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Malformation caused by Fusarium mangiferae is one of the most destructive mango

diseases affecting the canopy and floral development, leading to dramatic reduction

in fruit yield. To further understand the mechanism of interaction between mango and

F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango

plants, which were challenged with F. mangiferae. More than 99 million reads were

deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on

the sequence similarity searches, 61,706 unigenes were identified, of which 21,273

and 50,410 were assigned to gene ontology categories and clusters of orthologous

groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially

expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs

respectively, after infection for 45, 75, and 120 days. The analysis of the comparative

transcriptome suggests that basic defense mechanisms play important roles in disease

resistance. The data also show the transcriptional responses of interactions between

mango and the pathogen and more drastic changes in the host transcriptome in

response to the pathogen. These results could be used to develop new methods to

broaden the resistance of mango to malformation, including the over-expression of key

mango genes.

Keywords: mango, mango malformation disease, transcriptome, gene expression, plant–pathogen interaction

INTRODUCTION

The fruit of mango (Mangifera indica L.) is exceptional for its spicy, succulent, thick fruit pulp and
abundant nutrients, containing a wide range of amino acids, sugar, organic acids, and minerals
including Ca, P, Fe, and K as well as a great variety of vitamins. Mango cultivation is affected
by specific constraints, among which mango malformation disease (MMD) caused by Fusarium
mangiferae is considered to be one of the most important threats in the majority of mango-planting
regions worldwide (Ploetz et al., 2002; Marasas et al., 2006; Zhan et al., 2010, 2012). In the past
decade, MMD has destroyed many thousands of hectares of mango in tropical and subtropical
countries. Because of the economic importance of MMD, many studies have been performed on
the occurrence (Steenkamp et al., 2000; Lima et al., 2009; Iqbal et al., 2011b), pathogen genetic
diversity (Iqbal et al., 2006; Liu et al., 2014), pathogen detection (Wu et al., 2016), pathogen
cytology (Iqbal et al., 2010), infection life cycle (Freeman et al., 1999; Gamliel-Atinsky et al., 2009),
and chemical control (Iqbal et al., 2011a) of the disease, but research on the screening of mango
germplasm for MMD resistance and on molecular mechanisms underlying MMD resistance and
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the pathogenicity of F. mangiferae is scarce (Singh, 2006). The
main control measures against MMD include destruction of
diseased mango branches, use of disease-free plant materials and
fungicides. However, no fungicides or other chemical means
have been proven effective for the control of this disease
(Iqbal et al., 2011b). Although cultural practices such as heavy
pruning can influence the development of the disease, none can
efficiently control MMD. Thus, breeding for mango cultivars
with durable resistance to MMD is considered to be one
of the most economical, environmentally safe, and effective
strategies for disease management. Although no mango variety
has yet been identified as having complete, or even a high
level of, resistance, cultivars do exhibit significant differences
in quantitative resistance to F. mangiferae. However, a lack
of genetics resources within conventional breeding programs
demonstrated that attempts to improve tolerance to MMD have
not been successful.

A multi-layered process occurs between plants and pathogens,
and deciphering the molecular basis of the interactions
would significantly assist the development of new control
strategies. In the past, efforts have been made to discover
the molecular mechanisms underlying interactions between
plants and pathogens (Boyd et al., 2013; Orlowska et al.,
2013). Plants have evolved multiple strategies to defend against
damage from various attackers, such as pathogens, insects,
and fungi (Dang and Jones, 2001; Wise et al., 2007). These
strategies involve two complex mechanisms of interaction,
namely, PAMP-triggered immunity (PTI), and effector-triggered
immunity (ETI; Bonas and Lahaye, 2002; Göhre and Robatzek,
2008), and three main plant defense hormones: salicylic acid
(SA), jasmonic acid (JA), and ethylene (ET; Sato et al., 2010;
Miljkovic et al., 2012). PTI is the earliest response of plants
under attack, when host receptors recognize the pathogen-
derived PAMP (pathogen-associated molecular pattern), whereas
ETI is prompted by the interaction between a pathogenic
effector and a “Resistance” protein (McDowell and Simon, 2008;
Zhang and Zhou, 2010). The two immune systems result in
a non-host resistance (considered as PTI) and a partial or
qualitative resistance (considered as ETI). JA and ET are generally
involved in the defense against necrotrophic pathogens and
herbivorous insects, whereas SA is involved in immunity against
biotrophic and hemibiotrophic pathogens (Dong, 1998). The
availability of modern molecular biological techniques, such
as RNA sequencing, provides the new insights into molecular
mechanisms of plant resistance during the interaction of plants
and pathogens. This technique has been performed for many
host–pathogen interactions, including banana and F. oxysporum
f. sp. cubense (Li et al., 2013), tomato and Xanthomonas
perforans race T3 (Du et al., 2015), oil palm and Ganoderma
spp. (Ho et al., 2016), pea and Phytophthora pisi (Hosseini
et al., 2015), wheat and Heterodera avenae (Kong et al., 2015),
and soybean and F. oxysporum (Lanubile et al., 2015). Many
genes were revealed to be involved in defense mechanism and
resistance-associated signal transduction in plants. For instance,
phytohormone-related genes were found to be significantly up-
regulated in potato after Ralstonia solanacearum inoculation
(Zuluag et al., 2015). MMD is an emerging fungal disease that

