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Although the majority of plant viruses are transmitted by arthropod vectors and invade
the host plants through the aerial parts, there is a considerable number of plant viruses
that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and
nematodes. These soil-borne viruses belong to diverse families, and many of them
cause serious diseases in major crop plants. Thus, roots are important organs for
the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism
and particular physiological characteristics due to the differences in development, cell
composition, gene expression patterns, and surrounding environmental conditions. RNA
silencing is an important innate defense mechanism to combat virus infection in plants,
but the specific information on the activities and molecular mechanism of RNA silencing-
mediated viral defense in root tissue is still limited. In this review, we summarize and
discuss the current knowledge regarding RNA silencing aspects of the interactions
between soil-borne viruses and host plants. Overall, research evidence suggests that
soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA
silencing in roots.

Keywords: soil-borne virus, RNA silencing, antiviral defense, roots, silencing suppressor, Polymyxa, Olpidium,
nematode

INTRODUCTION

Most plant virus transmissions in nature are facilitated by biological vectors, and the site of virus
entry into the host plant differs according to these transmission vectors (Hull, 2013). The majority
of plant viruses are transmitted into the aerial plant parts by a variety of arthropods, mainly sap-
sucking insects such as aphids and whiteflies, while some soil-inhabiting zoosporic organisms
and root-feeding nematodes transmit a number of plant viruses into roots (Hull, 2013). Thus,
compatibility of the virus with the tissue or cell where it initially enters the host plant is critical
for establishing the infection. Each plant organ or tissue has a distinct metabolism and pronounced
physiological characteristics. In particular, the features of plant shoots and roots largely diverged
from one another; they differ in their anatomical structures, cell compositions, gene expression
patterns, and are exposed to contrasting environmental conditions between above and below
ground environments. Consequently, antiviral defense in roots may operate differently than that
in shoots, and viruses may have evolved to adapt to these mechanistic differences.

Soil-borne viral diseases are generally difficult to control with conventional chemical or
agronomical methods because viruliferous vectors could be widespread underground. In particular,
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viruliferous resting spores of the zoosporic vectors could be stable
and persistent in the infested soil for decades (Rochon et al., 2004;
Bragard et al., 2013; Tamada and Kondo, 2013). Consequently,
the disease control-measures are mainly dependent on natural
plant resistance resources (Kanyuka et al., 2003; Kühne, 2009;
McGrann et al., 2009; Ordon et al., 2009), but in agricultural
systems, the emergence of resistance-breaking viruses poses a
serious threat to crop production (Kühne, 2009; Tamada and
Kondo, 2013; Tamada et al., 2016). Nevertheless, studies about the
mechanisms by which the plant antiviral defense system combats
viruses entering the roots are scarce. This is partly due to the fact
that only a limited number of plant-virus–soil-inhabiting vector
inoculation systems has been so far successfully established under
laboratory conditions.

RNA silencing is a general term for down-regulation of gene
expression, mediated by small RNAs in eukaryotes (Baulcombe,
2005). In the cell, RNA silencing is involved in diverse
biological processes and operates by targeting DNA/RNA of
endogenous or exogenous origin in a nucleic acid sequence-
specific manner via inhibition of RNA transcription (involving
RNA-directed DNA methylation, RdDM), cleavage of RNA, or
translational inhibition of mRNA (Ghildiyal and Zamore, 2009;
Voinnet, 2009; Castel and Martienssen, 2013). The important
role of RNA silencing in antiviral defense has been well
established in plants, insects, fungi, and mammals (Ding, 2010;
Li et al., 2013). To counteract antiviral RNA silencing, most
of the plant viruses encode silencing suppressor proteins (Li
and Ding, 2006; Pumplin and Voinnet, 2013; Csorba et al.,
2015).

In this review, we summarize the current information on
the molecular aspects of antiviral RNA silencing in roots,
with emphasis on the interactions between host antiviral
defense and soil-borne viruses. Although the studies and
information regarding this topic are still limited and mostly
based on analyses using model plant-virus pathosystems,
presently available information provides an insight into the
divergent action of antiviral RNA silencing defense in roots
relative to that already established for shoots. In addition,
the effectivity of RNA silencing-based engineered resistance
against soil-borne virus infection in plants is also briefly
discussed.

DIVERSITIES OF SOIL-BORNE VIRUSES
AND THEIR VECTORS

Currently, a number of plant single-stranded RNA (ssRNA)
viruses belonging to at least 17 genera in eight virus families,
but no DNA or dsRNA virus, are known to be transmitted
by soil-inhabiting organisms (Figure 1). Considering the
possible occurrence of non-vectored soil transmission of
plant viruses (Campbell, 1996) and that the natural vectors
of many plant viruses are still unknown, it is likely that
the members of soil-borne viruses extend beyond these 17
genera. The vectors of soil-borne viruses could be largely
categorized into three groups, namely, plasmodiophorids (a
class within the kingdom Protista), Olpidium spp. (a genus

