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More and more evidences indicate that diseases of the central nervous system have
been seriously affected by fecal microbes. However, little work is done to explore
interaction between amyotrophic lateral sclerosis (ALS) and fecal microbes. In the
present study, high-throughput sequencing method was used to compare the intestinal
microbial diversity of healthy people and ALS patients. The principal coordinate analysis,
Venn and unweighted pair-group method using arithmetic averages (UPGMA) showed
an obvious microbial changes between healthy people (group H) and ALS patients
(group A), and the average ratios of Bacteroides, Faecalibacterium, Anaerostipes,
Prevotella, Escherichia, and Lachnospira at genus level between ALS patients and
healthy people were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07. Furthermore, the
decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA > 4.0),
together with the significant increased genus Dorea (harmful microorganisms) and
significant reduced genus Oscillibacter, Anaerostipes, Lachnospiraceae (beneficial
microorganisms) in ALS patients, indicated that the imbalance in intestinal microflora
constitution had a strong association with the pathogenesis of ALS.

Keywords: high-throughput sequencing, amyotrophic lateral sclerosis (ALS), microbial diversity, principal
coordinate analysis (PCoA), central nervous system (CNS)

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) belongs to idiopathic, fatal neurodegenerative disease of the
human motor system (Gordon, 2011), characterized by the loss of neurons at all levels of the
motor system—from the cortex to the anterior horn of the spinal cord (Kiernan et al., 2011).
The scientific and clinical interest in ALS is growing since the 1990s, and survival in ALS is now
understood to be dependent on clinical presentation (phenotype), rate of disease progression, early
presence of respiratory failure, and the nutritional status of patients (Kiernan et al., 2011; Fang,
2015). Unfortunately, less than 50% of patients can survive within 3 years of onset (Gordon, 2011;
Kiernan et al., 2011; Fang, 2015).

The human gastrointestinal tract is home to bacterial communities, and the microbes have
profound implications on human metabolism, immunity and the gut-brain axis (Derrien and
van Hylckama Vlieg, 2015; Sivan et al., 2015; Yu et al., 2015; Zhernakova et al., 2016), and
numerous studies have highlighted interactions between the central nervous system (CNS) and the
gastrointestinal system (Erny et al., 2015; Wang et al., 2016). The brain may modulate peripheral
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gut functions to modify the gastrointestinal composition via
releasing gut factors (hormones, neurotransmitters, immune
factors), and the gut microbes, on the other hand, interact with
the CNS by releasing of neurotransmitters, e.g., nitric oxide
(NO, a major neurotransmitter in the brain) and g-aminobutyric
acid (GABA, neurotransmitter produced Lactobacillus and
Bifidobacterium) (Rhee et al., 2009; Barrett, 2014; Williams
et al., 2014; Cani and Knauf, 2016). Short-chain fatty acids
(SCFAs), the specific metabolites generated by gut bacteria, can
cross the blood–brain barrier and its levels in the feces could
be correlated negatively or positively (Serre et al., 2015) with
autism spectrum disorders (ASD) (Adams et al., 2011). Moreover,
researchers found that lipopolysaccharide (LPS), a constituent of
Gram-negative bacteria markedly affected vagal afferent neuron
function, with reduced vagal afferent leptin signaling (Serre et al.,
2015).

Intestinal barrier dysfunction may promote the passage
of toxins in the intestinal lumen into the blood, and the
innate immune response and increased circulating LPS play
pivotal roles in the pathogenesis of ALS (Nguyen et al.,
2004; Zhang et al., 2009). Furthermore, reduced tight junction
proteins in the lumbar spinal cord, as well as the disruption
of tissue barriers (the blood–spinal cord barrier and the
blood–brain barrier) were identified both in ALS patients
and animal models (Longstreth et al., 2005). However, the
interaction of the gut microbiota with the ALS has not been
investigated.

In the past, only a small fraction of all bacteria have
been isolated and characterized severely limited by available
technology and the shortage of reference genomes (Yue-Xin et al.,
2003; Shokralla et al., 2012), and recent technological advances in
next generation sequencing technology has enabled elucidation
of the pleiotropic effects of microorganisms on the human host
(Derrien and van Hylckama Vlieg, 2015; Sivan et al., 2015; Yu
et al., 2015; Zhernakova et al., 2016). In the present study, the
high-throughput sequencing analyses were used to assess the
interaction of the gut microbiota and the ALS, which proves basic
data for the prevention and treatment of ALS.