causes severe yield loss in mango. However, little is known about
the molecular mechanisms underlying the interactions between
mango and F. mangiferae. This study was carried out to further
a better understanding of the interactions between mango and
the pathogen in order to develop effective means to control this
important mango disease.

MATERIALS AND METHODS

Plant Material and Pathogen Inoculation
The higly virulent strain of F. mangiferae (MG06) isolated from
an infected Keitt mango (Zhan et al., 2012) and preserved in
the lab of SSCRI was used in this study. The pahtogen was
inoculated into 1-year-old “Keitt” mango seedlings planted in
10−L (plastic) pots in a glasshouse. The inoculum was in the form
of conidial suspension obtained by adding (10 mL) sterile water
to a 7 day-old 9-cm PDA culture plate to dislodge the conidia, and
followed by filtering the suspension through two layers of sterile
cheesecloth. Wound inoculation was performed by injecting 200
µL of conidial suspension (1 × 106 spores per mL) into the
axillary or apical buds. Water-inoculated plants served as the
control. All plantlets were kept in a greenhouse at 25–32◦Cwith a
16-h photoperiod. Fifteen buds were harvested at 45, 75, and 120
days post-inoculation (dpi). The control was an equal mixture of
buds harvested from the water-inoculated samples at the same
time intervals. The treated tissues were quickly frozen in liquid
nitrogen and stored at −80◦C. The samples were marked as CK
(control), 45D, 75D, and 120D.

Extraction and Purification of Total RNA
Frozen buds were ground mechanically into fine powder in
liquid nitrogen. Total RNA was isolated using a Quick RNA
Isolation Kit (Huayueyang Biotechnology, Beijing, China), in
accordance with the manufacturer’s guidelines. The total RNA
was resuspended in RNase-free water, and RNA integrity and
quality were assessed using an Agilent 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA).

RNA Processing for Transcriptome
Sequencing
Poly (A) mRNA was isolated using oligo-dT beads (Qiagen).
All mRNAs were broken into short fragments by adding a
fragmentation buffer. First-strand cDNA was generated using
random hexamer-primed reverse transcription, followed by
synthesis of the second-strand cDNA by using RNase H and
DNA polymerase I. The cDNA fragments were purified using
a QIAquick PCR extraction kit. These purified fragments were
then washed with EB buffer for end reparation poly (A)
addition and ligated to sequencing adapters. Following agarose
gel electrophoresis and extraction of cDNA from gels, the cDNA
fragments were purified and enriched by PCR to construct the
final cDNA library. The cDNA library was sequenced on the
Illumina sequencing platform (Illumina HiSeqTM 2500) by using
the paired-end technology from Gene Denovo Co. (Guangzhou,
China).
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De novo Assembly and Annotation
A Perl program was written to select clean reads by removing
low-quality sequences (those in which more than 50% of bases
presented quality of ≤10), reads with more than 5% N bases
(bases unknown), and reads containing adaptor sequences.
Clean reads were de novo assembled by Trinity Program
(Grabherr et al., 2011). All the unigenes were then compared
with four protein databases, namely, NCBI non-redundant
protein database (Nr; http://www.ncbi.nlm.nih.gov/), Clusters of
Orthologous Groups of proteins database (COG; http://www.
ncbi.nlm.nih.gov/COG/), KEGG, and Swiss-Prot (http://www.
expasy.ch/sprot), by using BLASTX (Altschul et al., 1997) with
an E-value cutoff of 10−5. The sequence direction of the unigenes
was determined using the optimum alignment results. When
the results were conflicted among databases, the direction was
determined consecutively by Nr, Swiss-Prot, KEGG, and COG.
When a unigene would not align to any database, ESTScan
(http://myhits.isb-sib.ch/cgi-bin/estscan) was used to predict
the coding regions and determine the sequence direction. GO
annotation was analyzed by Blast2GO software (https://www.
blast2go.com/). Functional classification of the unigenes was
performed using WEGO software (Ye et al., 2006).

Identification and Analysis of DEGs
Screening of DEGs back to the pipeline of bioinformatics analysis
determined the genes with different expression levels among
the samples, followed by GO function analysis and KEGG
pathway analysis (Audic and Claverie, 1997). We developed a
strict algorithm to identify the DEGs between CK and each of
45D, 75D, and 120D. FDR was used to determine the P-value
threshold in multiple tests and analyses. We evaluated the
significance of differences in gene expression by using a threshold
value of absolute log2-fold change ≥1 with FDR ≤ 0.001 and
P ≤ 0.005. In addition, GO and KEGG pathway enrichment
analyses were performed to detect the significantly enriched
functional classification and biological pathways.

