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Bacterial communities may display metabolic complementation, in which different

members of the association partially contribute to the same biosynthetic pathway.

In this way, the end product of the pathway is synthesized by the community as

a whole. However, the emergence and the benefits of such complementation are

poorly understood. Herein, we present a simple model to analyze the metabolic

interactions among bacteria, including the host in the case of endosymbiotic bacteria.

The model considers two cell populations, with both cell types encoding for the same

linear biosynthetic pathway. We have found that, for metabolic complementation to

emerge as an optimal strategy, both product inhibition and large permeabilities are

needed. In the light of these results, we then consider the patterns found in the

case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid

Cinara cedri. Using in-silico computed physicochemical properties of metabolites of

this and other biosynthetic pathways, we verified that the splitting point of the pathway

corresponds to the most permeable intermediate.

Keywords: metabolic complementation, cross-feeding, endosymbiotic bacteria, metabolic modeling, kinetic

modeling, optimization

INTRODUCTION

Species that coexists on time and space form complex networks of interactions which are shaped
by abiotic and biotic factors (Faust and Raes, 2012; Seth and Taga, 2014). The association between
different species can be analyzed from the perspective of the metabolic interactions. In this context,
the possible nutritional interactions within different organisms can be grouped as follows: (1)
competition for limiting nutrients; (2) syntrophy, i.e., the cooperation emerging as each of the
partners gain by the metabolic reactions of the other; (3) commensalism or nutrient cross-feeding,
in which the presence of an organism that over-produces an essential nutrient enables auxotroph
organisms to survive. While in the case of competition one of the organism will inevitably exclude
the other (Hardin, 1960), in the cases of syntrophy and cross-feeding, the interaction will tend to
stabilize the coexistence of both species, otherwise competitive. In particular, when the exchange
of nutrients or precursors is bidirectional and thus, is beneficial for both partners, the nutritional
interdependence will lead, in most of the cases, to a co-evolutionary process, the most striking
example being the emergence of symbiotic associations (Douglas, 1998; Hansen et al., 2007;
Germerodt et al., 2016).
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In the context of the evolution of endosymbiotic bacteria
the concept of functional complementation is widely used to
describe the complex patterns of nutritional interactions between
the members of the association. This concept has been applied at
least with two different meanings. On one hand, it can be used in
the sense of nutritional cross-feeding between the endosymbiont
bacteria and its host, i.e., there are exchanges between the
symbionts and/or the hosts of some essential compounds (e.g.,
amino acids, vitamins, etc.; Wu et al., 2006; López-Sánchez et al.,
2009; MacDonald et al., 2012; Russell et al., 2014). On the other
hand, the concept is also used to refer to amore complex scenario,
in which the patterns of gene loss and retention in each symbiont
have led to an inter-pathway genomic complementation (Van
Leuven et al., 2014). This means that during the co-evolutionary
process, a subset of genes coding a certain metabolic pathway are
retained in one symbiont, while the other genes are retained in
the other(s) member(s) of the association. In other words, the
genes coding for one ormore pathways end up distributed among
different genomes. In the present paper we will use the second
definition.

Events of metabolic complementation, as defined above, are
commonly found between endosymbiont bacteria and their
hosts, where some metabolic functions are distributed between
them (Zientz et al., 2004; Baumann et al., 2006; Ponce-de-
Leon et al., 2013; Rao et al., 2015). A typical example is
provided by several obligate endosymbiont hosted by sap feeding
insects, which have lost transaminase activities, a critical step
in the biosynthesis of amino acids (McCutcheon and von
Dohlen, 2011; Jiang et al., 2012). In some of these cases, the
transaminase activities have been found to be encoded in the host
genome, indicating that the synthesis of amino acids requires
the combined metabolic capabilities of both members of the
association (Hansen and Moran, 2011; Poliakov et al., 2011;
Russell et al., 2013; Price et al., 2014).

Furthermore, events of metabolic complementation have also
been found between the members of endosymbiont consortia in
different insects, i.e., certain metabolic capabilities are distributed
among the different endosymbiotic bacteria living in the same
host. A particularly interesting example is the case of the
endosymbiont consortium of the Cinara cedri, and aphid of the
family Lachninae. In this system, two different bacteria, Buchnera
aphidicola BCc and Ca. Serratia symbiotica SCc (hereafter
referred to as S. symbiotica SCc), coexist (Pérez-Brocal et al.,
2006; Burke and Moran, 2011; Lamelas et al., 2011). In this
system, most of the biosynthetic processes, e.g., biosynthesis of
some amino acids, are being performed by only one member
of the consortium, and thus each member has to rely on the
other for specific nutrients. Other (non-essential) amino acids
are, instead, only provided by the host, which also provides
the critical transamination steps in the synthesis pathways of
the symbionts. Tryptophan biosynthesis is a notable exception.
This biosynthetic pathway is split in two parts, each operating
in one member of the consortium. Therefore, in this case,
the biosynthesis of tryptophan requires the presence of both
endosymbionts. This is also the case of the community hosted by
the aphid Tuberolachnus salignus, another member of the family
Lachninae, where the B. aphidicola BCt and S. symbiotica SCt

endosymbionts developed the same metabolic complementation,
most likely independently from the C. cedri ones (Manzano-
Marín et al., 2016). Surprisingly, a case of convergent evolution
has been also found in the symbiotic system of the psyllid
Heteropsylla cubana (Martínez-Cano et al., 2015). In this second
case, the primary symbiontCa.Carsonella ruddii encodes the first
step of the pathway, whereas the secondary symbiont, which has
lost almost all the genes for the biosynthesis of essential amino
acids, still encodes the remaining genes for complementing the
biosynthetic pathway (Sloan and Moran, 2012).

Most of the described complementation events have been
identified through genomic analyses. However, these studies
do not address the possible advantages or disadvantages
of the observed metabolic design. Particularly, metabolic
complementation presents certain biophysical problems
regarding the splitting a metabolic pathway into different
organisms. For example, there is the question of how
the intermediate metabolites are exchanged between the
endosymbiont and its host, or between the different members
of a consortium. This question becomes even more puzzling
when considering that obligate endosymbionts have a very small
repertory of genes coding for transporters (Charles et al., 2011).
In addition, intermediate metabolites in biosynthetic pathway do
not usually have associated transporters, which suggest diffusion
as the most plausible mechanism for the exchanges with the
surrounding environment.