MATERIALS AND METHODS

Ethical Statement and Patients
The study was approved by the Ethical Committee of The
First Affiliated Hospital of Nanchang University, all participants
provided written informed consent and all the methods were
carried out in accordance with the approved guidelines.

Six consecutive patients with ALS (according to the revised
El Escorial criteria) were recruited (Brooks et al., 2000) at The
First Affiliated Hospital of Nanchang University between 07/2015
and 05/2016, and patients who were unable to communicate,
either verbally or by writing, were excluded. None had additional
neurological disease or previous mental illness. Respiratory
function measured by forced vital capacity (FVC) was above
70% and there was no evidence of nocturnal hypoventilation
(Supplementary Table S1). Five healthy people without ALS were
recruited as control. All people with random diets donated their

first fecal motion of the day for only one time and the samples
were stored at −70◦C.

Extraction of Genomic DNA and
High-Throughput Sequencing
Genomic DNA from each sample was extracted using a
TIANamp Genomic DNA kit (TIANGEN) combined with bead
beating as previously published (Yu et al., 2015). Then the
Genomic DNA was sent to the one of the most famous
high-throughput sequencing company for high-throughput
sequencing and analysis.

The extracted genomic DNA was used as the template to
amplify the V3–V4 region of 16S rRNA genes using the primer
pair 338F/806R with the barcode. PCR reactions, pyrosequencing
of the PCR amplicons and quality control of raw data were
performed as described previously with minor modification (Xu
et al., 2015).

Bioinformatics and Multivariate Statistics
Low-quality sequences were eliminated from analysis based on
the following criteria: (a) raw reads shorter than 400 bp; (b)
a sequence producing more than eight homopolymers; (c) >2
mismatches in the primers, or, (d) one or more mismatches
in the barcode. Pyrosequenced amplicons were removed using
the PyroNoise algorithm in Mothur (Schloss et al., 2009).
Bioinformatic analysis was implemented using the Quantitative
Insights Into Microbial Ecology (QIIME) platform (Caporaso
et al., 2010). Briefly, 16S rRNA operational taxonomic units
(OTUs) were clustered using an open-reference OTU picking
protocol based on 97% nucleotide similarity with the UCLUST
algorithm (Davenport et al., 2014). ChimeraSlayer was employed
to remove chimeric sequences (Haas et al., 2011). The relative
abundance of each OTU was determined as a proportion of
the sum of sequences for each sample. Taxonomic relative
abundance profiles (such as, at the phylum, class, order, family,
and genus levels) were generated based on OTU annotation. The
microbial community structure (i.e., species richness, evenness
and between-sample diversity) of bacterial samples was estimated

TABLE 1 | Number of raw tags, clean tags, average bp, OTUs, and actual
bacterial composition in groups A and H by high-throughput sequencing.

Sample ID Raw Tags Clean Tags AvgLen (bp) OTU

A1 97751 82942 452 291

A2 147122 132071 452 269

A3 104463 88679 457 301

A4 109556 94243 457 206

A5 92412 80310 457 145

A6 100046 85055 461 190

H1 48699 36373 446 239

H2 46394 36601 449 231

H3 72834 53787 448 218

H4 84893 61487 447 224

H5 80500 51148 457 226

Average 89515.45 72972.36 453 230.91
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FIGURE 1 | Scalar–Venn representation of the microbiota between groups A and H. (A) Shared OUTs among samples H1, H2, H3, H4, and H5. (B) Shared
OUTs among samples A1, A2, A3, A4, A5, and A6. (C) Shared OUTs between groups A and H.

by biodiversity. Shannon index, phylogenetic diversity, Chao1
index, and the observed number of species were used to evaluate
alpha diversity, and the weighted and unweighted UniFrac
distances were used to evaluate beta diversity.

All of these indices (alpha and beta diversity) were calculated
by the QIIME pipeline.

Statistical Analysis
Statistical analysis was implemented using the R platform.
Principal coordinate analysis (PCoA) was performed using the
“ape” package based on the UniFrac distances between samples.
The difference among groups was further assessed using a non-
parametric test via Metastats software1 as described previously
(Lu et al., 2014), and statistical significance was set at p < 0.05
for correction of multiple comparisons.