Quantitative Real-Time PCR
As described in the method reported by Du et al. (2015),
the Ai-actin gene of mango was used as a reference gene.
Gene-specific primers were designed using the gene sequences
with Primer 5.0 software, and the primer sequences as listed in
Additional File 7.

RESULTS

Inoculation of Mango Buds with
F. mangiferae for Gene Expression
Profiling Analysis
After inoculation with F. mangiferae, symptoms started in short
internodes with the formation of a swollen bud, with small scale-
like leafy structures. The growth of this shootlet was arrested, and
several similar shootlets arose again from the axil of scaly leaves.
This process continued. Collectively, a number of such structures
gave rise to a malformed bunch (Figure 1).

To identify the genes with altered expressions in response to
infection by F. mangiferae and to reveal any difference in global

gene expression profiles at different times after inoculation, we
cut the buds of mango seedlings and inoculated the wounded
buds by immersing them in F. mangiferae spore culture. The
inoculated buds were harvested at 45, 75, and 120 days after
the initial inoculation for RNA extraction. The gene expression
profile at the 45 day time point reflects an early host response
triggered mainly by PAMPs. The profiles at 75 and 120 days
are early-intermediate and late phase responses to infection by
F. mangiferae, respectively.

Illumina Sequencing
To identify the genes with expression specifically altered when
the bud is infected by F. mangiferae, cDNA samples were
prepared from total RNA of the non-inoculated buds and buds
inoculated with F. mangiferae for 45, 75, and 120 days. A total
of 99,410,732 reads from the four libraries were subjected to
de novo assembly (Table 1). The raw reads were deposited in
the NCBI Sequence Read Archive under the accession number
SRX1651783. To facilitate sequence assembly, repetitive, low-
complexity, and low-quality reads were filtered out. Reliable reads
were assembled into 133,077 contigs with a length from 200 to
3000 bp. After clustering the contigs together, we finally obtained
121,267 unigenes. The size was between 200 and 3000 bp, with
an N50 of 1222 bp. The size distributions of these contigs and
unigenes are shown in Figures S1, S2.

Functional Annotation and Gene Ontology
Classification
Functional annotation provided information on protein
functions, pathways, COGs, and GO. To determine the unigenes’
sequence orientation, all unigenes were aligned using BLASTX
(E < 1 × 10−5) against four protein databases in the following
order of priority: Nr, Swiss-Prot, KEGG, and COG. A total
of 75,802 (62.51%) unigenes were successfully annotated. The
largest number of annotations was found using the Nr database
(60.62%), followed by Swiss-Prot (46.88%), KEGG (23.83%), and
COG (19.72%; Figure S3). The remaining unaligned unigenes
were analyzed using ESTscan to predict the coding regions and
determine the sequence direction (Iseli et al., 1999).

Among the 121,267 unigenes, 73,509 proved to be similar to
known protein sequences from Theobroma cacao (32.23%), Vitis
vinifera (14.62%), Cucumis sativus (5.60%), Fragaria vesca subsp.
vesca (5.34%), Arabidopsis thaliana (3.87%), Cicer arietinum
(3.64%), Glycine max (3.46%), Oryza sativa Japonica Group
(3.22%), and others (Additional File 1). Annotation of the
36,480 sequences by using the GO and COG databases yielded
good results for ∼65,535 unigenes and 53,816 putative proteins,
respectively (Additional File 2, Figure S4, Table S1).

Table S1 shows the distributions of 53,816 unigenes assigned
into 25 orthologous clusters in COG. Some unigenes may be
assigned into several clusters, whereas others were assigned
to the same cluster but with different protein orthologous
similarities. For the majority of the unigenes (8578), only general
functional predictions were possible, and the most common
categories assigned were transcription (4428) and translation,
as well as ribosomal structure and biogenesis (4148). A total of
2592 functionally unknown unigenes were identified, and 1617
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FIGURE 1 | The symptoms of mango bud after infected by F. mangiferae. CK is healthy seedling; 45D, 75D, and 120D were vegetative malformation of mango

artificially after inoculated with F. mangiferae.

TABLE 1 | Output statistics of sequencing.

Samples Total Reads Total Nucleotides (nt) Q20 percentage N percentage GC percentage

Mangifera_indica 99,410,732 9,941,073,200 98.28% 0.00% 48.27%

Total Nucleotides = Total Reads1 × Read1 size + Total Reads2 × Read2 size; Total Reads and Total Nucleotides are actually clean reads and clean nucleotides; Q20 percentage is

proportion of nucleotides with quality value larger than 20; N percentage is proportion of unknown nucleotides in clean reads; GC percentage is proportion of guanidine and cytosine

nucleotides among total nucleotides.

unigenes were assigned to secondary metabolite biosynthesis,
transport, and catabolism; 537 unigenes were assigned to defense
mechanisms.

