDR-ZJ06, with 921 and 915 SNPs, respectively. Certain
genes were missing in both AB1845 and AB2092 compared
with MDR-ZJ06. For example, 17 genes had a 15-kb fragment
that was missing in the resistant island AbaR22, which includes
transposition helper proteins, site-specific tyrosine recombinase,
transposase protein A and conserved hypothetical proteins,
among others.

The CDS of AB1845 was also mapped to the published
plasmid sequence. It showed that certain AB1845 genes mapped
to plasmid ABKp1 from the A. baumannii 1656-2 plasmid with
97.6% similarity.

A comparison of the CDS of AB1845 and AB2092 revealed
only 33 SNPs. All of these SNPs were synonymous, indicating that
SNP was not the main reason for the development of resistance
(Supplementary Table S1).

β-Lactamase and Gene Amplification
A well-known resistance enzyme for β-lactam antibiotics is
β-lactamase. The class A, C, and D classes (blaOXA−23 and
blaOXA−51) β-lactamase were identified in both AB1845 and
AB2092 (Supplementary Table S2).

Gene amplification was detected by whole-genome
sequencing in combination with the read depth method
(Cantsilieris et al., 2012). Approximately 99.9% of the genes
had a coverage ratio of AB2092 to AB1845 of approximately
1.0, but six genes (out of 3871 genes) had a coverage ratio
over 3.0 (Supplementary Table S3). These six genes were AAA
ATPase, DEAD/DEAH box helicases, blaOXA−23, and three
hypothetical genes. Among these genes, AAA ATPase and
DEAD/DEAH box helicases are involved in the function of
DNA replication, repair, transcription, and two uncharacterized
genes (Johnson and Mckay, 1999; Iyer et al., 2004). The
blaOXA−23 was gene encoded class D β-lactamase and conferred
resistance to carbapenems and cefoperazone (Pascale and
Wright, 2010; Bush, 2013). All six genes were located in a
6-kb sequence fragment in AB1845 designated as Tn2009.
Tn2009 was flanked by two ISAba1 elements that contributed
to the duplication of Tn2009 in AB2902 (Liu et al., 2015).
The amplified genes were transcribed in the same orientation
(Figure 4).

mRNA Level of blaOXA−23 in AB1845 and
AB2092
Quantitative real-time PCR was conducted to measure the
mRNA levels of blaOXA−23 in AB1845 and AB2092. Both
isolates were collected at the early log phase, and the qPCR
results showed that the mRNA level of blaOXA−23 was
five times higher in AB2092 than in AB1845 (Figure 5).
This finding was consistent with the gene amplification
results.

DISCUSSION

Acinetobacter baumannii commonly colonizes in respiratory
tract of the hospitalized patients (Peleg et al., 2008). It is
difficult to characterize A. baumannii isolated from sputum
belongs to the upper airway colonization or the causative
pathogen of pneumonia. In this study, the two isolates were
considered causative pathogens, as verified by pneumonia
testing and symptoms such as cough, fever, and high white
blood cell counts. To examine the mechanism of resistance
development during cefoperazone/sulbactam treatment, both
PK/PD indices and genomic sequencing were employed
to understand the problem from a PK/PD and molecular
perspective.

Exposure to a sub-optimal antibiotic concentration is the most
important factor in the development of bacterial resistance. To
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FIGURE 3 | Atlas of the A. baumannii AB1845 draft genome. Each concentric circle represents the genomic data for AB1845. The two outer circles illustrate the
predicted coding sequences on the plus and minus strands, respectively, colored by functional categories according to the COG classification. The third circle
represents the location of the nucleotide substitution between AB1845 and AB2092, with blue representing genes affected by synonymous Single Nucleotide
Polymorphisms (SNPs) and red representing SNPs in the intergenic region. The fourth circle displays the loci of the β-lactamase genes (pink) and genes around
blaOXA−23 (gray). The fifth circle shows the GC content, and the 6th circle (innermost) represents GC skew (G–C)/(G+C) calculated using a 1-kb window.