of the order Chytridiales within the kingdom Fungi), and
nematodes (a phylum within the kingdom Animalia) (Figure 1).
Olpidium (Olpidium virulentus, O. brassicae, and O. brassicae)
vectors transmit viruses from the families Ophioviridae (genus
Ophiovirus), Rhabdoviridae [a previously free-floating genus
Varicosavirus, but has recently been classified into this family
(Afonso et al., 2016)], Alphaflexiviridae (genus Potexvirus),
and Tombusviridae (genera Tombus-, Aureus-, Gamma
carmo-, Diantho-, Alphanecro-, and Betanecrovirus), having
flexuous, rod-shaped or icosahedral particles. Plasmodiophorids
(Polymyxa betae, P. graminis, and Spongospora subterranea)
are vectors of viruses from the families Benyviridae (genus
Benyvirus), Virgaviridae (genera Furo-, Peclu-, and Pomovirus)
and Potyviridae (genus Bymovirus), with rod-shaped or
filamentous virions (except for two unclassified watercress
viruses), while nematodes (Longidorus spp., Paralongidorus
maximus, Xiphinema spp., Trichodorus spp., and Paratrichodorus
spp.) are vectors of viruses from the families Virgaviridae
(genus Tobravirus), Secoviridae (genus Nepo- and Cheravirus),
and Tombusviridae (genus Dianthovirus), with rod-shaped or
icosahedral particles. Thus, there is no specific association of
each vector group with a particular structure of the viruses they
transmit and likewise, the same vector species (f. e. O. virulentus)
can transmit viruses with different particle structures. All known
vector-transmitted soil-borne viruses have positive-sense ssRNA
genomes except for the members of two genera, Ophiovirus
and Varicosavirus, that have negative sense ssRNA genomes
(Verchot-Lubicz, 2003; Kormelink et al., 2011) (Figure 1). It
appears that the members with multipartite ssRNA genomes
dominate the soil-borne viruses as they are more evident in
the viruses that belong to the families Rhabdoviridae and
Potyviridae, wherein the members having monopartite genomes
and arthropod vectors (such as aphids, whiteflies, leaf- and
planthoppers) are the majority in these virus families (Bragard
et al., 2013). For soil-borne viruses with icosahedral virion,
viral coat protein (CP) is apparently sufficient to mediate the
transmission process, which is due to the direct attachment
of the virus particles to the surface of vector zoospores or the
retention of virions within the nematode feeding apparatus,
while those with rod-shaped or filamentous virions involve
additional specific proteins or protein domains located in CP
read through proteins that facilitate the vector transmission,
possibly either through forming a bridge between virus
particles and vector or through other unknown mechanisms
(Adams et al., 2001; Macfarlane, 2003; Bragard et al., 2013)
(Figure 1).

Olpidium and nematode vectors transmit viruses to a wide
range of hosts, particularly vegetable, ornamental and fruit plants,
while viruses transmitted by plasmodiophorid vectors have a
more limited range of hosts, but are important food crops
such as cereals (furo- and bymoviruses), sugar beet and rice
(benyviruses), peanut (pecluviruses), and potato (pomoviruses).
For more details and comprehensive reviews regarding the
vectors and genomes of soil-borne viruses, readers are referred
to Brown et al. (1995), Rush (2003), Rochon et al. (2004), Kühne
(2009), Bragard et al. (2013), Tamada and Kondo (2013), and
Syller (2014) and references therein.
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FIGURE 1 | Genome structure of the representative soil-borne plant viruses. The type species member from each virus genus is presented except for the
MiLBVV, PePMV, cucumber necrosis virus (CNV), melon necrotic spot virus (MNSV), and RCNMV, which are selected because they are transmitted by soil-borne
vectors, while the vector of other members within the same genus is unknown and/or insects. ∗Some members of these genera are also known as seed
transmissible. ∗∗A member of this genus (carnation ringspot virus) is transmitted by both Longidorus and Xiphinema spp. BNYVV, beet necrotic yellow vein virus;
SBWMV, soil-borne wheat mosaic virus; PCV, peanut clump virus; PMTV, potato mop-top virus; BaYMV, barley yellow mosaic virus; MiLBVV, mirafiori lettuce big-vein
virus; LBVaV, lettuce big-vein associated virus; PepMV, pepino mosaic virus; CNV, cucumber necrosis virus; MNSV, melon necrotic spot virus; RCNMV, red clover
necrotic mosaic virus; TNV-A, tobacco necrosis virus-A; TRV, tobacco rattle virus; ToRSV, tomato ringspot virus; CRLV, cherry rasp leaf virus.
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DISEASES CAUSED BY SOIL-BORNE
VIRUSES IN CROPS

