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Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is
caused by mutation of the CF transmembrane conductance regulator (CFTR) gene.
A defect in the CFTR ion channel causes a dramatic change in the composition of
the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals,
the majority of bacteria trapped in the mucus layer are removed and destroyed by
mucociliary clearance. However, in the lungs of patients with CF, the mucociliary
clearance is impaired due to dehydration of the airway surface fluid. As a consequence,
patients with CF are highly susceptible to chronic or intermittent pulmonary infections,
often causing extensive lung inflammation and damage, accompanied by a decreased
life expectancy. This mini review will focus on the different secretion mechanisms used
by the major bacterial CF pathogens to release virulence factors, their role in resistance
and discusses the potential for therapeutically targeting secretion systems.
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BACTERIAL INFECTIONS INVOLVED IN CYSTIC FIBROSIS (CF)
LUNG DISEASE

The combination of a highly viscous, dehydrated mucus layer, defective mucociliary clearance and a
number of yet unknown factors make patients with CF extremely susceptible to infections (Lipuma,
2010). Pseudomonas aeruginosa is the most prevalent Gram-negative species, infecting about 50%
of all patients. It is detected in 25% of children, but approximately 70% of patients older than
25 years tested positive (Cystic Fibrosis Foundation, 2015). Members of the Burkholderia cepacia
complex (Bcc) cause chronic infections in CF patients, which results in approximately 20% of the
cases in fatal ‘cepacia syndrome,’ characterized by necrotizing pneumonia, bacteremia, sepsis and
eventually death (Lipuma, 2010). The prevalence of Bcc is highest in adults, affecting about 4%
of the patients, with B. cenocepacia and B. multivorans accounting for 70% of the Bcc infections.
Several reports indicate that the incidence of Stenotrophomonas maltophilia in CF patients has
increased considerably in recent years (Denton and Kerr, 2002). This opportunistic nosocomial
pathogen is mostly recovered from adolescent patients, with a prevalence of ± 15% (Razvi et al.,
2009; Cystic Fibrosis Foundation, 2015). Prevalence of Haemophilus influenzae is maximal at an
age of 2–5 years (32%) and decreases thereafter (Cystic Fibrosis Foundation, 2015). Achromobacter
xylosoxidans is also an emerging CF pathogen with an overall prevalence around 6% (Razvi et al.,
2009).
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Common to all these species is their dramatic intrinsic or
acquired resistance against most of the currently employed
antibiotics, making these infections extremely difficult to
eradicate. Efflux pumps, biofilm formation, decreased outer
membrane permeability, and inactivation of β-lactam antibiotics
by chromosomally encoded β-lactamases are the main causes of
resistance (Hoyle and Costerton, 1991; Waters, 2012).

VIRULENCE FACTORS

Each of the abovementioned species has its own repertoire of
virulence factors, specifically adapted to its needs for invasion,
colonization, replication, and survival in the host (Table 1).
Survival of P. aeruginosa is supported by the secretion of toxins
and proteases, including pyocyanin, exotoxin A, elastase, alkaline
phosphatase, and phospholipase C (Lee et al., 2005; van ’t Wout
et al., 2015). Similar strategies are used by B. cenocepacia to invade
and colonize host cells. Two zinc metalloproteases (ZmpA and
ZmpB), phospholipase C, iron-chelating siderophores, and cable
pili participate in this process (Sajjan et al., 1995; Darling et al.,
1998; Chung et al., 2003; Corbett et al., 2003; Uehlinger et al.,
2009). Besides the production of a range of extracellular enzymes
(lipase, fibrinolysin, hyaluronidase, protease, elastase, etc.), little
is known about virulence factors contributing to the pathogenesis
of S. maltophilia (Bottone et al., 1986). The extracellular capsule,
adhesion proteins (HMW1 and HMW2, opacity-associated
protein A), pili, haemocin, and the IgA1 protease play a crucial
role in the onset of the patient’s inflammatory response by
H. influenzae (Rosadini, 2011; Kostyanev and Sechanova, 2012).