Another question is how the endosymbionts adapt their
pathways to satisfy the needs of the host and of the other
endosymbionts. As the symbiotic relationships are established,
bacteria overproduce nutrients needed by the host. The
flux through the corresponding biosynthetic pathway can be
increased by acting on several properties of the enzymes (Kacser
and Burns, 1973). The catalytic constant of the enzymes, and
their affinities for the substrates, can be selected in order to yield
larger fluxes (Ringemann et al., 2006). A more straightforward
way to increase reaction fluxes it to increase the enzyme levels.
Although, metabolic processes are regulated at different levels,
a common feature of obligate endosymbionts is the apparent
absence of transcriptional regulatory mechanisms (Wilcox et al.,
2003; Moran and Bennett, 2014). Therefore, enzyme levels
can be increased either tuning the translation/transcription
efficiency of the gene, or by modifying the gene copy number,
inserting additional copies of the gene in the chromosome
or a plasmid. For instance, many Buchnera strains, producing
tryptophan for their hosts, possess multiple copies of the
genes coding for the enzyme anthranilate synthase, which is
considered to be a limiting step of the tryptophan biosynthetic
pathway (Lai et al., 1994). The activity of the enzymes is also
regulated by the presence of inhibitors or activators. In most
biosynthetic pathways, flux is negatively regulated (through
allosteric inhibition) by the final product of the pathway on
the first reaction and one may ask whether the partition of a
pathway between different compartments has any effect on the
regulation.

The very presence of metabolic complementation rises
many evolutionary questions: does metabolic complementation
provides any selective advantage for the whole system? And, if
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it does, which is the evolutionary advantage provided by such
strategy? Studies have been performed in order to elucidate
if organisms exhibiting cross-feeding interactions do possess
any selective advantage with respect to free-living organisms
(Pfeiffer and Bonhoeffer, 2004; Germerodt et al., 2016). Microbial
coexistence has been also explored by using thermodynamic
and kinetic models (Großkopf and Soyer, 2016). At any rate,
understanding the evolutionary and mechanistic properties
of natural microbial communities might allow the design of
synthetic ones with potential industrial interest (Großkopf and
Soyer, 2014).

THE MODEL

A Kinetic Model of Two Parallel
Unbranched Pathways with Negative
Feedback Inhibition
We developed a kinetic model to study metabolic
complementation endosymbiont consortium of two different
bacteria, when they are allowed to exchange intermediate
metabolites of a hypothetical biosynthetic pathway. The model
describes a consortium consisting of two different endosymbiotic
bacterial species and their host (Figure 1). Each of the two
bacterial populations is represented by a large number (Ni with
i = 1, 2) of identical cells, so that in practice it is sufficient to
consider two different compartments, modeling a single cell of
each bacterial strain, enclosed in a larger compartment, which
allows for exchanges of metabolites between cells and the host.
Both endosymbionts code for the same hypothetical biosynthetic
pathway, which allows the conversion of a precursor S (produced
by the bacteria), to an end product P, which is essential for any of
the three members of the consortium. The biosynthetic pathway
is a linear chain composed by two reactions (see Figure 1),
with the precursor S being first converted into an intermediate
metabolite X, and then X being converted to the final product P.

The intermediate metabolite X and the final product P can
freely diffuse outside the cells (Figure 1). Moreover, since the
product P is considered essential for both endosymbionts and
its host, three demand fluxes are also introduced to represent
the incorporation of P to the respective biomasses of the three
member of the consortium. Finally, product inhibition has been
suggested to be present in some endosymbionts, e.g., anthranilate
synthase of B. aphidicola shows a highly conserved allosteric
binding site (Lai et al., 1994), albeit in other enzymes like
prephenate dehydratase the inhibition could be mitigated by
point mutations in the allosteric site (Jiménez et al., 2000). Thus,
the model includes a negative feedback inhibition mechanism
that regulates the production of P.

The two reactions in the biosynthetic pathway, S →X and
X→P, are modeled using reversible Michaelis–Menten kinetics
(Noor et al., 2013); we name the corresponding fluxes VS and
VX , respectively. Moreover, in order to include the effect of
product inhibition on the first step (S→X), a term representing
such effect was introduced in the kinetic equation of the first
reaction (Cornish-Bowden, 2013). There are diverse mechanisms
of enzyme inhibition, including allosteric interactions, but in this

approach we have analyzed one of the simplest situations and
the kinetics of the inhibition was considered, in a first place, to
be uncompetitive, although the case of competitive inhibition is
discussed later. Thus, the kinetic law of the first reaction S→X,
with flux VS, is the following:

VS =
kcat [ES]

1 + [P] /KI
·

(

[S]− [X] /Keq

)

/K+
M

1 + [S] /K+
M + [X] /K−

M

(1)

where kcat is the turnover number, or catalytic constant, of
the reaction, K+

M (K−
M) is the forward (backward) Michaelis

constant, Keq is the equilibrium constant, and KI is the inhibition
constant. It is worth to note that in the limit 1/KI → 0 the
reversible Michaelis–Menten kinetic law, without inhibition, is
recovered. The kinetic for the second reaction (X→P, with flux
VX) is analogous to Equation (1) but without the inhibition term
([P] /Ki).

In order to allow the flux of metabolites between the members
of the consortium, the metabolites X and P are allowed to be
exchanged with the surrounding environment. Endosymbiotic
bacteria usually lack transport systems (Charles et al., 2011);
thus, the exchanges of X and P are modeled using first-order,
non-saturating, reversible kinetic laws. The fluxes Uα take the
following form:

Uα = Dα ([α]in − [α]out), α = X, P (2)

where Dα are related to membrane permeability and diffusion
constants of the metabolites (Laidler and Shuler, 1949). Note that
the fluxes are assumed to be positive when the metabolites are
excreted by the cells. On the other hand, if there were any kind
of protein-mediated transport, the corresponding membrane
proteins should also have been taken into account. Finally, the
product P is assumed to be consumed during growth by the three
members of the consortium, with consumption fluxes in each
compartment. For the bacterial cells, we model the consumption
of the metabolite P using an irreversible Michaelis–Menten
reaction:

VP = kcat [EP]
[P]

[P] + KM
(3)

The fluxes VP,i (the index i = 1, 2 corresponding to the cell
type) are constrained to be larger than some fixed flux JP,i. The
extracellular product is instead consumed by the host. It is useful
to normalize this rate to the size of the bacterial populations
N = N1 +N2, so that the consumption rate equals d [P]out /dt =
−NJP,0. The three parameters JP,0 and JP,i thus set the demand of
the metabolite P from the bacteria or the host.