Although soil-borne viruses enter the host plants via the roots,
none of the members of this virus group is known to exhibit
root tropism within the host plants. After initial infection in the
roots, the soil-borne viruses usually travel long distances upward
through vasculature and may subsequently induce various viral
symptoms in the aerial plant part or may not generate any
obvious symptoms, depending on the combination of virus and
host plant. Only a few soil-borne viruses cause a particular
disease symptom in roots or underground plant organs.
Beet necrotic yellow vein virus (BNYVV; genus Benyvirus)
infection in sugar beet causes the economically significant
rhizomania disease which spreads worldwide (Tamada, 2016).
It is typically characterized as a massive proliferation of lateral
roots and rootlets (“bearded”-like appearance) and severely
stunted taproots (Tamada, 1999). Potato mop-top virus (PMTV;
genus Pomovirus) causes brown arcs or rings in potato tuber
flesh (spraing symptoms; Harrison and Reavy, 2002). Viruses
belonging to the genera Furovirus (type species Soil-borne
wheat mosaic virus) and Bymovirus (type species Barley yellow
mosaic virus) infect winter cereal crops and cause yellow mosaic
symptoms on leaves as well as plant stunting (Kühne, 2009).
Peanut clump virus (PCV; genus Pecluvirus) infection induces
mottling and chlorotic ring symptoms on leaves as well as
stunting of the plant (Thouvenel and Fauquet, 1981; Dieryck
et al., 2009). The co-infection of lettuce big-vein associated
virus (LBVaV; genus Varicosavirus) and Mirafiori lettuce big-vein
virus (MiLBVV; genus Ophiovirus) is associated with lettuce big-
vein disease in the field, which is characterized as mottling and
chlorophyll clearing along the veins (appearing as big vein), but
only MiLBVV is believed to be a sole disease agent (Maccarone,
2013). Viruses of the genera Tombusvirus (cucumber necrosis
virus; CNV) and Carmovirus (i.e., melon necrotic spot virus,
MNSV) cause necrosis or necrotic lesions on leaves and stems
of Cucurbitaceae plants such as cucumber, melon, and squash
(Dias and McKeen, 1972; Hibi and Furuki, 1985). Nepoviruses
cause various diseases in a broad range of crops including fruit
trees, vegetables, and ornamentals (Sanfaçon, 2008). Grapevine
fanleaf virus (GFLV, genus Nepovirus) is the main causal agent
of fanleaf and yellow mosaic diseases of grapevine worldwide
(Andret-Link et al., 2004). Tobacco rattle virus (TRV, genus
Tobravirus) can infect variety of crops and causes the major
diseases of potato (spraing) and ornamental bulbs (Macfarlane,
2008).

GENETIC COMPONENTS OF ANTIVIRAL
RNA SILENCING IN PLANTS

In plant, RNA silencing is initiated when imperfect or true
double-stranded RNAs (dsRNAs) derived from cellular sequences
or viral genomes, are processed by a ribonuclease III-like
protein in the Dicer family called “Dicer-like (DCL) proteins” to
generate 21–22-nucleotide (nt) microRNAs (miRNAs) or 21–26-
nt short interfering RNA (siRNA) duplexes. Each strand of small

RNA is then incorporated into the effector complexes termed
“RNA-induced silencing complexes (RISCs),” which contain
ARGONAUTE (AGO) proteins, to guide the sequence specificity
in the downregulation processes (Axtell, 2013; Martínez de
Alba et al., 2013; Bologna and Voinnet, 2014). Plant-encoded
RNA-dependent RNA polymerases (RDRs) could contribute
to the generation of dsRNA substrates for DCL processing,
leading to either initiation of RNA silencing or production
of secondary small RNAs that further intensify the potency
of RNA silencing (Dalmay et al., 2000b; Wang et al., 2010).
Plants encode multiple DCL, AGO, and RDR proteins to cope
with diverse endogenous RNA-silencing pathways (Zhang et al.,
2015). For example, the experimental model plant Arabidopsis
thaliana, which is widely used for genetic studies on the RNA
silencing mechanism, contains 4 DCL, 10 AGO, and 6 RDR
proteins (Bologna and Voinnet, 2014). In A. thaliana, DCL4 and
DCL2, which generate 21 and 22-nt siRNAs, respectively, act
hierarchically in antiviral defense against RNA viruses. DCL4
is the primary DCL component for antiviral response, while
DCL2 could functionally substitute DCL4 when it is overcome
or absent (Deleris et al., 2006; Diaz-Pendon et al., 2007), but
in some cases, DCL2 appears to have a specific role in the
blocking of the systemic spread of viruses (Garcia-Ruiz et al.,
2010; Andika et al., 2015a,b). Among 10 A. thaliana AGOs,
AGO1 and AGO2 broadly function in antiviral defense against
a wide range of RNA viruses, although other AGOs, such as
AGO4, AGO5, AGO7, and AGO10, could also show antiviral
activities in a more specific virus-host combination (Mallory and
Vaucheret, 2010; Pumplin and Voinnet, 2013; Ma et al., 2014;
Brosseau and Moffett, 2015; Carbonell and Carrington, 2015;
Garcia-Ruiz et al., 2015). A. thaliana RDR6 and, to a lesser extent,
RDR1, are required for antiviral defense against an RNA virus
via amplification of viral siRNAs mechanism (Wang et al., 2010,
2011). In addition to DCL, AGO, and RDR core enzymes, other
protein components in the RNA silencing pathway contribute to
antiviral defense in A. thaliana, such as dsRNA-binding protein
4 (DRB4), a DCL4-interacting protein (Qu et al., 2008; Jakubiec
et al., 2012), SUPPRESSOR OF GENE SILENCING 3 (SGS3),
a coiled-coil protein (Mourrain et al., 2000; Rajamäki et al.,
2014), and HUA ENHANCER 1 (HEN1) which methylates the
2′ hydroxy groups at the 3′-end termini of small RNAs to protect
them from degradation (Boutet et al., 2003; Zhang et al., 2012).
In Nicotiana benthamiana (wild tobacco), which is the most
widely used experimental model host of plant RNA viruses,
the antiviral activities of RNA silencing components, including
the homologs of DCL4, AGO1, AGO2, and RDR6 were also
demonstrated (Qu et al., 2005; Schwach et al., 2005; Scholthof
et al., 2011; Andika et al., 2015b; Gursinsky et al., 2015; Fátyol
et al., 2016).