Figure S4 shows that 36,481 unigenes were classified into
the three following GO domains: biological process, cellular
component, and molecular function. One unigene may be
assigned to various GO terms.

To identify the biological pathways active in mango, we
mapped the annotated unigene sequences to the reference
canonical pathways in KEGG. A total of 23,915 unigenes
can be annotated and were assigned to 273 KEGG pathways
(Additional File 3). “Ribosome” was the most common term
and contained 1716 (7.18%) unigenes, followed by “Oxidative
phosphorylation” (862, 3.6%) and “Protein processing in
endoplasmic reticulum” (854, 3.57%).

Digital Gene Expression Library
Sequencing
A total of 15,830 genes were significantly and differentially
expressed between the CK and 45D libraries, with 6802
upregulated and 9028 downregulated genes after 45 days of
F. mangiferae inoculation. Between the CK and 75D libraries,
a total of 26,061 DEGs were detected, with 11,582 upregulated
and 14,479 downregulated genes (Additional File 4). There were
20,146 genes expressed at different levels in the CK and 120D
libraries, with 7222 upregulated and 12,924 downregulated genes
after 120 days of inoculation (Figure 2).

To focus the analysis on the genes with higher-fold changes
in expression compared with the water-inoculated samples, we
considered a cutoff (≥5) on the log2-fold change in the expression
between pathogen- and water-inoculated samples of the genes
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FIGURE 2 | Changes in gene expression profile of mango buds with the progression of F. mangiferae infection. The numbers of up- and down-regulated

genes in 45D, 75D, and 120D compared to CK are summarized.

with P ≤ 0.05. Thus, genes with more than 5-fold induction
or suppression compared with water-inoculated samples were
defined as DEGs.

Gene Ontology Classification Analysis of
DEGs
To understand the biological processes associated with host
reaction to F. mangiferae infection, GO analysis was applied to
the above DEGs, and enrichment analysis was performed using
an FDR-adjusted value of ≤0.05 as the cutoff. After discarding
genes with unassigned function, mango DEGs were assigned
to different categories. GO enrichment categorized 38.4, 35.7,
and 38.2% DEGs into functional groups from the CK-VS-45D,
CK-VS-75D, and CK-VS-120D comparisons, respectively. More
DEGs were assigned to the terms of in the biological process
and molecular function domains than to cellular component
terms (Additional File 5). The dominant terms in each domain
were metabolic process, cell, and catalytic activity, respectively.
Although these enriched terms were similar at the different
times after inoculation, the individual genes contributing to
the common enriched terms were substantially diversified at
different times after F. mangiferae inoculation.

The most significantly enriched GO terms in the
biological process domain in the three inoculated libraries
included “transcription, DNA-dependent” (GO: 0006351),
“protein modification process” (GO: 0006464), “gene
expression” (GO: 0010467), “phosphate-containing compound
metabolic process” (GO: 0006796), “developmental process
involved in reproduction” (GO: 0003006), “single-organism
cellular process” (GO: 0044763), “response to stress” (GO:
0006950), “primary metabolic process” (GO: 0044238),
and “response to hormone stimulus” (GO: 0009725;
Additional File 5).

Identification of Metabolic Pathways by
KEGG Analysis of DEGs
To further understand the functions of DEGs, we mapped
them to KEGG terms to discover those genes involved

in biosynthetic or signal transduction pathways that were
significantly enriched. In CK-VS-45D, CK-VS-75D, and
CK-VS-120D comparisons, 4177, 6640, and 5228 DEGs
were mapped to 121, 124, and 122 KEGG pathways,
correspondingly. Only significant pathway categories among the
three comparisons were selected (Table 2). Some defense-
associated biosynthetic pathways, including flavonoid
biosynthesis, phenylpropanoid biosynthesis, taurine and
hypotaurine metabolism, plant hormone signal transduction,
zeatin biosynthesis, and ascorbate and aldarate metabolism,
were significantly enriched. Four metabolic pathways,
which were significant pathway categories with P-value of
≤0.05 at all three time points, were selected for further
analysis. The selected pathways were “Flavonoid biosynthesis”
(ko00941), “Phenylpropanoid biosynthesis” (ko00940), “RNA
transport” (ko03013), and “Zeatin biosynthesis” (ko00908;
Additional File 6).