RESULTS

Sequencing Coverage
To compare the fecal microbes of healthy people (group H) and
ALS patients (group A), 16S rRNA amplicon sequencing analysis
was used to sequence the V3–V4 hypervariable region, and the

1http://metastats.cbcb.umd.edu/

sequencing data was filtered to get the valid data, and all the
effective tags of all samples were clustered and those sequences
with over 97% similarity were considered as one OTU. In total,
802695.96 filtered clean tags (72972.36 tags/sample) and 2540
OTUs were obtained from all the samples with an average of
230.91 OTUs per group (Table 1). Chao1 index had almost got
saturated and the rarefaction curve of every sample could enter
the plateau phase (Supplementary Figure S1).

Shared Genera in Each Sample
The Venn figure could reflect the difference between group A and
group H. As shown in Figure 1, there were 386 and 279 OTUs in
group A and H, and the percent of their common OUTs were
63.0% (243/386) and 87.1% (243/279), respectively. For group H,
43.78% OTUs (169/386) were identified as common OUTs among
samples H1, H2, H3, H4, and H5, while the common OTUs only
occupied 17.56% (49/279) among samples A1, A2, A3, A4, A5,
and A6.

The β Diversity of the Microbial
Community
The overall picture of the microbial composition of the samples
in group A and H was obtained by PCoA, based on the relative
abundance profiles of bacterial taxa. As shown in Figure 2, 5/5
samples in group H clustered together on the right upper of the
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FIGURE 2 | The Principle component analysis (PCA) (A) and UPGMA Method of Beta diversity index (B) of groups A and H.

coordinate axis, and 5/6 samples in group A gathered together on
the left upper of the coordinate axis, and samples in group H were
obviously deviated from the samples in group A (Figure 2A),
which was future confirmed by UPGMA method (Figure 2B).

Composition of the Bacterial
Communities at Genus Level
At the genus level, data of top 10 microorganism populations was
analyzed. As shown in Figure 3, Bacteroides, Faecalibacterium,
Anaerostipes, Prevotella, and Escherichia constituted five
common dominant genus in group A and H (7.38 vs. 9.41%,
15.32 vs. 7.02%, 23.9 vs. 7.0%, 10.42 vs. 29.86%, 2.57 vs. 3.24%),
which accounted for 59.59 and 56.53% of the total sequencing
number, and the bacteria did not belong to the dominant bacteria

in these two groups and classified as the “others” had occupied
30.77 and 38.29%. In addition, the average ratios of Bacteroides,
Faecalibacterium, Anaerostipes, Prevotella, Escherichia, and
Lachnospira between groups A and H were 0.78, 2.18, 3.41, 0.35,
0.79, and 13.07 (Figure 3).

Relative Abundance of the Bacterial
Communities in Each Sample
To determine the significant increased bacteria in group A or H,
supervised comparisons by LEfSE (LDA > 4.0) were performed.
In Figure 4, Lachnospiraceae (at family level), Firmicutes (at
phylum level), Clostridia (at class level), Oscillibacter (at genus
level), Family XIII (at family level), Anaerostipes (at genus
level), Lachnospiraceae (at genus level) and Clostridiales (at order
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FIGURE 3 | Composition and relative abundance of bacterial
communities based 16S rDNA sequences in A and H groups.
(A) Unsupervised hierarchical clustering analysis. (B) The relative abundances
of the major bacteria in genus level.

FIGURE 4 | Supervised comparison identifies differential abundance of
bacteria using LEfSe (LDA > 4.0).

level) in group H were significant higher than that in group
A, while Bacteroidetes (at phylum level), Bacteroidia (at class
level), Bacteroidales (at order level), Dorea (at genus level) were
significant higher than that in group H.