DISTINCT CHARACTERISTICS OF
TRANSGENE AND ENDOGENOUS RNA
SILENCING IN ROOTS

The occurrence and mechanism of RNA silencing in the
root organ initially received relativity less attention from
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plant researchers. However, a growing number of studies have
analyzed gene regulation, involving RNA silencing in roots,
and revealed some unique characteristics of RNA silencing in
roots relative to those observed in leaves or other aerial plant
parts. First, lower RNA silencing activities were observed in
roots than in leaves when post-transcriptional gene silencing
in transgenic plants was induced by the sense transgene. In
silenced transgenic A. thaliana lines carrying transgene encoding
a Fab antibody fragment, suppression of the transgene expression
was significantly lower in roots than in leaves (de Wilde et al.,
2001). Co-suppression of tobacco endoplasmic reticulum ω-3
fatty acid desaturase (NtFAD3) gene by the sense transgene is
effective in leaves but not in roots, although transgene-derived
siRNAs accumulate in both tissues (Tomita et al., 2004). Likewise,
lower levels of transgene silencing in roots than in leaves of
silenced transgenic N. benthamiana lines carrying the CP read
through gene of BNYVV or green fluorescent protein (GFP)
gene were observed, as indicated by incomplete degradation
of transgene mRNAs and lower levels of transgene siRNAs
accumulation (Andika et al., 2005). Moreover, transgene DNA
cytosine methylation levels at non-symmetrical CpNpN (N is
A, T, or C) but not symmetrical CpG or CpNpG context were
lower in roots than in leaves (Andika et al., 2006). Nevertheless,
suppression of the target gene appears to be equally effective
in mature leaves and roots if inverted repeat (IR) transgenes
that are designed to express dsRNAs are used to induce the
silencing (Fusaro et al., 2006; Marjanac et al., 2009). The sense-
and IR-mediated silencing differ in the initiation step, where
sense- but not IR-mediated silencing, requires conversion of
ssRNAs into dsRNAs by the activities of RDR6 together with
SGS3 and SDE3 (RNA helicase; Dalmay et al., 2000b, 2001;
Mourrain et al., 2000; Béclin et al., 2002). It is therefore
possible that in roots, either biosynthesis of dsRNA by RDR6
is less efficient or DCL protein(s) do not efficiently process
RDR6-dependent dsRNA substrates for siRNA production.
Transcriptomic analysis in A. thaliana, N. benthamiana, and
rice showed that the mRNA expressions of RNA silencing core
genes in leaves and roots are similar (Kapoor et al., 2008;
Nakasugi et al., 2013). Thus, the reason for differential activities
of sense transgene silencing between leaves and roots remains
unclear.

Recent studies revealed that down-regulation of endogenous
gene expressions in root could involve mobile (non-cell
autonomous) small RNAs. During the development of
A. thaliana roots, miR165a and miR166b produced in
endodermis cells move to neighboring stele to mediate the
suppression of PHABULOSA gene transcripts in a dose-
dependent manner (Carlsbecker et al., 2010; Miyashima
et al., 2011). Grafting experiments using A. thaliana plants
demonstrated that siRNAs could be transported from shoots to
roots and then induce RdDM of transgene promoter (Molnar
et al., 2010; Melnyk et al., 2011). Moreover, a portion of
endogenous small RNAs in roots are derived from shoots
and associated with RdDM of a large number of genome loci,
including transposable elements and endogenous genes (Molnar
et al., 2010; Lewsey et al., 2016).

ACTIVITIES OF ANTIVIRAL RNA
SILENCING IN ROOTS

Some studies have detected the accumulation of siRNAs derived
from various ssRNA viruses in the roots of infected plants
including N. benthamiana, tomato, cucumber, and melon
(Andika et al., 2005, 2013, 2015b; Herranz et al., 2015),
demonstrating that viruses indeed induce antiviral RNA silencing
responses in roots. BNYVV siRNA accumulation is lower in
roots than in leaves of N. benthamiana and inversely related with
RNA genome accumulation (Andika et al., 2005), suggesting that
BNYVV may more effectively suppress RNA silencing in roots
than in leaves (further discussed in the next section). Potato
virus X (PVX, genus Potexvirus, natural vector unknown) siRNA
accumulation is much lower in roots than in leaves, but this is
likely due to the low level of PVX genome replication in roots
(Andika et al., 2015b). Analyses using next generation sequencing
indicated that siRNAs derived from PVX, Chinese wheat mosaic
virus (CWMV, genus Furovirus), melon necrotic ringspot virus
(MNSV, genus Carmovirus), and prunus necrotic ringspot virus
(PNRSV, genus Ilarvirus, pollen and thrips transmission) are
predominantly 21 nt in both leaves and roots (Andika et al., 2013,
2015b; Herranz et al., 2015), indicating that DCL4 is also the
major DCL component for biosynthesis of viral siRNAs in roots.
Notably, the proportions of MNSV and PNRSV sense siRNAs
were higher than those of antisense siRNAs in roots, while the
proportions of both strands were equal in leaves (Herranz et al.,
2015). This suggests that in roots, DCL proteins preferentially
target the sense strand genome of these viruses through cleaving
of the secondary structures within viral RNA to generate sense
siRNAs (Herranz et al., 2015), although it is generally thought
that DCL mainly processes dsRNA replication intermediates
formed during RNA virus replication (Ding, 2010). However,
we cannot rule out other possibilities, including long-distance
movement of sense siRNAs to roots and/or specific processing of
viral subgenomic RNAs in roots.