By using log2-fold change ≥5 as a cutoff in the
“Flavonoid biosynthesis” (ko00941) pathway, a total of
10 DEGs were detected with nine upregulated and one
downregulated: seven chalcone synthases, one cinnamate
4-hydroxylase CYP73, one flavonoid 3′5′-hydroxylase, and
one leucoanthocyanidin dioxygenase. Among the genes
associated with “Phenylpropanoid biosynthesis” (ko00940),
34 DEGs were detected with 25 upregulated and nine
downregulated, including six alcohol dehydrogenases, four
catalase-peroxidases, six cinnamyl alcohol dehydrogenases,
and eight peroxidases. In the “Zeatin biosynthesis”
(ko00908) pathway, a total of 12 DEGs were detected with
eight upregulated and four downregulated, including five
cytokinin oxidases, two adenylate isopentenyltransferases, one
cytokinin biosynthetic isopentenyltransferase, one cytokinin
dehydrogenase 1-like, and one cytokinin hydroxylase.
Among the genes associated with the “RNA transport”
(ko03013) pathway, 102 genes showed at least 5-fold
difference in their transcript levels between the CK and
F. mangiferae inoculated buds at one or more time point
(Additional File 6).
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TABLE 2 | Significantly enriched KEGG pathways of DEGs by F. mangiferae infection.

Pathway No. of up-regulated genes No. of down-regulated genes p-value Pathway ID

CK-VS-45D

Flavonoid biosynthesis 28 2 8.9E−07 ko00941

Circadian rhythm—mammal 3 19 0.0011 ko04710

Ubiquitin mediated proteolysis 21 90 0.0017 ko04120

Photosynthesis 27 20 0.0018 ko00195

Phenylpropanoid biosynthesis 58 9 0.0036 ko00940

Taurine and hypotaurine metabolism 6 9 0.0036 ko00430

Stilbenoid, diarylheptanoid and gingerol biosynthesis 14 0 0.0096 ko00945

Starch and sucrose metabolism 44 53 0.0169 ko00500

Plant hormone signal transduction 67 71 0.0196 ko04075

Betalain biosynthesis 2 0 0.0305 ko00965

Other glycan degradation 2 8 0.0333 ko00511

Selenocompound metabolism 9 13 0.0419 ko00450

RNA transport 41 104 0.0428 ko03013

Zeatin biosynthesis 8 5 0.0473 ko00908

Basal transcription factors 7 28 0.0478 ko03022

CK-VS-75D

Ribosome 426 201 1.33E−16 ko03010

Flavonoid biosynthesis 33 3 3.50E−05 ko00941

Phenylpropanoid biosynthesis 87 19 0.0001 ko00940

Phenylalanine metabolism 66 12 0.0003 ko00360

Phosphatidylinositol signaling system 18 46 0.0038 ko04070

Zeatin biosynthesis 13 7 0.0071 ko00908

Phagosome 74 70 0.0109 ko04145

Biosynthesis of secondary metabolites 0.0152 ko01110

RNA transport 86 140 0.0199 ko03013

Stilbenoid, diarylheptanoid and gingerol biosynthesis 17 1 0.0253 ko00945

Starch and sucrose metabolism 70 78 0.0281 ko00500

Ascorbate and aldarate metabolism 40 23 0.0351 ko00053

Glycolysis/Gluconeogenesis 140 79 0.0395 ko00010

Non-homologous end-joining 1 15 0.0401 ko03450

Isoquinoline alkaloid biosynthesis 10 4 0.0411 ko00950

Biosynthesis of unsaturated fatty acids 47 17 0.0421 ko01040

Pentose and glucuronate interconversions 63 23 0.0437 ko00040

CK-VS-120D

Photosynthesis—antenna proteins 20 4 0.0015 ko00196

Fatty acid biosynthesis 15 30 0.0055 ko00061

Flavonoid biosynthesis 20 5 0.0068 ko00941

Phosphatidylinositol signaling system 8 44 0.0112 ko04070

Zeatin biosynthesis 9 6 0.0141 ko00908

Phenylpropanoid biosynthesis 52 24 0.0207 ko00940

Ubiquinone and other terpenoid-quinone biosynthesis 11 17 0.0226 ko00130

RNA transport 41 138 0.0259 ko03013

RNA degradation 24 82 0.0315 ko03018

Porphyrin and chlorophyll metabolism 8 37 0.0366 ko00860

Other types of O-glycan biosynthesis 0 5 0.0467 ko00514

Experimental Verification of DEGs
To validate the RNA-sequencing expression profiles of mango
DEGs, we monitored the expression pattern of 11 candidate
DEGs at the three time points post-inoculation by using

qRT-PCR. These candidate DEGs included genes related to
defense response in other plant species, such as chitinase,
WRKY transcription factor 26, proline-rich RLK PERK10-like,
thaumatin-like protein 3, and partial genes, which were involved
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in secondary metabolism and hormone biosynthesis pathways.
Their expression showed an approximately linear correlation to
the RNA-sequencing results (Additional File 7).