Finally, the size of the populations of the two bacteria naturally
influence both the total protein concentration and the magnitude
of the transport fluxes between the cells and the host, and cannot
be disregarded. It is convenient to introduce the normalized
populations n1 = N1/Nand n2 = N2/N, withN1+N2 = N. We
will therefore first show results obtained by fixing the cell relative
populations to be n1 = n2 = 1/2, and then exploring the case in
which the two population fractions differ.When the whole model
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FIGURE 1 | Kinetic model of metabolic complementation. Two cell types (purple and gray) can both potentially produce the product P starting from a substrate

S, passing through an intermediate metabolite X. The enzymes can be freely allocated to the pathway’s reaction and consumption of P. The intermediate (X ) and final

(P) metabolites can cross the cell membranes by diffusion. Both bacteria and the host need the final product to grow; leading to consumption rates JP,0, JP,1, and

JP,2. In the case of the Buchnera/Serratia/Cinara consortium, the pathway is completely split across the two populations (ES,2 and EX,1 are absent).

is considered, the balance equations for all the metabolites of the
system can be written as follows:

d[Xi]
dt

= VS,i − VX,i − UX,i, i = 1, 2
d[Pi]
dt

= VX,i − VP,i − UP,i, i = 1, 2
d[X0]
dt

= N
(

n1UX,1 + n2UX,2

)

d[P0]
dt

= N
(

n1UP,1 + n2UP,2 − JP,0

)

(4)

where N corresponds to the total number of cells in both
populations. Is worth to note that the equations for intracellular
metabolites are symmetric for the two species, while the balance
equations of the extracellular metabolites depend on the size of
each symbiont population and, in the case of P0, on the host
demand flux JP,0. The substrate S is a precursor produced by
each of the two cell types, and its concentration is assumed to
be fixed (Heinrich and Schuster, 1996). As a consequence, the
balance equation of S is not included in the model. For the sake
of simplicity, in the following we will set all kinetic parameters
to one, unless stated otherwise. Also, we will set the population
fractions to n1 = n2 = 1/2 and the concentration of the substrate
to [S] = 10.

The Optimization Criteria
Endosymbiont bacteria involved in nutritional interactions
overproduce some essential products, such as essential amino
acids or vitamins, and share them with their host (and in some
cases with other endosymbionts; Douglas, 1992). On the other
hand, as discussed in the introduction, such over-production
can be ensured by tuning the enzyme concentrations along
the pathway, even if end-product inhibition may not allow
to tune the flux easily (Lai et al., 1994; Rouhbakhsh et al.,
1997; Baumann et al., 1999). Accordingly, improvements in
the efficiency of over-productions, in terms of the economy
on protein synthesis, should provide of some advantage to the
whole system (Dekel and Alon, 2005; Ponce de León et al.,
2008; Shachrai et al., 2010; Goelzer and Fromion, 2011; Flamholz

et al., 2013; Kafri et al., 2015; Mori et al., 2016). Thus, in this
work we will focus on the trade-off between the maximization
of the flux through a pathway and the efficient allocation of the
proteins. Using constraint-based optimization this trade-off can
be modeled as two complementary optimization problems: (i)
maximization of the flux subject to a constraint on the maximum
amount of total enzyme concentration; and (ii) minimization
of enzyme concentrations subject to a constraint (lower bound)
on the flux of interest, which ensure that a certain demand is
satisfied.

Herein, we will adopt the second formulation, i.e., enzyme
minimization subject to a certain demand flux of the product P,
although one can show that both formulations yield completely
analogous results (see Supplementary Text 1). The optimization
problem is defined in the following way. Given the demand fluxes
JP,i, i = 0, 1, 2:

VP,i ≥ JP,i ∀i = 0, 1, 2 (5)

we compute the metabolite and enzyme concentrations which
minimize the total enzyme concentration (normalized by the
total bacterial population), defined as follows:

C =
∑

i = 1,2

∑

α = S,X,P

ni
[

Eα,i

]

(6)

where the cost or objective function C correspond to the total
amount of protein invested by both cell types in order to
produce an amount of P enough to satisfy the demand required
by the three members of the consortium. All the intermediate
metabolites are subject to the steady-state condition, which is
imposed by setting to zero the time derivatives in (Equation 4).
Accordingly, each solution will consist of a set of metabolites
and enzymes concentrations, from which one can compute
the optimal fluxes using the kinetic laws. A complementary
formulation of the optimization problem is possible, i.e.,
maximization of the flux subject to a constraint on the maximum
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amount of total enzyme concentration. This other approach
can be shown to be completely equivalent to the “enzyme”
minimization approach, as shown in Supplementary Note 1.

In order to highlight the patterns of proteome allocation
between the cell populations, we introduce the measure of
enzyme asymmetries Aα, defined for each enzyme α as follows:

Aα =

[

Eα,1

]

−
[

Eα,2

]

[

Eα,1

]

+
[

Eα,2

] , α = S,X, P (7)

This quantity reflects the relative difference in the concentration
of each enzyme between the two different endosymbiont. Thus,
Aα will be zero if the enzyme concentrations in the two
cells are the same, while it will equal either 1 or −1 if
one cell type completely lacks the corresponding enzyme. In
particular, if the two type of cells have the same sets of kinetic
parameters, one would expect that the protein asymmetries
would be equal to 0, unless some metabolic interaction
emerges.