THE ROLE OF BACTERIAL SECRETION
SYSTEMS IN CF PATHOGENESIS AND
VIRULENCE

Bacterial virulence factors are delivered either in the extracellular
environment or directly into host cells. Most Gram-negative CF
pathogens possess one or more specialized secretion systems to
accomplish this task. Eight different secretion systems have been

identified (Figure 1). Type I [type I secretion system (T1SS)],
type III [type III secretion system (T3SS)], type IV [type IV
secretion system (T4SS)], and type VI [type VI secretion system
(T6SS)] secretion pathways use a single energy-coupled step to
transport proteins across both the inner and outer membranes.
The outer membrane-spanning type V secretion system (T5SS)
and the double membrane-spanning type II secretion system
(T2SS) translocate substrates that first have been transported
into the periplasm by the Sec or Tat machinery (Costa et al.,
2015). Type VII secretion system (Type VII) is restricted to
Gram-positive bacteria and will not be discussed here. The type
VIII secretion system (type VIII) refers to the curli biogenesis
pathway (Chapman et al., 2002).

T1SS
The type I secretion machinery is composed of an inner
membrane associated ATP-binding cassette protein (which
recognizes the secretion signal of the substrate), a membrane
fusion adapter protein and a TolC-like outer membrane protein
(Wandersman, 1996). Substrate proteins are often very acidic
and contain distinctive glycine-rich repeats that bind Ca2+ ions
(Baumann et al., 1993). Most of the transported proteins also
contain repeats with a high degree of homology to adhesion
molecules, suggesting a role for T1SS substrates in adherence
(Hinsa et al., 2003).

The heme-binding protein HasAp from P. aeruginosa,
important for iron acquisition, is an example of a protein secreted
by T1SS (Letoffe et al., 1998). A second T1SS in P. aeruginosa is
responsible for the secretion of the alkaline proteases AprA and
AprX (Guzzo et al., 1991; Duong et al., 2001). In B. pseudomallei,
the major haemolysin is exported through a T1SS (Harland
et al., 2007). Three T1SS clusters are present in the genome
of S. maltophilia (Rocco, 2011), a potential substrate being the
virulence-associated membrane protein Ax21 (Ferrer-Navarro
et al., 2013).

T2SS
The T2SS is important for the secretion of hydrolases. It consists
of an outer membrane complex, a periplasmic pseudopilus, an

TABLE 1 | Overview of the major virulence factors associated with the outer membrane or secreted by cystic fibrosis (CF) pathogens.

Pseudomonas aeruginosa Burkholderia cenocepacia Stenotrophomonas
maltophilia

Haemophilus influenzae

Proteases LasB2, AprA1, AprX1, Staphylolysin
LasA2, aminopeptidase PaAP2,
protease IV2, LepA5, elastase2

ZmpA2, ZmpB2, MprA2 StmPr12, StmPr22, elastase2 IgA1 protease5

Lipases LipA2, LipC2, phospholipase C2,
PlcH2, PlcN2, ExoU3

Phospholipase C Lipase /

Toxins Pyocyanin, exotoxin A2, Cif Haemolysin Zonula occludens toxin /

Adhesion molecules Chitin-binding protein CbpD2, pili,
ExoS3, ExoT3, alginate, fimbriae,
flagellin

Cable pili, flagellin, fimbriae Flagellin, fimbriae HMW15, HMW25, pili, Hap5,
Hia5, Hsf5, opacity-associated
protein A

Hydrolytic enzymes Alkaline phosphatase, EstA5 Chitinase Fibrinolysin, hyaluronidase,
DNase, chitinase

Haemocin

Virulence factors of Achromobacter xylosoxidans have not been characterized yet. Indices indicate a known association with a certain secretion system (number
corresponds to the type of secretion system).
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FIGURE 1 | Schematic overview of the different secretion systems of Gram-negative airway pathogens associated with cystic fibrosis (CF).

inner membrane platform and a cytoplasmic ATPase. Substrates
are transported into the periplasm as unfolded or folded
proteins by the SecYEG translocon or the Tat transporter,
respectively (Costa et al., 2015). Interaction of the T2SS with its
substrates presumably occurs through recognition of a structural
motif, rather than a linear secretion signal (Lu and Lory,
1996; Sauvonnet and Pugsley, 1996; Francetic and Pugsley,
2005).