DISCUSSION

In this study, we have investigated plant defense responses in
mango following infection by F. mangiferae. We have studied
compatible interactions between mango and F. mangiferae,
which resulted in a disease. We hypothesize that in these
compatible interactions, the transcriptomic responses in mango
are linked with immunity, thus representing a failed defense
response. Comparison between time points reveals distinct sets
of differentially regulated genes in response to F. mangiferae.
This finding indicates that differences in disease severity lead to
disparate transcriptional changes in mango. This interpretation
is strengthened by the expression patterns of genes involved
in pathogen perception, in which different sets of genes
are specifically and differentially regulated in response to
F. mangiferae. This result also suggests that different signaling
molecules in mango are triggered by F. mangiferae.

Pathogenesis-Related Genes
Pathogenesis-related (PR) genes have been shown to play
important roles in plant defenses against pathogen infection
(Sels et al., 2008). Previous studies have demonstrated that
overexpression of the PR genes encoding β-1, 3-glucanases,
chitinases, and thaumatin-like proteins enhances resistance to
Ustilaginoidea virens in rice (Han et al., 2015). Consistent
with our findings, PR genes in mango have been induced by
diverse biotic stresses, including infection by the anthracnose
Colletotrichum gloeosporioides (Hong et al., 2016). We compared
the transcript levels between pathogen- and water-inoculated
buds at 45, 75, and 120 days post-inoculation. The transcript
levels of 46 PR genes were altered by F. mangiferae infection
(Additional File 8, Table 3), including three PR1, one PR2, one
PR4, three PR10, three thaumatin-like genes (family PR5), 17
chitinase genes (families PR3, PR4, and PR8), 16 peroxidase
genes (family PR9), and one proteinase inhibitor gene (family
PR6). Most of the eight PR proteins were upregulated. Two
PR proteins (Unigene0014620 and Unigene0031256) were found
to be upregulated by F. mangiferae at all three time points. In
addition, five PR proteins (Unigene0078592, Unigene0031254,
Unigene0006204, Unigene0016037, and Unigene0031255) were
induced only at the later time points (75 and 120D). Only
one PR protein (Unigene0002883) was downregulated at the
later time points (75 and 120D). A thaumatin-like protein 3
(Unigene0036253) gene was strongly induced at all three time
points. Fifteen chitinase genes and 15 peroxidase genes were
upregulated for at least one time point. Collectively, these
differentially regulated PR genes in buds might play essential
roles in mango resistance against F. mangiferae.

Differential Expression of WRKY
Transcription Factors
WRKY transcription factors form one of the largest protein
superfamilies in plants and can regulate various defense

processes, as well as play important roles in controlling the
transcription of defense-related genes (Pandey and Somssich,
2009; Rushton et al., 2010). KEGG analysis showed that a
total of 12 WRKY genes were differentially expressed. Seven,
eleven, and fiveWRKY genes were significantly and differentially
expressed at the three time points after F. mangiferae inoculation
(Additional File 8). Among them, Unigene0024431 (WRKY
transcription factor 26), Unigene0075288 (WRKY transcription
factor 44-like), Unigene0057353 (WRKY transcription factor
72), and Unigene0010023 (WRKY transcription factor 29)
were induced at two time points. The expression level of
Unigene0004116 (WRKY transcription factor 27-like) was not
significant at 75 days but strongly induced by F. mangiferae at
45 days post-infection. These results suggest that the WRKY
proteins might function as key positive regulators in mango
defense against infection by F. mangiferae during colonization.

Differential Expression of Phenylpropanoid
Biosynthesis Genes
Phenylalanine ammonia lyases (PALs), sometimes classified
as PR proteins, are involved in the biosynthesis of
phenolpropanoids, phytoalexins, and monolignols to inhibit
pathogens from penetrating cell walls (Hasegawa et al., 2010;
Okada, 2011). The gene Unigene0054337, putatively encoding
a shikimate O-hydroxycinnamoyltransferase, was suppressed
more than 10-fold at 45 and 120 days but not significantly
at 75 days after inoculation with F. mangiferae. Six chalcone
synthases involved in the early steps of flavonoid biosynthesis
were upregulated at 75 days (5.65- to 15.23-fold). The putative
isoflavone 7-O-methyltransferase Unigene0058326, which
presumably methylates 7,4-dihydroxyiso-flavone (daidzein) and
5,7,4-trihydroxyisoflavone (genistein) to yield isoformononetin
and prunetin, was suppressed over 2-fold at all three time
points. Eight genes encoding PALs were similarly induced by
F. mangiferae for at least one time point (Additional File 8).