MATERIALS AND METHODS

Optimization Procedure
Optimizations were solved using the fmincon function in Matlab
2015a forLinux. Due to the non-linear formulation of the
optimization problem, the cost function exhibits multiple local
minimums. Therefore, local optimization strategies such that
gradient descent are not always able to find the correct minimum.
However, if the parameters of the model are varied smoothly,
such as in the case of the permeabilities DX and DP in Figure 2,
onemay rely on the fact that the optimal solution should also vary
smoothly (excluding the frontiers between the symmetric and
the non-symmetric solutions). Therefore, for each combination
of parameters, we optimized the cost function starting from a
random seed until we got the correct minimum in all cases.

Sensitivity Analysis Procedure
In the sensitivity analysis, we chose a point in the parameter
space, roughly corresponding to the border between the
symmetric and asymmetric region Then, we randomized by
various amounts the kinetic parameters, and for each set of
parameters we computed the optimal concentrations, {x∗},
and the corresponding optimal ES protein asymmetry, AS =
([

E1,S
]

−
[

E2,S
])

/
([

E1,S
]

+
[

E2,S
])

, where the asterisk indicates
the optimal solution. Then, for each parameter ki, we compute
the following correlation:

Ci = 〈AS

(

x∗
)

· ki − AS

(

x∗
)

· ki〉 (8)

where the angled brackets 〈·〉 represent the average over the
N samples. In order to ensure that the optimal concentration
corresponded to real absolute minima of the cost function, an
iterative approach was developed, which is described in detail in
Supplementary Text 2. The results of the sensitivity analysis are
instead in Supplementary Table 1.

Multiple Sequence Alignment
Amino acid sequences of the anthranilate synthase component
I (trpE) from twelve different Buchnera strains available, as well
as E. coli (strain K12) and S. marcescens, were downloaded
from the UniProtKB database (UniProt-Consortium, 2014). The
sequences in fasta format can be found in the Supplementary file
Data 1. The multiple sequences alignment was performed using
T-cofee package using default parameters (Notredame et al.,
2000). The alignment representation was done using Jalview
(Waterhouse et al., 2009).

Estimation of Metabolites Permeability
Aprecise quantification of the diffusion constants andmembrane
permeability for any intermediate metabolite is not a trivial
task. Therefore, we used different parameters as estimators
of the permeability or diffusion capacity of the intermediate
metabolites in different amino acid biosynthetic pathways we
analyzed. For each compound we considered: (i) the molecular
weight; (ii) number of hydrogen bond acceptors and donors; (iii)
the octanol-water partition coefficient; and (iv) the topological
polar surface area (TPSA). The structures of the amino acids
biosynthetic pathways were retried from MetaCyc (Caspi et al.,
2014). The list of pathways analized includes the super-pathway
of aromatic amino acid biosynthesis (L-Trp, L-Tyr, L-Phe) and
the super-pathway of branched chain amino acid biosynthesis
(L-Leu, L-Ile, L-Val). Furthermore, all the physicochemical
parameters listed above were computed using OpenBabel
(O’Boyle et al., 2011), [accessed through the Python wrapper
PyBel O’Boyle et al., 2008] with the exception of the logarithm
of the octanol-water partition coefficient (LogP) for which two
different estimators were chosen, named ALogP (Tetko and
Poda, 2004) andXLOP3 (Cheng et al., 2007). Results can be found
in Supplementary Table 2.

RESULTS

Emergence of Metabolic Complementation
Using the model and the optimization criteria introduced in
previous sections, we now turn on the analysis of the optimal
proteome allocation obtained, for different scenarios. As a
starting point, we will set the host demand flux to zero, JP,0 = 0.
As explained in Supplementary Note 1, since the total enzyme
concentrations is proportional to the demand fluxes, the sum
of the demand fluxes JP,1 + JP,2 is not relevant for the optimal
strategy of proteome allocation, and only their ratio JP,1/JP,2 is
(as long as JP,0 = 0). We will therefore choose JP,i = 1 for both
the two cell types. (The results for different values of JP,0 = 0 and
JP,1/JP,2 are shown below).

We show in Figure 2 the optimal protein asymmetries
obtained by varying the value of the diffusion constants, DX

and DP, for different values of the inhibition constant KI . Given
the symmetry of the problem, i.e., the reactions in the two cell
types have identical kinetic parameters, we will only consider
the solutions with AS ≥ 0. In the extreme case where DX =

DP = 0, the two cells cannot interact in any way and no
complementation can arise. However, when the metabolites are
allowed to permeate, the two cell populations are in principle
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FIGURE 2 | Enzyme asymmetries Aα for optimal proteome allocation solutions obtained in different scenarios. The figure shows the optimal solution in

terms of the enzyme asymmetries as a function the diffusion constants DX and DP, and for different values of the inhibition constant, in the case of uncompetitive

inhibition of P on the enzyme ES (see Equation 1), Subplots on each column, labeled (A–D) correspond to the solution obtained for a different values of 1/KI, whereas

rows represents the different enzymes of the pathway. The darker color in the 1/KI = 10 and 1/KI = 30 subplot columns highlight the region in which
[

ES,2
]

=
[

EX,1
]

= 0, and the pathway is completely split between the two cell types. The color scale corresponds to the asymmetry value of the different enzymes.

allowed to interact, and an asymmetric solution corresponding
to metabolic complementation may emerge. If the effect of
the product inhibition is too low (e.g., 1/KI ≤ 0.1), then
the optimal solution is always characterized by a symmetric
enzyme allocation, i.e., Aα = 0, for all enzymes involved
(Figure 2A), and for all values of the permeability constants
DX and DP. Conversely, when the inhibition gets larger and
larger (e.g., 1/KI ≥ 1), asymmetric solutions starts to emerge
as the optimal strategy, depending on the values of the diffusion
constants DX and DP (Figures 2B–D). For a given value of
1/KI , the diffusion constants define a transition line, which
divides the plane into two zones, corresponding to the range
of parameter for which the symmetric or asymmetric solution
is optimal. When the condition favors the asymmetric strategy,
in general all the enzymes exhibit certain degree of asymmetry.
In particular in the case of the enzyme ES, the asymmetry only
takes the extreme values, AS = 0 or |AS| = 1, whereas
for the other two enzymes the degree of asymmetry depends
on the diffusion constants. Interestingly, we find that large
values of DX promote the asymmetry, while for large values
of DP the symmetry is restored. In other words, asymmetric
solutions arise when DX/DP is large enough. Summarizing,
asymmetric proteome allocation becomes an optimal strategy
in the presence of by product inhibition and when the product
diffuses slower than the intermediate metabolite X. If P diffuses
too fast, the concentrations within both cell types will be
roughly the same, and therefore the inhibition cannot be by-
passed. Conversely, if P diffuses much slower than X, its
concentration on the cell coding for the first enzyme (i.e.,
ES) will be low and its contribution as an inhibitor will be
negligible.