DISCUSSION

Accumulating clinical- and scientific research-based evidence is
driving our increased awareness of the significance of the human
microbiome (HM) to the healthy and homeostatic operation of
the human CNS (Grenham et al., 2011; Hill et al., 2014; Fang,
2015; Kennedy et al., 2016). ALS belongs to neurodegenerative
disease characterized by the loss of motor neurons (Scarrott
et al., 2015), and the prevalence rate for ALS is substantially
lower at 3.9/100000 in the United States (Mehta, 2015). To
date, the pathogenesis of ALS remains unclear and is likely
multifactorial, and the pathophysiology of ALS may be related
to the gastrointestinal tract. The gut microbiota, which is
also referred to as the second brain, may affect brain activity
through the gut-microbiota–brain axis under both physiological

and pathological conditions (Mayer et al., 2015; Sampson and
Mazmanian, 2015), and accumulating evidence suggests that
microbiota changes in the gastrointestinal tract of individuals
possessed strong connection with neurological diseases and
specifically, neurodegenerative diseases (Catanzaro et al., 2015).

In this study, high-throughput sequencing technology was
used to compare the microbiota in intestinal tract of healthy
people and ALS patients. To evaluate the tag quality, the raw
tags, clean tags, average bp and OTUs in per sample were
compared, and the mean number of 72972.36 clean tags, average
length of 453 bp (Table 1), and the saturated Chao1 index and
rarefaction curve ensured their reliability for the future analysis
(Supplementary Figure S1).

In Figure 1, the Venn figure reflected a high percent of
43.78% of common OTUs in H group, and a low percent of
17.56% of common OTUs in A group, which indicated that the
ALS, together with individual physiological status, had severely
changed the microbial composition in patients feces, which
deviating from the normal microbiota and characterized by the
overgrowth of total OTU number and low percent of common
OTUs. Moreover, the clustered samples A1, A2, A3, A4, and A6,
as well as the clustered samples H1, H2, H3, H4, and H5 using
PCoA and UPGMA method further conformed the microbial
changes in feces of ALS patients (Figure 2).

Then, the top 10 microorganism populations were analyzed at
genus level, and average ratios of Bacteroides, Faecalibacterium,
Anaerostipes, Prevotella, Escherichia, and Lachnospira between
groups A and H were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07
(Figure 3). Furthermore, supervised comparisons by LEfSE
(LDA > 4.0) were performed to find the significant changed
bacteria, and the relative richness of Firmicutes at phylum
level, Clostridia at class level, Clostridiales at order level,
Lachnospiraceae and Family XIII at family level, Oscillibacter,
Anaerostipes and Lachnospiraceae at genus level in group H were
significant higher than that in group A, while Bacteroidetes at
phylum level, Bacteroidia at class level, Bacteroidales at order
level and Dorea at genus level were significant higher in group
A (Figure 4).

In healthy adults, 80% of the identified fecal microbes can be
classified into three dominant phyla: Bacteroidetes, Firmicutes,
and Actinobacteria, and the Firmicutes to Bacteroidetes ratio is
regarded to be of significant relevance with human health (Mariat
et al., 2009), and the significant increase of Firmicutes in H group
and significant increase of Bacteroidetes in A group indicated that
the ALS has seriously influenced patients’ healthy, characterized
by the decreased Firmicutes/Bacteroidetes ratio. At genus level,
the Dorea in group A was significant higher than that in healthy
people, whose major end products of glucose metabolism are
ethanol (Vos et al., 2011). Moreover, the significant decrease
of Oscillibacter (was found in significantly more samples from
healthy control test subjects than from patients diagnosed with
Crohn’s disease; Mondot et al., 2011), Anaerostipes (represents
more than 2% of total colonic microbiota in the healthy colon,
and are believed to play an important functional role in the
gut ecosystem due to their ability to produce butyrate from
lactate; Bui et al., 2014) and Lachnospiraceae (can protect
from colon cancer in humans by producing butyric acid;
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Meehan and Beiko, 2014) in group A further confirmed the
interaction of ALS with intestinal microbiota.

In summary, we found that host microbiota were markedly
different in health and disease, and the overgrowing of pathogens
and reduction of probiotic organisms in intestines of ALS
patients might up-regulated or down-regulated the production
of NO, GABA, SCFAs, and LPS, which eventually increased the
pathogenesis of ALS, and the ALS conversely aggravated the
imbalances of intestinal microbiota, causing a vicious circle for
host health. In the present study, we provide basic data to clarify
the key bacteria during disease occurring, which may assist our
understanding and treatment of ALS by inhibiting the growth of
pathogens and enhancing the number of probiotics.
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