Genes involved in cell-wall modifications were also
differentially regulated. Three genes, namely, Unigene0037555,
Unigene0013637, and Unigene0078222, putatively encoding
cinnamyl-alcohol dehydrogenase, which is responsible for
the last enzymatic step in monolignol biosynthesis, were
induced over 5-fold at all three time points in response to
F. mangiferae. By contrast, another member of this gene family,
that is, Unigene0012635, was suppressed over 11-fold at 120
days. Furthermore, three putative callose synthases, namely,
Unigene0076978, Unigene0064731, and Unigene0128362,
were suppressed at all three time points. Several putative
pectinesterase genes were differentially expressed; two different
genes, Unigene0054305 and Unigene0014015, were induced
at all three time points (11.53-, 13.42-, and 13.86-fold; 12.94-,
14.46-, and 14.24-fold, respectively), whereas another gene
(Unigene0038718) was suppressed over 10-fold at 75 and
120 days. The gene Unigene0021404, which encodes a pectin
methylesterase inhibitor domain-containing protein predicted
to prevent or reduce the activity of pectin methylesterase, was
suppressed 12.57-, 12.57-, and 2.96-fold at 45, 75, and 120 dpi,
correspondingly (Additional File 8).
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TABLE 3 | Summary of selected F. mangiferae-responsive pathogenesis-related protein.

Gene ID Gene length log2 ratio Description

45D/CK 75D/CK 120D/CK

Unigene0002883 453 – −11.76 −11.76 Pathogenesis-related protein 1-like protein

Unigene0014620 780 1.51 5.04 4.04 Pathogenesis-related protein P2

Unigene0031256 522 1.89 5.53 4.40 Pathogenesis-related protein 10.5

Unigene0031254 371 – 7.44 6.68 Pathogenesis-related protein 10.5

Unigene0006204 753 – 10.46 – Pathogenesis-related protein 1-like protein

Unigene0016037 462 – 11.16 – Pathogenesis-related protein PR-4B

Unigene0031255 396 – 14.35 – Pathogenesis-related protein 10.5

Unigene0081141 427 12.10 – 12.21 Pathogenesis-related protein 1-like protein

Unigene0013360 646 – – −11.52 Thaumatin-like protein 1-like isoform X2

Unigene0036253 1280 2.73 6.07 5.67 Thaumatin-like protein 3, partial

Unigene0084433 319 – 12.20 Thaumatin-like protein

Unigene0035953 607 −14.50 −14.50 −14.50 Chitinase

Unigene0016244 550 – −11.41 −11.41 Chitinase

Unigene0039347 1360 1.49 5.50 3.47 Chitinase 5-like isoform 1

Unigene0036325 907 4.01 6.21 4.89 Chitinase 7

Unigene0038818 838 – 6.31 4.36 Chitinase

Unigene0042899 1031 3.06 6.38 5.99 Endochitinase CH5B-like

Unigene0088278 460 – 11.75 – Endochitinase CH5B-like

Unigene0030297 265 – 12.19 – Chitinase 1

Unigene0081457 507 – 12.49 – Chitinase 5-like isoform 1

Unigene0030294 210 – 12.62 – Chitinase A

Unigene0080172 554 – 12.77 – Chitinase 1

Unigene0029489 231 – 13.79 – Chitinase

Unigene0043619 217 12.57 15.22 15.55 Chitinase 7

Unigene0043616 307 16.40 18.17 18.24 Chitinase

Unigene0002853 249 12.56 – – Class IV chitinase precursor

Unigene0011732 256 12.33 – – Chitinase

Unigene0043618 225 12.71 – – Chitinase

Unigene0119139 1221 – −3.48 −11.66 Peroxidase 4

Unigene0117425 1206 6.11 5.01 5.08 Peroxidase 73

Unigene0026142 1956 3.16 5.36 4.95 Glutathione peroxidase

Unigene0030009 1082 – 5.85 4.10 Peroxidase 15-like

Unigene0020236 1209 4.25 6.72 6.62 Peroxidase precursor, partial

Unigene0028092 1231 5.65 8.37 8.18 Peroxidase 17-like

Unigene0040032 1473 11.45 9.71 11.61 Glutathione peroxidase

Unigene0082432 591 11.12 11.03 11.74 Ascorbate peroxidase

Unigene0004739 641 – 11.10 11.53 Catalase-peroxidase

Unigene0089597 388 – 11.53 – Glutathione peroxidase

Unigene0013722 305 – 11.64 – Peroxidase 27-like

Unigene0079731 482 11.61 11.91 – Peroxidase 4

Unigene0091588 263 – 12.09 – Peroxidase superfamily protein

Unigene0014855 329 – 12.24 – Peroxidase/catalase

Unigene0022272 262 – 12.30 12.82 Peroxidase 72

Unigene0061718 1331 – 13.95 14.57 Peroxidase superfamily protein

Unigene0043744 842 13.26 12.69 13.13 Proteinase inhibitor

“–”indicates that the expression level of the genes after infection with F. mangiferae is not significantly different as relative to that water-inoculated.