As shown in Figure 2, in the regions where asymmetry
emerges as the optimal solution, we have the following relations
for enzyme asymmetries: AS = 1, AX < 0, and AP > 0. Thus, in
order to have a deeper insight on the relation between diffusion
and the sudden change from symmetric to asymmetric solution,
we focus now on single value of the inhibition constant (1/KI =

10). We can individually study the symmetric and asymmetric
solutions by imposing that AS = 0 (in the symmetric case) or
AS = 1 (in the asymmetric case). Then, for these two cases, the
optimal proteome allocation was computed for different values of
the diffusion constants, DX and DP.

Figure 3A shows that the protein cost of the asymmetric
strategy grows when the metabolites cannot easily diffuse across
the membranes, i.e., when the values of DX and DP decrease
(yellow surface/lines). On the other hand, the asymmetric
strategy becomes optimal for large values of the diffusion rates.
For large values of the diffusion constants we see that the
asymmetric solution is optimal, with the AX enzyme asymmetry
approaching the value −1 (Figure 3B). In this conditions,
the pathway is completely split between the two cells, with
one enzyme (ES) only present in the first cell (Figure 3B),
and the second enzyme (EX) only present in the other cell
(Figure 3C). We see in Figure 3D that the asymmetric condition,
AS = 1, is always accompanied by an excretion of the X
metabolite from the first cell, which is gathered by the second
cell UX,1 = −UX,2 > 0. Interestingly, the exchange of
X (Figure 3D) still takes place even in the case in which P
cannot cross the cell membrane, i.e., DP = 0 (Figure 3E). In
this condition, the second population becomes a cheater, and
takes advantage of the leakage of X from the first population.
Nevertheless, if the diffusion constant DP is increased, the
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FIGURE 3 | Optimal solutions (minimum proteins) in the case of uncompetitive inhibition. The figure shows protein costs plotted as a function of DX and DP
for a fixed value of the inhibition 1/KI = 10. (A) The cost function (that is, the total protein cost) is shown in the z-axis; the green surface, corresponding to the

symmetric solution, is obtained by imposing that the two cells have identical enzyme allocation, while the yellow one is obtained imposing that one of the two cells

lacks the ES enzyme. (B) proteome asymmetry of the EX enzyme; (C) Proteome asymmetry for the EP enzyme; (D) Optimal transport flux UX,1 of the X metabolite

from cell 1 to cell 2; (E) Optimal transport flux UP,1 of the P metabolite from cell 1 to cell 2 (the negative value of the flux means that P is actually shuttled from cell 2 to

cell 1). The color scale of subplots (B,C) and (D,E), corresponds to the asymmetry value of the different enzymes and the sense of the transportation fluxes,

respectively.

second cell starts sharing the product P with the first cell, thus
establishing a metabolic complementation relationship. Finally,
if DP is too large, the concentrations of the P metabolites are
very similar in both cells, so that there is no way to reduce
the effect of inhibition by partitioning the metabolic route.
Therefore, the cell switches from metabolic complementation
to a “neutralist” strategy, with completely symmetric enzyme
allocation and no exchange of metabolites between the two cells
types.

Assessing the Impact of Alternative
Inhibition Mechanisms and Different
Product Demands
In this section, we extend our results to more general settings.
First, we check that our results do not depend qualitatively on
the inhibition kinetics. Instead of a non-competitive mechanism
(Equation 1), we use a competitive mechanism (Cornish-
Bowden, 2013) so that the concentration of the product
metabolites affects the saturation of the enzyme, and not the
turnover rate. Although this mechanism is more complicated
than the uncompetitive case, due to the interplay between the
different concentrations of the S, X, and Pmetabolites, the results
obtained are analogous to the simpler case of uncompetitive
inhibition (see Supplementary Figure 1). This suggests that while
product inhibition is a necessary condition for the emergence
of metabolic complementation, it does not depend on specific
inhibition mechanisms, and the metabolic complementation
strategy is favored by strong feedback inhibition.

Then, we probed the effect of different demand fluxes, both
to the host (JP,0) and to the bacterial species (JP,1 and JP,2). As
one increases the host demand flux JP,0, the qualitative pattern
of the different optimal strategies is only slightly affected by the
presence of a flux of products to the host (see Supplementary

Figure 2), even though the total amount of protein to be allocated
clearly increases with the demand flux. Similarly, we consider the
case where the two bacterial populations have different demands
for the product P, for instance because of a different biomass
composition.We see that an asymmetry in the demands for P can
promote, even more, the asymmetry in the proteome allocation
(see Supplementary Figure 3); for large enough 1/KI and demand
flux asymmetry ρJ =

(

JP,1 − JP,2

)

/
(

JP,1 + JP,2

)

, the optimal
solution is characterized by a complete splitting of the pathway
within the two cells,

[

ES,1
]

=
[

EX,2

]

= 0.
A similar effect is found when the two bacterial species have

different populations, that is, n1 6= n2. As n1 is moved away
from ½(with n2 = 1 − n1), the protein asymmetry is generally
enhanced, with larger asymmetries AX (see Supplementary
Figure 4). All these results show that the complementation
patterns described by the model are robust against variation in
the demand fluxes and the relative population sizes.

Sensitivity Analysis
The number of kinetic parameters in the model is quite large,
and it is very difficult to probe the effect of perturbations for each
different combination of parameters. Therefore, we performed a
sensitivity analysis, on the model with uncompetitive inhibition,
by randomly perturbing the parameters, and studying how the
perturbation of each parameter correlates with the insurgence
of the asymmetric optimal solution (See Section Materials and
Methods for details). We see that the parameters which promote
the enzyme asymmetry most are, as expected, the inverse
inhibition constant 1/KI (reflecting the amount of inhibition),
the concentration of the Smetabolite, and the diffusion constant
DX of the X metabolite (Supplementary Table 1). We also find
that the equilibrium constant of the S → X reaction also
positively affects the asymmetry, albeit slightly; this is because
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increased concentrations of the X metabolite allows for larger
shuttling fluxes across the two cells. On the other hand, the
diffusion constant DP of the P metabolite is found to promote
the symmetry between the two cells, decreasing the average value
of AS.