In P. aeruginosa, the major extracellular protease LasB is
secreted by the T2SS and is responsible for elastin degradation
and cleavage of surfactant protein D, an important immune
system protein (Olson and Ohman, 1992; Alcorn and Wright,
2004). Staphylolysin LasA, aminopeptidase PaAP, and protease
IV are other examples of type II secreted proteinolytic enzymes
in P. aeruginosa (Olson and Ohman, 1992; Engel et al., 1998;
Cahan et al., 2001). Another important family of T2SS substrates
in this pathogen are lipases, like LipA, LipC, phospholipase C,
PlcH, and PlcN, which are targeting the host membrane (Diaz-
Laviada et al., 1990; Ostroff et al., 1990). CbpD, a T2SS-dependent
chitin-binding protein, could serve as an adhesin, mediating
colonization of eukaryotic cells (Folders et al., 2000). The type
II secreted exotoxin A is responsible for ADP-ribosylation of
elongation factor 2, resulting in protein synthesis inhibition
and cell death (Allured et al., 1986). Also the B. cenocepacia
zinc-dependent metalloproteases, ZmpA and ZmpB, are T2SS
substrates (Nakazawa, 1996). They cleave antimicrobial peptides
involved in innate immunity, like β-defensin-1, cathelicidin
LL-37, elafin, and secretory leukocyte inhibitor (Kooi and
Sokol, 2009). S. maltophilia possesses two T2SS, Gsp and Xps
(Karaba et al., 2013). The serine proteases StmPr1 and StmPr2
are substrates of the Xps T2SS and mediate degradation of
extracellular matrix proteins (DuMont et al., 2015). H. influenzae

does not contain the genes required to build a functional T2SS
(Cianciotto, 2005).

T3SS
Bacterial T3SS are nanomachines capable of injecting effector
proteins into the cytoplasm or cell membrane of eukaryotic
target cells, and are therefore also called injectisomes (Cornelis,
2006). The system consists of a double-membrane-spanning
base composed of stacked rings and a needle-shaped filament
that extends into the extracellular space (Marlovits et al., 2004).
Different translocator proteins are first transported through the
needle and inserted into the eukaryotic cell membrane to form a
pore of about 2.8–3.0 nm (Dacheux et al., 2001; Schoehn et al.,
2003). Effectors contain a non-cleavable N-terminal secretion
signal and are targeted to the secretion machinery in an unfolded
state (Cornelis, 2006).

Known T3SS effectors of P. aeruginosa include ExoS and
ExoT, both containing a GTPase-activating function and an ADP-
ribosyltransferase activity. By acting on the actin cytoskeleton,
they are able to protect P. aeruginosa from phagocytosis (Barbieri
and Sun, 2004). Accumulation of cyclic AMP in host cells is
caused by the action of ExoY, an adenylate cyclase (Yahr et al.,
1998). ExoU is responsible for acute cytotoxicity and lung tissue
damage by its phospholipase A2 activity. Together with ExoS,
it prevents interleukin production by alveolar macrophages and
modulates the early inflammatory response (Sato and Frank,
2004). A T3SS mutant of B. cenocepacia was attenuated in
virulence in a murine model of infection, which indicates a role
for the T3SS in evasion of the host immune system (Tomich et al.,
2003). Currently, no effectors have been identified for this species.
T3SS genes are not present in S. maltophilia (Crossman et al.,
2008) or H. influenzae (Harrison et al., 2005).
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T4SS
Like the T3SS, the T4SS is composed of a core complex spanning
the inner and outer membrane and a pilus that protrudes into the
extracellular environment (Christie et al., 2014). The secretion
signals needed for translocation of effector proteins are generally
localized at the C-terminus and consist of clusters of hydrophobic
or positively charged residues (Alvarez-Martinez and Christie,
2009).

Two T4SSs with different functions are present in
B. cenocepacia. The first is located on a 92 kb plasmid and
is responsible for secretion of plant cytotoxic proteins. It also
plays a role in the intracellular survival of B. cenocepacia in
phagocytes. The second T4SS is chromosomally encoded and
might be involved in plasmid mobilization, although the exact
function is still unknown (Zhang et al., 2009). T4SS effectors
of Xanthomonas citri, a close relative of S. maltophilia, have the
capability of killing other bacterial species, thereby conferring
a selective growth advantage in mixed bacterial communities
(Souza et al., 2015). Whether the T4SS of S. maltophilia has
a similar function, remains unknown. H. influenzae and
P. aeruginosa do not contain a conventional T4SS.