FIGURE 4 | The illustration of the 6-kb DNA fragment of Tn2009 in AB1845 and AB2092. The fragment was amplified three times in AB2092.

optimize the antibiotic dosage regimen and prevent resistance,
the PK/PD which bridges drug exposure and effect, has been
widely applied in the clinics (Abdulaziz et al., 2015; Asín-
Prieto et al., 2015; Monogue et al., 2015). To date, the PK/PD
helps adjust dosage based on the evaluation of steady-state

drug concentrations (Martinez et al., 2012). In this study, blood
samples were collected at steady state, and the MIC of the
bacteria was determined. As the most predictive PK/PD index,
the %T>MIC of cefoperazone and sulbactam was calculated
and compared with published PK/PD targets. The published
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FIGURE 5 | Quantitative real-time PCR results for blaOXA−23 in AB1845
and AB2092 (∗student t-test p < 0.05).

target %T>MIC of β-lactam antibiotics was 40–70% (Drusano,
2004); however, there was no published target of sulbactam
because of a lack of pharmacodynamic data. In our present
dosage regimen (3 g q8h, infusion for 1 h), the target was
100% of cefoperazone and 34.5% of sulbactam for AB1845.
Cefoperazone clearly reached its target, whereas there were no
criteria for sulbactam. In a study of PK/PD simulation for
sulbactam in healthy volunteers, in order for A. baumannii
with an MIC of 8 mg/L to achieve the target of 40%, the
sulbactam had to be administered as a 4-h infusion of 3 g q8h
(Jaruratanasirikul et al., 2013). It has even been suggested that
the daily dose of sulbactam can be administered up to 6 g for
A. baumannii infection (Argyres, 2010) to achieve enhanced
efficacy. A comparison of these data revealed that sulbactam
should be administered at a much higher dose or prolonged
infusion time. A suboptimal dose of sulbactam could lead to
the development of resistance during treatment. Additional
research to identify the PK/PD target of sulbactam specific to
Acinetobacter is needed.

Whole-genome sequencing was further employed to
investigate the mechanism of resistance from a molecular
perspective. Comparison of the genome between AB1845
and AB2092 revealed no gene deletions or mutations (only
33 synonymous SNPs). However, the reads depth method
showed six amplified genes on Tn2009, including blaOXA−23.
The blaOXA−23 gene encodes the class D β-lactamase which
confers resistance to the last resort carbapenem antibiotics. The
OXA-23-producing A. baumannii is widely disseminated in
multi-drug-resistant A. baumannii. Although the blaOXA−23
gene has been mainly identified on plasmids, its chromosomal
location has also been reported (Zhou et al., 2011). The
transportable elements, Tn2006, Tn2007, Tn2008, and Tn2009,
play a key role in the transfer of the blaOXA−23 gene to
different locations in one bacterium or to different isolates
(Corvec et al., 2007; Liu et al., 2015). Tn2008 and Tn2009
have mostly been associated with the transfer of blaOXA−23 in
China (Adams-Haduch et al., 2008; Zhou et al., 2011; Liu et al.,

2015). IS elements are associated with the genome gain/loss
of genes, especially resistant genes. These two transposons
share ISAba1 upstream from blaOXA−23, which belongs to
the IS4 family, provides promoter for blaOXA−23 (Turton
et al., 2006; Mugnier et al., 2009), which could explain the
gene duplication or amplification in this study. The mRNA
level of blaOXA−23 confirmed the higher expression level of
AB2092 and AB1845. There is evidence that gene duplication
and amplification in bacteria was directly associated with
adaptation to environmental changes, including antibiotic
stress (Sandegren and Andersson, 2009). In a study testing the
relationships of gene amplification and β-lactams resistance
increase showed that 70% colonies of S. Typhimurium with
increased resistance to cephalosporin had increased blaTEM
gene copy numbers (Sun et al., 2009). Recent study showed
the heteroresistance of E. Coli and S. Typhimurium was due
to the amplification of pmrD gene which encoded a protein
modifying lipid A. Moreover, the heteroresistance phenotype
is associated with different copy numbers of the pmrD gene
(Hjort et al., 2016). Numerous studies have reported gene
duplication and amplification related to bacterial resistance to
antibiotics in vitro (Bertini et al., 2007). During the macrolide
treatment of a Streptococcus pneumoniae infection, the bacterium
developed resistance due to an 18 bp duplication in the rplV
gene, leading to the treatment failure. The duplication of
rplV gene led to the blocking of macrolide binding site on
ribosome (Musher et al., 2002). Another example of gene
amplification in bacterial isolates from human patients involves
the Streptococcus agalactiae, a leading cause of neonatal
infection. The amplification of a four-fold tandemly amplified
13.5-kbp region and a 92 kbp duplication conferred drug
resistance to both sulfonamide and trimethoprim (Brochet et al.,
2008).

In this study, the isolates developed resistance to
cefoperazone/sulbactam as well as carbapenem antibiotics.
The whole-genome sequencing showed the amplified
blaOXA−23 in the isolates is very likely the contribution
to the resistance. It is rational to conferred resistance to
carbapenem antibiotics by the amplification of blaOXA−23.
However, this is the first time to report the amplification of
blaOXA−23 results in cefoperazone/sulbactam combination
resistance. Further studies will be focused on collecting more
clinical isolates pairs of A. baumannii to support the mechanism
proposed.
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