Extended Model with Multiple
Intermediates
In the previous section, we gave an in depth characterization
of a model in which the biosynthetic pathway is composed by
two reactions. However, real biosynthetic pathways are usually
composed by a larger number of reactions. In order to study how
the permeability affects the emergence of a complementation, an
extended version of the model was developed, which keeps the
fundamental features of its simplest version, while adding more
intermediates in the pathway. The extended version of the model
was obtained by introducing five intermediate metabolite,X1, . . . ,
X5, along with five enzymes EX1, . . . , EX5. Each enzyme EXi,
with the index i ranging between 1 and 5, catalyses the reversible
conversion of Xi into Xi+1 or, in the case of EX5, the product
metabolite P. This extended model allows us to study how a long
biosynthetic pathway is differently partitioned within the two
cells for different permeabilities of the intermediate metabolites.

In the extreme case in which only one intermediate metabolite
can permeate through the cell membranes, we find that the
general behavior of the extended model is totally consistent with
the results obtained using the simplified version (See Emergence
of Metabolic Complementation Section). As shown in Figure 4,
the pathway is split in correspondence of the most permeable
intermediate metabolite. The first cell converts the substrate S
into the intermediate metabolite with large permeability, which
in turn is (mostly) shuttled to the other cell and converted
into the product P, which is then shared between the two
bacteria. A wide range of behaviors are obtained when different,
more complex, scenarios are considered (see Supplementary
Figure 5). For example, when all the intermediate metabolites
can permeate across the membranes, the optimal solution still
exhibits metabolite complementation. However, enzymes levels
change smoothly along the pathway with many metabolite being
exchanged, and therefore the qualitative pattern lacks a unique
breaking point.

Predicting Biological Cases: The Case of
the Tryptophan Biosynthesis
In this section, we discuss the well-documented case of
the complementation of the tryptophan biosynthetic pathway
between the members of an endosymbiotic consortium in
relation with the results here obtained (Gosalbes et al.,
2008; Sloan and Moran, 2012). This event of metabolic
complementation has been reported to be convergent in two
different insect systems and evolutionary unrelated. On one
hand, the complementation of the tryptophan biosynthesis has
been described in the endosymbiotic consortium composed by
B. aphidicola and S. symbiotica SCc hosted by the cedar aphid
(Gosalbes et al., 2008), and also the phylogenetically related
aphid T. salignus (Manzano-Marín et al., 2016). On the other

FIGURE 4 | Solutions for the extended model with 5 intermediate

metabolites X1, …, X5. The points represent the optimal enzyme levels of

the two cells, while the gray bars are the membrane permeabilities (Di ) for the

intermediate metabolites. In each panel, the P metabolite and one of the

intermediate metabolites Xi [i = 1, 3, and 5 in panels (A–C), respectively] is

allowed to permeate through the membrane (D = 15), while all others were not

(D = 10−3). In these conditions, the pathway is split in correspondence of the

permeable intermediate metabolite. Other settings: Keq = 4/3 for all reversible

reactions (all but the one catalyzed by the EP enzyme). Inhibition constant:

KI = 1/10; the concentration of [S] = 20.

hand, the complementation has also been described in the
system of the psyllid H. cubana, where the coding genes for
the tryptophan pathway are distributed among the genomes of
two endosymbionts, Ca. C. ruddii and a tentatively identified
secondary symbiont (Sloan and Moran, 2012), thus, exhibiting
the same pattern than the one described for the case of the
aphid C. cedri (Martínez-Cano et al., 2015). It is worth to note
that although aphids and psyllids belongs to the same suborder
Sternorrhyncha, their corresponding endosymbionts belong to
different bacteria lineages, indicating the independence of the
symbiotic events (Baumann et al., 2006). This convergence
suggests the existence of some evolutionary advantage of the
complementation strategy. In the following we will focus on
the case of C. cedri, because this system has been extensively
characterized (Pérez-Brocal et al., 2006; Gosalbes et al., 2008;
Burke and Moran, 2011; Lamelas et al., 2011).
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The tryptophan biosynthetic pathway involves five enzymes,
encoded by seven genes (trpA-F), which allows the conversion
of chorismate to tryptophan (Crawford, 1989; see Figure 5).
Moreover, as in the case of most amino acid biosynthesis,
the first step (catalyzed by anthranilate synthase) is subject to
allosteric feedback inhibition by tryptophan the end product of
the pathway (Rouhbakhsh et al., 1996, 1997; Kwak et al., 1999;
Spraggon et al., 2001). Previous studies on different B. aphidicola
strains have showed that all the key residues in the allosteric site
are conserved in the trpE sequences (Lai et al., 1994; Rouhbakhsh
et al., 1996). However, since the trpE gene of B. aphidicola BCc
was not considered in the mentioned study, we have performed
a multi-sequence analysis to compare this sequence with its
homologs in other eleven B. aphidicola strains, and in Escherichia
coli and Serratia marcescens. Accordingly, we have found that the

key residues P21 and S40, as well the motif LLES, purportedly
involved in allosteric feedback inhibition (Caligiuri and Bauerle,
1991; Kwak et al., 1999; Tang et al., 2001), are even better
conserved in B. aphidicola BCc than in the other B. aphidicola
strains (See Supplementary Figure 6, and Materials and Methods
Sections for more details), indicating that a product inhibition
mechanism could be still active.