A unique feature of the T4SS is that it can also transport
nucleic acids. P. aeruginosa and H. influenzae possess one or
more genomic island-associated T4SSs (GI-T4SS) that play a
crucial role in horizontal gene transfer (HGT) of integrative
and conjugative elements (ICEs; Juhas et al., 2007a). ICEs
not only contain genes required for excision/integration and
various accessory genes, but they often also harbor a T4SS,
which completes the machinery for efficient transfer from donor
to recipient cell (Juhas et al., 2008; Wozniak and Waldor,
2010; Guglielmini et al., 2011). A considerable part of the
accessory genes are involved in antibiotic resistance or virulence.
ICEHin1056 of H. influenzae carries ampicillin, tetracycline and
chloramphenicol resistance genes (Juhas et al., 2007b), while
PAPI-1 of P. aeruginosa encodes CupD type fimbriae essential
for attachment and the PvrSR/RcsCB regulatory system involved
in biofilm formation and antibiotic resistance (Mikkelsen et al.,
2013). The chromosomally encoded T4SS of B. cenocepacia was
also linked to plasmid mobilization (Zhang et al., 2009). Taken
together, these mechanisms of HGT pose a major threat to
our ability to combat infections occurring in CF patients by
potentially transforming the lung microbiota into an antibiotic
resistant community.

T5SS
The T5SS is a single-membrane-spanning system that secretes
virulence factors and mediates cell-to-cell adhesion and biofilm
formation. The substrates are fused to their secretion pore
to form a single polypeptide, also known as autotransporter.
Unfolded autotransporters are delivered to the periplasm via the
SecYEG translocon. The exoproteins either remain associated
with the outer membrane or are released in the extracellular
environment after proteolytic cleavage (Leo et al., 2012). In a
second type of T5SS, two-partner secretion (TPS), the substrate
or passenger domain and the pore-forming domain are two
separate proteins.

There is only one known autotransporter in P. aeruginosa,
i.e., EstA. It can hydrolyze glycerol esters through its esterase
activity and is involved in the production of rhamnolipids, cell
motility and biofilm formation (Wilhelm et al., 2007). Three
TPS systems have been characterized in P. aeruginosa: the
LepA/LepB system, in which LepA is a protease activating NF-
κB through digestion of PAR receptors (Kida et al., 2008),
the CupB system, involved in the assembly of CupB fimbriae
(Ruer et al., 2008) and the PdtA/PdtB system, where PdtA
is related to High Molecular Weight (MWH) adhesins (Faure
et al., 2014). The genome of B. cenocepacia J2315 contains
four T5SS, two of them contain pertactin domains involved in
adhesion, and the other two contain haemagglutinin repeats
(Holden et al., 2009). Haemagglutinin autotransporters are also
present in S. maltophilia (Ryan et al., 2009). The HMW1
and HMW2 from H. influenzae are also TPS systems. The
H. influenzae Hap, Hia, and Hsf autotransporters mediate
bacterial aggregation and microcolony formation and promote
adherence to epithelial cells and extracellular matrix proteins
(Fink et al., 2003; Spahich and St Geme, 2011). Another T5SS
substrate is the IgA protease, responsible for degradation of the
major mucosal immunoglobulin (Fernaays, 2008).

T6SS
The type VI secretion machinery consists of a membrane
complex and a tail complex, composed of structural elements
that are equivalent to contractile phage tails (Basler et al., 2012).
Although the T6SS plays a major role in the pathogenesis toward
eukaryotic cells, it can also be used to target other bacteria
in polymicrobial infections (Ho et al., 2014). Three T6SS are
present in P. aeruginosa, but only two major substrates have
been identified so far, Hcp and VgrGs. Hcp is believed to form
nanotubes on the bacterial surface, which may allow transport
of other T6SS effectors (Ballister et al., 2008). VgrGs could form
trimeric complexes puncturing membranes allowing the passage
of other proteins (Leiman et al., 2009). The B. cenocepacia T6SS
modulates actin cytoskeleton dynamics and NADPH oxidase
complex assembly, also through the action of Hcp and VgrGs
(Pukatzki et al., 2007). S. maltophilia and H. influenzae do not
contain T6SS genes.

MEMBRANE VESICLES

Secretion of membrane vesicles (MVs) by both Gram-negative
and Gram-positive bacteria is now considered as a true secretion
system. The membranous nanoparticles are pinched off from
the cell surface and carry membrane-associated and soluble
proteins, nucleotides, and other molecules into the extracellular
environment. MVs are involved in a series of biological functions,
including nutrient acquisition, iron scavenging, antibiotic
resistance and biofilm formation (Haurat et al., 2015).