Chinese wheat mosaic virus as well as other members of
the genus Furovirus requires cool temperatures (below 20◦C)
to establish infection in the host plants (Ohsato et al., 2003).
RDR6 is involved in temperature-dependent antiviral defense
against RNA viruses in N. benthamiana leaves (Szittya et al.,
2003; Qu et al., 2005). Knock-down of RDR6 homolog in
N. benthamiana enables CWMV accumulation in roots but
not in leaves, after a temperature shift to 24◦C, and CWMV
accumulation is associated with reduced accumulation of viral
siRNAs in roots (Andika et al., 2013). This observation suggests
that RDR6-dependent RNA silencing activity (probably through
production of secondary siRNAs) is mainly responsible for
inhibiting CWMV infection in roots at higher temperatures
(Figure 2), whereas additional mechanism(s) are involved in the
suppression of CWMV infection in leaves.

RNA silencing strongly inhibits PVX replication in roots of
susceptible plants (Andika et al., 2012, 2015b). A. thaliana is not
a susceptible host of PVX, but inactivation of DCL4 enables high
accumulation of PVX in inoculated leaves, while inactivation
of both DCL4 and DCL2 is required for systemic infection of
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FIGURE 2 | A cartoon presentation illustrating the interplay between
viruses and antiviral RNA silencing in roots. In Arabidopsis thaliana,
DCL4 is essential for the inhibition of PVX accumulation in inoculated leaves,
while DCL2 particularly functions in blocking of PVX systemic infection. DCL4
is the primary DCL protein component involved in intracellular antiviral
silencing in roots, but it can be functionally compensated for by DCL2 or
possibly partially, DCL3. At higher temperatures (after a temperature shift to
24◦C, see main text), RDR6 is involved in inhibition of CWMV multiplication in
Nicotiana benthamiana, whereas at the same temperature other
mechanism(s) is mainly responsible for CWMV inhibition in shoots. Cysteine
rich proteins (CRPs) encoded by TRV and BNYVV more effectively suppress
RNA silencing in roots than in leaves. BNYVV p31 exhibits root-specific RNA
silencing suppression activity and contributes to efficient virus transmission by
Polymyxa betae vector into roots. TBSV P19 expression is essential for TBSV
infection via root mechanical inoculation in N. benthamiana.

PVX in upper leaves and roots. Another set of experiments
was performed using a transgenic A. thaliana line that carries
a replication-competent PVX cDNA transgene (AMP243 line;
Dalmay et al., 2000a). Inactivation of DCL4 in AMP243 plants,
where PVX replication is strongly suppressed in the cell due to
intracellular antiviral silencing, is sufficient to enable high levels
of PVX replication throughout the aerial organs, but not in roots
(Andika et al., 2015b). These observations demonstrate that while
DCL4 is critical for intracellular antiviral silencing against PVX
replication in shoots, there are strong functional redundancies

among DCL proteins, in which other DCLs (most probably
DCL2) functionally complement DCL4 in roots (Andika et al.,
2015a) (Figure 2). These strong redundancies may result in
potent inhibition of PVX replication in roots, likely by providing
multiple layers of antiviral defense. Thus, these observations
suggest that to some degree, antiviral RNA silencing in roots may
operate differently from that in shoots.