If there is an evolutionary pressure to increase the production
of tryptophan, then the inhibiting effect of tryptophan
accumulation can be overcome by producing large amounts
of the anthranilate synthase enzyme (Lai et al., 1994). In fact,
in several B. aphidicola strains, trpEG genes are amplified,
either with multiple copy of the genes in the chromosome,
or with multiple-copy plasmids, suggesting an adaptation to
overproduce tryptophan for hosts (Rouhbakhsh et al., 1997;

FIGURE 5 | Tryptophan biosynthetic pathway in two different endosymbiont-host systems. Most Buchnera strains can synthesize tryptophan from

chorismate derived from central metabolites. The first step is catalyzed by anthranilate synthase, encoded in the trpEG genes, then, anthranilate is converted into

tryptophan by four additional enzymatic steps, encoded in the trpDCBA operon. In panel (A) the structure of the pathway in the system B. aphidicola and the aphid A.

pisum is presented. Feedback inhibition of tryptophan on anthranilate synthase is present. (B) In the aphid C. cedri, the primary (B. aphidicola BCc) and the co-primary

(S. symbiotica SCc) endosymbionts share the production of tryptophan: trpEG genes are only present in Buchnera, while the trpDCBA genes only in Serratia.
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Baumann et al., 2006). However, increasing protein levels to
overcome the inhibition effect, may represent a large cost in terms
of protein synthesis. According to our model, the metabolic
complementation strategy can be used overcome feedback
inhibition, while reducing the total amount of protein required
to supply enough product. Indeed, in the C. cedri consortium
the genes coding for the tryptophan biosynthetic pathway are
distributed among the two different endosymbionts: the first
two genes, trpEG encoding the anthranilate synthase activity,
are hosted in a plasmid in the P-symbiont B. aphidicola BCc,
whereas the gene products necessary to catalyze the synthesis
of tryptophan from anthranilate (trpDCBA) are encoded by the
genome of the co-primary S. symbiotica SCc, which in turn, lacks
the trpEG genes (Gosalbes et al., 2008; Lamelas et al., 2011).
Thus, we argue that the presence of metabolic complementation
in these bacterial endosymbionts could be interpreted as an
evolutionary innovation to reduce the protein cost required to
supply tryptophan to all the members of the consortium.

Furthermore, the model also predicts that when a metabolic
complementation is an optimal strategy, the point where the
pathway should be split will correspond to the most permeable
metabolite. To contrast this prediction to the present case of
study, we have collected structural data of all the intermediate
metabolite of the tryptophan biosynthesis pathway, and we used
different physicochemical properties and rule-based estimators
to evaluate membrane permeability (See Material and Methods
Section), including the molecular weights and the solubility of
the compounds. Using these parameters, we identify plausible
candidate metabolites for becoming breaking points in the
tryptophan biosynthetic pathway. As seen in Table 1, among all
the intermediate metabolites in this pathway, both anthranilate
and indole appear as most plausible “breaking points,” while
the other intermediates are less likely to cross membranes at an
appreciable rate. Indole is an important signaling molecule in
organisms such as E. coli (Martino et al., 2003), which is known to
diffuse easily through cell membranes (Piñero-Fernandez et al.,

TABLE 1 | Physicochemical properties and rule-based estimators of the

permeability for the intermediate metabolites of the tryptophan

biosynthetic pathway.

Metabolite MW ALogP TPSA 1PR 3PR

1 Chorismate 224.17 1.5 109.72 MH H

2 Anthranilate 136.13 1.9 66.15 MH H

3 N-(5-phosphoribosyl)-

anthranilate

346.21 −0.7 174.27 ML ML

4 1-(o-carboxyphenylamino)-

1-deoxyribulose-5-P

349.05 −0.8 182.11 ML ML

5 (1S,2R)-1-C-(indol-3-yl)

glycerol 3-phosphate

285.193 −1.4 128.67 ML MH

6 Indole 117.15 2.1 15.79 H H

7 L-tryptophan 204.228 −0.4 78.98 MH ML

For each metabolite the molecular weight, an octanol/water log ratio estimator (AlogP),

the topological polar surface area (TPSA), and two rule-based classifiers (1PR and 3PR)

are shown (See Estimation of Metabolites Permeability in Material and Methods Section

for details). High (H); medium high (MH); medium low (ML).

2011). This raises the question: why the pathway breaking point is
anthranilate instead of indole? An answer may lie in the structure
of the tryptophan synthase complex (Dunn, 2012; Miles, 2013).
The complex is a tetramer α2-β2. The α subunit, encoded by trpA
gene, catalyses the synthesis of indole from indole-3-glycerol-
phosphate. Then, indole is directly channeled to the β subunit,
encoded by trpB, where it is used to synthesize tryptophan.
Interestingly, it has been shown experimentally that if the α

subunit is absent, the catalytic activity of tryptophan synthase
is reduced by 1–2 orders of magnitude (Kirschner et al., 1991).
Therefore, keeping both trpA and trpB in the same compartment
appears to be a constraint and thus, indole is not a feasible
candidate for the breaking point, since it is not allowed to diffuse
freely in the cell. Anthranilate is thus the intermediate most likely
to diffuse through cell membranes.

An additional example of a pathway breaking point
concurrent with the most permeable metabolite is the
biosynthesis of biotin in some aphids. All aphid members of the
Lachninae family that have been analyzed up to now through
genomic sequencing of their endosymbionts (namely, C. cedri, C.
tujafilina, and T. salignus) harbor B. aphidicola and S. symbiotica
in their bacteriocytes, and the biotin pathway is fragmented in
two parts (Manzano-Marín et al., 2016). Thus, Buchnera cells
seem responsible for the synthesis of the intermediate 8-amino-
7-oxononanoate (KAPA) whereas Serratia genomes code for the
enzymes required for biotin biosynthesis from KAPA. Since all
the precursors of this intermediate are covalently bounded to an
acyl carrier protein, KAPA is the first metabolite in the pathway
showing an adequate permeability to cross membranes and
paving the way for a metabolic complementation, in agreement
with our model (see Supplementary Table 2).