Membrane vesicles contribute to pathogenesis by delivering
virulence factors and/or through modulation of the host immune
system (Schwechheimer and Kuehn, 2015). P. aeruginosa MVs
enable long-distance delivery of multiple virulence factors
including alkaline phosphatase, hemolytic phospholipase C and
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Cif, a toxin that inhibits CFTR-mediated chloride secretion in the
airways (Bomberger et al., 2009). Cif also enhances ubiquitination
and subsequent degradation of the transporter associated with
antigen processing (TAP), reducing MHC class I activation
(Bomberger et al., 2014). Secretion of MV-associated hydrolases
like (metallo)proteases, (phospho)lipases and peptidoglycan-
degrading enzymes was also shown in B. cenocepacia (Allan et al.,
2003). H. influenzae MVs activate B-cells in a T-cell independent
manner, possibly creating a diversion on the adaptive immune
system and promoting survival within the host (Deknuydt et al.,
2014).

Several studies highlighted the importance of MVs in
antibiotic resistance. Exposure of S. maltophilia cells to β-lactam
antibiotics led to a significant increase in MVs that are packed
with β-lactamases (Devos et al., 2015). These MVs are capable
of degrading β-lactams extracellularly, and even increase the
β-lactam tolerance of the species P. aeruginosa and B. cenocepacia
(Devos et al., 2016). Furthermore, β-lactamases were found
in MVs of P. aeruginosa and H. influenzae, indicative for
a general mechanism to respond to β-lactam stress (Ciofu
et al., 2000; Schaar et al., 2011). MVs can also mediate export
of antibiotics or extracellular capturing of antibiotics. When
P. aeruginosa is treated with the aminoglycoside gentamycin, it
secretes gentamycin-containing MVs. These MVs also contain
peptidoglycan hydrolase and were shown to be bactericidal
against B. cenocepacia (Allan and Beveridge, 2003). Finally, MVs
can aid in the inter- and intraspecies spread of resistance genes
(Schwechheimer and Kuehn, 2015).

SECRETION SYSTEMS AS TARGETS
FOR ANTI-INFECTIVE DRUGS

Development of novel therapies is crucial to manage the
spread and impact of these pathogens on CF patients. Classical
antibiotics mostly exert their function by inhibiting the growth
of bacteria through interference with cell wall biogenesis, DNA
replication, transcription, and protein synthesis (Baron and
Coombes, 2007). Unfortunately, the rate at which resistance
against these traditional antibiotics emerges is alarming, partly
due to the rise of mutations in the genes coding for antibiotic
targets. Secretion system inhibitors are a novel class of anti-
infectives that do not inhibit bacterial growth per se and therefore
do not provoke selection for mutations causing resistance.
Another advantage is the fairly high degree of conservation
of these systems between a whole range of Gram-negative
pathogens. Since secreted effectors often play a major role in
immune evasion, targeting these important bacterial virulence
mechanisms may restore pathogen clearance by the host’s own
immune system.

Kauppi et al. (2003) found that a family of acylated hydrazones
of different salicylaldehydes can inhibit the T3SS at the level
of substrate secretion/translocation. The related halogenated
salicylaldehydes are capable of inhibiting the transcription
of genes encoding T3SS components (Kenny et al., 1997).
Thiazolidinones were found to target the formation or assembly
of the T3SS needle apparatus. These compounds could also
inhibit the T2SS in Pseudomonas and the type IV pili secretion
system of Francisella, therefore it is hypothesized that they
might act on the conserved outer membrane secretin (Felise
et al., 2008; Kline et al., 2009). Other promising targets are
the energy-generating ATPases of T2SS and T4SS (Sayer et al.,
2014), the accessory lytic transglycosylases of T2SS, T3SS, and
T4SS (Koraimann, 2003) and the translocated effector proteins
(Coburn et al., 2007; Figueira et al., 2013; Kidwai et al., 2013).
By inhibiting T4SS-dependent secretion, horizontal transfer of
antibiotic resistance genes could be reduced.

CONCLUDING REMARKS

With as many as 90% of CF patients dying of fatal lung infections
every year, it is crucial to find means to eradicate or at least
control the growth and spread of these major CF pathogens.
Secretion systems provide a useful target, since their effector
proteins are responsible for a wealth of host cell compromising
actions. Due to the fairly high degree of conservation in the
composition of these secretion systems, an inhibitor has the
potential to target a whole array of Gram-negative pathogens.
Because the growth of the pathogens is unaffected by such
compounds, the risk for resistance development is highly
reduced. It is therefore essential to keep investing in the
identification of novel effector proteins and structural elements
of secretion systems, as well as in ways to block secretion of
virulence factors and MVs.
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