SUPPRESSION OF RNA SILENCING BY
SOIL-BORNE VIRUSES

Numerous RNA silencing suppressors (RSSs) encoded by soil-
borne viruses have been identified (listed in Table 1). Notably,
the small cysteine-rich proteins (CRPs) located in a 3′proximal
open reading frame (ORF) of the genome segment of viruses
belonging to the genera Beny-, Furo-, Peclu-, and Tobravirus
[as well as genera Hordeivirus (Yelina et al., 2002) and
Goravirus (Atsumi et al., 2015) in the family Virgaviridae,
some members are transmitted by seed transmission and no
known biological vectors] (Figure 1), similarly function as
an RSS, and some of them have been subjected to detailed
studies. The CRP is also encoded by viruses belonging to
the genus Pomovirus, but CRP encoded by PMTV does not
exhibit RSS activity (Lukhovitskaya et al., 2005). The CRPs are
characterized by the presence of multiple cysteine residues in
their N-terminal or central portions, but they do not show a
notable amino acid sequence similarity among different genera
(Koonin et al., 1991). CRPs encoded by furo-, peclu- tobra-,
and hordeiviruses contain a highly conserved CGxxH (Cys–
Gly–x–x–His, x is any amino acid residue) motif (Te et al.,
2005). Mutational analyses on CWMV 19K CRP and TRV
16K indicate that CGxxH motif as well as other conserved
cysteine residues are critical for protein stability and/or RSS
activity (Sun et al., 2013a; Fernández-Calvino et al., 2016).
Similarly, cysteine residues located in a putative C4 (Cys4)
zinc-finger domain of BNYVV p14, which are also conserved
among other benyviruses, are essential for protein stability
and RSS function (Chiba et al., 2013). Each of these CRPs
shows distinct subcellular localization, for example BNYVV
p14 localizes to nucleous (Chiba et al., 2013); CWMV 19K
is associated with endoplasmic reticulum through amphipathic
α-helix domain, and PCV P15 localizes to peroxisomes via
C-terminal SKL (Ser-Lys-Leu) motif (Dunoyer et al., 2002; Sun
et al., 2013a), although none of those organelle targeting is
required for RSS activities. CWMV 19K and PCV P15 self-
interact (dimerization) through coiled-coil domain (Dunoyer
et al., 2002; Sun et al., 2013a), while the self interaction of
BNYVV p14 is mediated by the C4 zinc-finger domain (Chiba
et al., 2013) and importantly, the ability of those CRPs to form
dimers is essential for RSS activities. CWMV 19K binds to the
large form of CP (CUG-initiated extension to the N-terminal of
CP), but the biological role of this interaction is unknown (Sun
et al., 2013b). TRV 16K is not needed for the systemic spread
of the virus, but is necessary for transient meristem invasion
(Martín-Hernández and Baulcombe, 2008). In addition, TRV
16K inhibits the de novo formation of RISC and binds AGO4
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TABLE 1 | Properties of RNA silencing suppressors (RSSs) encoded by soil-borne viruses.

Genus
Virus1

RSS Protein
category2

Local/cell-
to-cell3

Motif, domain/target4 Subcellular
localization

Di-mer Reference

Benyvirus

BNYVV p14 CRP Weak/− NoLS, zinc-finger/− Cytoplasm,
nucleous

Yes Andika et al., 2012; Chiba
et al., 2013

p31 −
7 No/− − − Rahim et al., 2007

BSBMV p14 CRP Weak/− Zinc-finger/− − − Chiba et al., 2013

BdMoV p13 CRP Weak/− NLS, zinc-finger/− − Guilley et al., 2009; Andika
et al., 2012

Furovirus

SBWMV 19K CRP Weak/− CGxxH, coiled-coil/− − − Te et al., 2005

CWMV 19K CRP Weak/strong CGxxH, coiled-coil, amphipathic
α-helix/−

Endoplasmic
reticulum

Yes Sun et al., 2013a

Pecluvirus

PCV P15 CRP Strong/− CGxxH, coiled-coil, SKL/− Peroxisomes Yes Dunoyer et al., 2002

Tobravirus

TRV 16K CRP Weak/− CGxxH/AGO4 Cytoplasm, nucleus Yes Ghazala et al., 2008;
Andika et al., 2012;
Fernández-Calvino et al.,
2016

29K5 MP No/− Deng et al., 2013

PepRSV 12K CRP Strong/− −/− − − Jaubert et al., 2011

Tombusvirus

CNV p20 (RSS) Weak/− −/− − − Hao et al., 2011

Gammacarmovirus

MNSV p42 CP Weak/strong −/− − Yes Genoves et al., 2006

p7B MP Weak/− −/− − − Genoves et al., 2006

Dianthovirus

RCNMV RNA6 Strong/− −/− − − Takeda et al., 2005

MP MP No/strong −/− Endoplasmic
reticulum, cell wall

− Tremblay et al., 2005;
Powers et al., 2008; Kaido
et al., 2009

Nepovirus

ToRSV CP CP Weak/− WG/AGO1 − Yes Karran and Sanfaçon, 2014

1BNYVV, beet necrotic yellow vein virus; BSBMV, beet soil-borne mosaic virus, BdMoV, burdock mottle virus; SBWMV, soil-borne wheat mosaic virus; CWMV, Chinese
wheat mosaic virus; PCV, peanut clump virus; TRV, tobacco rattle virus; PepRSV, pepper ringspot virus; CNV, cucumber necrosis virus; TBSV, tomato bushy stunt virus;
MNSV, melon necrotic spot virus; RCNMV, red clover necrotic mosaic virus, ToRSV, tomato ringspot virus.
2CRP, cysteine-rich protein; CP, coat protein; MP, movement protein.
3Suppression activities on local silencing in Agrobacterium co-infiltration assay relative to well-known strong suppressors such as p19 of tomato bushy stunt virus and
HC-Pro of potato virus Y/ability to promote cell-to-cell movement of a suppressor-defective virus in the trans-complementation assay.
4NoLS, nucleolar-localization signal; NLS, nuclear-localization signal; CGxxH, cysteine-glycine-two any amino acid residues-histidine motif; SKL, serine-lysine-leucine
motif; WG, tryptophan-glycine motif.
5Silencing suppression by 29K occurred in the context of RNA1 replication.
6RNA silencing suppression is mediated by the replication of RCNMV RNA1.
7“−”, not determined.