Finally, we will briefly discuss the case of the transaminase
activities losses in different lineages of B. aphidicola (Hansen
and Moran, 2011; Poliakov et al., 2011; MacDonald et al.,
2012), as well other endosymbionts, such as Tremblaya and
Portiera (Zientz et al., 2004; Baumann et al., 2006; McCutcheon
and von Dohlen, 2011; Zelezniak et al., 2015). Transaminase
activities are a critical step in the biosynthesis of amino acids;
transamination corresponds to the last step in the production
of branched-chain amino acids (BCAs) and aromatic amino
acids. Moreover, all BCAs share the same transaminase enzyme
(EC 2.6.1.42), and the same happens for the aromatic amino
acids (i.e., phenylalanine and tyrosine; with enzyme EC 2.6.1.57).
In several lineages of endosymbionts, such as most strains of
Buchnera, these transamination steps are lost, while the rest
of the pathway is retained. Transaminases are expressed in
the host cells (Hansen and Moran, 2011; Russell et al., 2013)
originally with a catabolic function but now recruited to perform
the last step in a biosynthetic pathway. As the in the case
of tryptophan, the synthesis of these amino amino acids is
commonly regulated at different levels, which usually include
product feedback inhibition (White et al., 2012).

The above mentioned complementation does not involve two
different endosymbionts, but is instead a metabolic relationship
between the endosymbiont and its host. Still, this case includes
all the main features of the model discussed in this work, i.e.,
a metabolite demand, feedback inhibition, and the absence of

Frontiers in Microbiology | www.frontiersin.org 10 October 2016 | Volume 7 | Article 1553

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Mori et al. Metabolic Complementation in Bacterial Communities

transporters. Thus, in order to test if the breaking point of
these pathway corresponds to the most permeable metabolite, we
have computed the permeability estimators for the intermediates
in the biosynthesis of the branched amino acid as well
the aromatic amino acid. The results show that in all the
cases, the breaking point correspond to the most permeable
metabolite (see Supplementary Table 2), thus suggesting that
the complementation may have emerged due to an evolutionary
pressure on the consortium.

DISCUSSION

The emergence of metabolic complementation in endosymbiotic
consortia is a complex phenomenon-poorly understood from a
theoretical point of view. For this reason, we have developed
a simple model to analyzed the possible advantages (or
disadvantages) of metabolic complementation, as well as the
necessary conditions that may drive its emergence. Under
the model assumptions, we have found that for metabolic
complementation to emerge, two necessary conditions should
be fulfilled: first, the pathway must exhibit product inhibition,
and the inhibition constant should be strong enough so that
the over-production requires a high increase in the enzyme
concentration. Second, some of the intermediate metabolites of
the pathway should be permeable enough to diffuse across cell
membrane so that it can reach the other cell type. Thus, an
“indifferent,” or “neutralist” strategy, with both cell populations
allocating the same enzymes, is favored if the metabolites cannot
easily permeate through the cell membranes, and/or if there
is no substantial product inhibition on the first step of the
pathway. On the other hand, if the intermediate metabolites can
permeate easily through the membrane, and if product inhibition
is present, metabolic complementation strategies allow to reduce
the global enzyme burden. Moreover, when analyzing the case of
tryptophan biosynthesis in the endosymbiotic consortium of C.
cedri, we have found that the split point corresponds to the most
permeable (and not channeled) metabolite. Thus, metabolite
permeability is a plausible predictor of the splitting point of
complementation events.

Evolution of Metabolic Complementation
The evolution of metabolic complementation in bacterial
communities is most likely shaped by different forces, many of
them may acting simultaneously (Tan et al., 2015). On one side,
endosymbionts are subject to a process of irreversible gene loss
and genome shrinkage, known as the Muller’s ratchet, due to its
confinement to intracellular life and the bottleneck caused by its
small population size (Moran, 1996). Thus, under this scenario,
the gene losses with no detrimental effect on the system could be
fixed at the population level by the effect of genetic drift. In this
case, metabolic complementation would not necessarily confer a
selective advantage, and would be a consequence of random gene
losses.

Instead, a selective explanation focuses on the cost of protein
synthesis, which affects both the microbial cells and the host
(which also has to provide nutrients to the endosymbionts).
Therefore, hosts whose endosymbionts are able to sustain a given

demand of certain product while reducing the protein cost will
exhibit an improvement in their fitness (Shachrai et al., 2010).
The same can apply to the fitness of microbial communities as
a whole; interestingly, experimental results on synthetic cross-
feeding bacteria has showed that the interactions that emerge
in this scenarios confer a significant fitness advantage to the
genotypes involved in the interaction, and thus, stabilize the
coexistence of cross-feeding organisms (Mee et al., 2014; Pande
et al., 2014; Germerodt et al., 2016).

Another evolutionary mechanism for the emergence of
metabolic complementation is given by the Black Queen
Hypothesis (BQH). According to the BQH, whenever a metabolic
function is redundant among the member of a microbial
community, and the final product of the process leaks or escape
from the producer cells, becoming a public good, the rest of the
members can take advantage of this “common good” (Morris
et al., 2012). Thus, the BQH suggest that the loss of a leaky
function will have some selective advantage at the level of each
microbial species within the community; eventually, most of the
members of the community will loss the genes coding for the
function, until the production of public goods is just sufficient to
support the community. This is not necessarily in contrast with
the previous hypothesized fitness advantage for cross-feeders
communities, since the loss of redundant functions may also
increase the fitness of the system as a whole; the minimization
of the total protein amounts might be a good approximation
of the final state of a BQH-like dynamics of gene losses, where
“intermediate goods” are available to all community members.

Application to the Design of Synthetic
Communities
In perspective, understanding the evolutionary and mechanistic
properties of natural microbial communities might allow the
design of synthetic ones of potential industrial interest (Hosoda
and Yomo, 2011; Großkopf and Soyer, 2014). For instance,
the common laboratory bacteria E. coli have been used to
study artificial communities (Hosoda et al., 2011; Mee et al.,
2014; Pande et al., 2014). Interestingly, synthetic communities
of cross-feeders based on E. coli mutant strains (with both
over-producers and auxotrophs) were found to grow efficiently,
even faster than the growth of the wild-type strain (Pande
et al., 2014; Germerodt et al., 2016). Our model can be
extended to these microbial communities by including the cost
of protein synthesis in a genome-scale metabolic network, which
has been recently been done in the context of constrained-
based modeling for E. coli (Mori et al., 2016). However, the
inclusion of allosteric regulation and diffusion still present some
challenges (Tepper et al., 2013; MacHado et al., 2015). This
approach may eventually lead to automated design of microbial
communities, which would be of extreme interest for industrial
applications.
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