Differential Expression of Signal
Transduction Genes
Hormonal signaling has been reported as a downstream immune
response in many studies of pathogen–host interactions (Bari

and Jones, 2009). To investigate the transcriptional changes in
gene classes involved in F. mangiferae perception and signaling,
genes with the KEGG pathway associated with plant hormone
signal transduction (KO4075) and the GO term associated with
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the signal transduction process (GO:0007165) were identified. A
total of 93 DEGs were found among all datasets by using log2-
fold ratio ≥ 5 as a cutoff. Among the genes associated with
signal transduction, 58 were identified from the pathway of plant
hormone signal transduction (KO4075; Additional File 9).

The gene Unigene0010084, putatively encoding a
lipoxygenase isoform 3, which is involved in the biosynthesis of
JA, was induced more than 10-fold in response to F. mangiferae
at all three time points. The ET-responsive transcription factors
(ERFs) and 1-aminocyclopropane-1-carboxylate oxidases
(ACOs) are known to be involved in the last step of ET
biosynthesis (Fujimoto et al., 2000) and play crucial roles in
regulating plant responses to pathogen inoculation (Berrocal-
Lobo et al., 2002; Huang et al., 2004). At 75 days post-inoculation,
the genes Unigene0079845 and Unigene0035078, putatively
encoding ACO genes, were upregulated by 13.08- and 13.00-fold
in response to F. mangiferae; by contrast, two other members of
this gene family, Unigene0038132 and Unigene0123919, were
suppressed by 11.66- and 5.08-fold, respectively. Moreover, two
putative ACO genes (Unigene0079599 and Unigene0092709)
were induced more than 10-fold at 45 days but not significantly
at 75 and 120 days in response to F. mangiferae. Six putative ERF
genes (Unigene0075508, Unigene0033494, Unigene0025794,
Unigene0013858, Unigene0079510, and Unigene0033493)
showed over 5-fold induction at all three time points. Another
ERF gene (Unigene0051908) was suppressed 10.72-fold at 75
days only. The induction of ERFs and ACOs suggests that
ET was involved in the resistance against F. mangiferae. Two
putative auxin-induced SAUR family genes (Unigene0037759
and Unigene0039593), known to be rapidly and transiently
upregulated in response to auxin (McClure and Guilfoyle, 1987;
Markakis et al., 2013), were suppressed at 75 and 120 days
but constitutively expressed at 45 days. Two other putative
auxin-induced SAUR family genes (Unigene0021557 and
Unigene0012223) were induced in response to F. mangiferae
(Additional Files 8, 9).

Differential Expression of Protein Kinase
Genes
Plants can recognize potential microbial pathogens through
PAMPs by host sensors. Most of these plant receptors belong
to the receptor-like kinase (RLK) family (Liu et al., 2009; Beck
et al., 2012). In our study, 275 protein kinases were found to
be differentially expressed in mango buds after F. mangiferae
inoculation (Additional File 8). Five, 21, 20, 13, 47, 42, and
53 DEGs were identified encoding calcium-dependent protein
kinases, cysteine-rich receptor-like protein kinases, G-type lectin
S-receptor-like serine threonine-protein kinases, LRR protein
kinases, LRR receptor-like serine/threonine-protein kinases,
serine/threonine protein kinases, and proline-rich receptor-
like protein kinases, correspondingly (Additional File 8). Most
calcium-dependent protein kinase, G-type lectin S-receptor-
like serine/threonine-protein kinase, and proline-rich receptor-
like protein kinase genes were upregulated, whereas a majority
of LRR protein kinase, LRR receptor-like serine/threonine-
protein kinase, and serine/threonine protein kinase genes

were downregulated. Interestingly, many genes encoding LRR
receptor-like serine/threonine protein kinases were suppressed
after infection. This finding indicates that F. mangiferae secretes
and delivers effectors into the mango bud cells during infection
to suppress immune signaling, leading to MMD. This result
agrees with the transcriptomic analysis of the Phytophthora pisi–
pea interaction, in which subsets of pathogen effectors and
host receptor genes are induced and repressed, respectively
(Hosseini et al., 2015). Furthermore, the data indicate that some
LRR receptor-like serine/threonine protein kinase-encoding
genes in mango are specifically activated at each time point
after inoculation with F. mangiferae. Mitogen-activated protein
kinase (MAPK) and MAPK kinase (MAPKK) genes have been
characterized in the response of plants to fungal infection
(Rodriguez et al., 2010; Kishi-Kaboshi et al., 2012). Consistent
with this widely accepted model, we found two MAPK, one
MAPKK, and four MAPKK kinase (MAPKKK) genes involved
in the response of mango buds to F. mangiferae infection. DEGs
encoding MAPK were downregulated, and this finding suggests
that MAPKs act positively and negatively in mango resistance to
F. mangiferae, but the exact roles of MAPK still require further
research.

Overall, our findings indicating that many defense-related
genes including PR genes, WRKY transcription factors,
protein kinases, phenylpropanoid, and signal transduction
genes are upregulated after F. mangiferae inoculation, suggest
that these genes play essential roles in MMD resistance in
mango.
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