(Fernández-Calvino et al., 2016), but does not cause a global
deregulation of the microRNA-regulatory pathway (Martínez-
Priego et al., 2008). Likewise, tomato ringspot virus (ToRSV,
genus Nepovirus) CP binds and destabilizes AGO1 through
the recognition involving WG/GW (Try-Gly/Gly-Try) motif
(Karran and Sanfaçon, 2014). Nevertheless, the mechanism of
action of other RSSs encoded by soil-borne viruses remains
unclear.

It is important to point out that in Agrobacterium co-
infiltration assay using a GFP reporter gene in N. benthamiana
(Voinnet et al., 2000), a method that is most commonly used
for identification of viral RSS, the majority of RSSs encoded

by soil-borne viruses exhibit weak suppression activities against
local silencing relative to suppression activities of well-known
potent suppressors such as HC-Pro of potato virus Y (PVY,
a potyvirus, aphid transmission) and p19 of tomato bushy
stunt virus (TBSV, a tombusvirus, natural vector unknown;
Table 1) (Verchot-Lubicz, 2003). However, some of those RSSs
show strong activities to promote cell-to-cell movement of
a suppressor-defective virus in trans-complementation assays
(Genoves et al., 2006; Powers et al., 2008; Sun et al., 2013a),
suggesting that those RSSs are more effective in inhibition
of cell-to-cell spread of silencing signals that move ahead
of the virus (intracellular silencing) rather than inhibition
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of local (intercellular) silencing in leaves. Interestingly, in a
silencing reversal assay using transgenic N. benthamiana line
16c systemically silenced for the GFP gene, BNYVV or TRV
infection restored GFP expression in roots but not in leaves, while
infection of tobacco mosaic virus (TMV, genus Tobamovirus) and
two aphid-borne (non-soil-borne) viruses, PVY and cucumber
mosaic virus (genus Cucumovirus), restored GFP expression in
both tissues. Moreover, BNYVV and TRV elevated PVX RNA
accumulation in a co-infection experiment and this stimulating
effect was due to the activity of p14 or 16K RSS encoded
by those viruses (Andika et al., 2012). In another co-infection
experiment, TRV also showed an activity to suppress antiviral
silencing-like responses that inhibit the replication of TMV
in lateral root primordia (Valentine et al., 2002). Collectively,
these observations suggest that some RSS encoded by soil-
borne viruses might be more effective in roots than in leaves.
Further supporting evidence for this notion comes from the
analyses of accumulations of some soil-borne viruses in plants.
CWMV and MNSV accumulate to higher levels in roots than
in leaves (Gosalvez-Bernal et al., 2008; Andika et al., 2013).
Nepo- or tobraviruses have unusual ability to infect meristems
and often show a recovery phenotype, which is manifested as a
drastic reduction in virus symptoms and titer in newly developed
leaves (Ratcliff et al., 1997, 1999). The recovery phenotype is
thought to be mediated by RNA silencing-related mechanisms
and mutations in the viral RSS can result in viruses that
exhibit a recovery-like phenotype in the host plants (Ratcliff
et al., 1997; Szittya et al., 2002). Similarly, BNYVV infection in
N. benthamiana exhibited reduced viral accumulation similar as
the “recovery” phenomenon in leaves but not in roots (Andika
et al., 2005). Therefore, it is suggested that the weak RSS encoded
by these viruses could not effectively inhibit the induction
of antiviral systemic silencing, leading to recovery in upper
leaves (Martín-Hernández and Baulcombe, 2008; Ghoshal and
Sanfaçon, 2015).

Only a few studies have examined the relevance of silencing
suppression in the context of virus infection through roots. The
p31 encoded by RNA 4 of BNYVV is not essential for virus
multiplication, but is required for efficient virus transmission by
P. betae vector into roots (Tamada et al., 1989). Interestingly,
in a silencing reversal assay, p31 showed an activity to suppress
GFP transgene silencing in roots but not in leaves, proving
that p31 has a root-specific RSS function (Rahim et al., 2007)
(Figure 2). TRV 2b is a nematode transmission helper protein
(Macfarlane, 2003) and is also required for extensive root (and
also shoot) meristem invasion (Valentine et al., 2004). In a
more recent study on TBSV, which is also considered a soil-
borne virus because soil solarization and fumigation could reduce
disease incidence (Gerik et al., 1990; Campbell, 1996), TBSV
p19 suppressor is required for TBSV to infect N. benthamiana
via root mechanical inoculation but not via leaves mechanical
inoculation (Manabayeva et al., 2013) (Figure 2). Together,
these observations suggest that suppression of RNA silencing
or other antiviral defense mechanism is one of the factors
that determine the efficiency of virus transmission to the
roots.

EFFECTIVITY OF RNA-BASED
TRANSGENIC RESISTANCE AGAINST
SOIL-BORNE VIRUSES

Using the transgenic approach, RNA silencing has been
successfully applied to generate plant resistant against infection
with diverse viruses (Simon-Mateo and Garcia, 2011; Cillo
and Palukaitis, 2014; Saurabh et al., 2014). Several researches
have introduced a portion of genome sequence derived from
soil-borne viruses into either experimental models or crops
plants and evaluated the responses of the transgenic plants
to virus infection. Although the silencing of viral sequences
in the transgenic plants could in general provide a high
degree of protection against the soil-borne viruses (e.g., for
crops, Dong et al., 2002; Pavli et al., 2010; Zare et al.,
2015; Kawazu et al., 2016), some other studies similarly
observed that upon roots inoculation, virus resistance was
less effective in roots than in shoots. Inoculation of roots
of transgenic N. benthamiana carrying CP gene of PMTV
using viruliferous S. subterranea resulted in virus accumulation
in roots but no systemic movement of PMTV to shoots
(Germundsson et al., 2002). N. benthamiana plants transformed
with CP read through domain of BNYVV were immune
to viral infection following leaf mechanical infection, but
BNYVV accumulated at a low level in the roots of the
same plants upon challenged by viruliferous P. betae vector
(Andika et al., 2005). Transgenic N. tabacum carrying 57-
kDa read through domain of the replicase gene of TRV
was highly resistant to manual leaf inoculation, but the virus
could be detected in roots following root manual inoculation
or nematode vector inoculation (Vassilakos et al., 2008).
Likewise, MiLBVV was detected in roots, but not in leaves
of transgenic lettuce carrying IR transgene of MiLBVV CP
following roots inoculation by Olpidium vectors (Kawazu et al.,
2009). However, transgenic sugar beet plants carrying 0.4 kb
IR sequence of BNYVV replicase gene showed high resistance
to BNYYV infection through vector inoculation (Lennefors
et al., 2008). This suggests that the potency of transgenic
resistance against root inoculation could be affected by various
factors including construct design, viral gene sequence, and
plant species. A recent report showed that a high and durable
transgenic wheat resistance against wheat yellow mosaic virus
(WYMV, genus Bymovirus) infection in the field is obtained
by transformation with antisense nuclear inclusion b (NIb)
replicase of WYMV (Chen et al., 2014). Transgene siRNAs are
not detected in transgenic plants, indicating that the resistance
is not mediated by transgene silencing, although it is possible
that the resistance resulted from cleavage of dsRNAs that are
formed through annealing of antisense transcripts with viral
genome RNA by DCLs or other cellular RNases (Chen et al.,
2014). It is necessary to further explore the antiviral efficacy
of antisense transgenes in different soil-borne virus-host plant
pathosystems. In addition, the effectivity of artificial miRNAs in
conferring virus resistances (Niu et al., 2006; Qu et al., 2012;
Ramesh et al., 2014) has not been tested against soil-borne
viruses.
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CONCLUDING REMARKS

Overall, the observations from the studies described in
this review provide evidence for divergent operations of
RNA silencing in roots, although the primary factors
responsible for the distinct regulation of RNA silencing
activities in roots remain an open question. Moreover, the
antiviral roles of RNA silencing components in the context
of virus infection through roots are yet to be examined.
Interestingly, those studies also demonstrated that some soil-
borne viruses appear to have adapted to the mechanistic
differences of antiviral RNA silencing in roots by evolving
their RSS with more active function in facilitating viral
transmission and accumulation in roots than in leaves.
Further studies are needed to investigate the possibility
that RSS encoded by soil-borne viruses specifically target
certain molecular components of antiviral silencing in roots.
It is worth mentioning that many plant viruses vectored
by sap-sucking insects that usually penetrate their stylets
into the phloem tissue, exhibit phloem-limited accumulation
within their host plants (Omura et al., 1980; Latham
et al., 1997; de Zoeten and Skaf, 2001; Shen et al., 2016).
This also goes along with the opinion that the vectors
influence virus evolution and adaptation within the host
plants.

An agronomic practice for the effective control of soil-borne
diseases is not available, while the use of methyl bromide
(bromomethane), which is the most popular pre-plant soil
fumigant against soil-borne fungi and nematodes, has been
withdrawn worldwide under the Montreal protocol (Bell, 2000).
Thus, harnessing the plant natural antiviral defense could
potentially become a feasible alternative method for protecting
the crop plants against these diseases. In fact, the results of
several studies have opened the possibility of RNA silencing
enhancement in plants, for example by chemical (ascorbic acid

derivatives) treatments (Fujiwara et al., 2013), environmental
(light intensity and temperature) modifications (Kotakis et al.,
2010; Patil and Fauquet, 2015), overexpression of endogenous
plant RNA silencing enhancers (Dorokhov et al., 2006; Meyer
et al., 2015) and deactivation of plant endogenous suppressor of
RNA silencing (Sarmiento et al., 2006; Gy et al., 2007; Shamandi
et al., 2015; Liu and Chen, 2016). With the notion that RNA
silencing plays an important role in defense against virus invasion
via roots, it is anticipated that more detailed studies on antiviral
RNA silencing mechanisms in roots could provide a solid basis
for the future development of effective control measures of soil-
borne virus diseases. Lastly, the advent of novel molecular tools
for functional genomics and expanding understanding of plant
innate immunity will allow greater options for the development
of virus resistant crops.
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