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Sulfate reduction is the predominant anaerobic microbial process of organic matter

mineralization in marine sediments, with recent studies revealing that sulfate reduction

not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic

sediments at very low background concentrations of sulfate. Using samples retrieved

off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP)

Expedition 337, we measured potential sulfate reduction rates by slurry incubations with
35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75

meters below the seafloor. Potential sulfate reduction rates were generally extremely low

(mostly below 0.1 pmol cm−3 d−1) but showed elevated values (up to 1.8 pmol cm−3 d−1)

in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the

coal-bearing horizons coincided with this local increase in potential sulfate reduction

rates. This paired enzymatic response suggests that hydrogen is a potentially important

electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no

stimulation of sulfate reduction rates was observed in treatments where methane was

added as an electron donor. In the deep coalbeds, small amounts of sulfate might be

provided by a cryptic sulfur cycle. The isotopically very heavy pyrites ( 34δ S = +43h)

found in this horizon is consistent with its formation via microbial sulfate reduction that

has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over

geologic time scales. Although our results do not represent in-situ activity, and the

sulfate reducers might only have persisted in a dormant, spore-like state, our findings

show that organisms capable of sulfate reduction have survived in deep methanogenic

sediments over more than 20Ma. This highlights the ability of sulfate-reducers to persist

over geological timespans even in sulfate-depleted environments. Our study moreover

represents the deepest evidence of a potential for sulfate reduction in marine sediments

to date.
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INTRODUCTION

Sulfate reduction is a globally important microbial process in
anoxic marine sediments (Canfield, 1991; Jørgensen and Kasten,
2006; Bowles et al., 2014). It is an important pathway for
carbon recycling in the seabed and represents the predominant
terminal process of carbon remineralization in sulfur-richmarine
shelf sediments (Jørgensen, 1982). From the overlaying seawater,
sulfate diffuses downwards into the sediments where it can serve
as an electron acceptor for microbial sulfate reduction. Diffusion
and microbial turnover result in a concentration gradient from
∼28mmol L−1 at the sediment surface down to a few µmol
L−1, which determines the bottom of the sulfate zone (Froelich
et al., 1979; Berner, 1981; Jørgensen and Kasten, 2006). The
sulfate methane transition zone (SMTZ) marks the end of the
sulfate zone and the onset of the methane zone, where methane is
diffusing upwards from deeper sediments in which methanogens
predominate (Iversen and Jørgensen, 1985). At the SMTZ,
methane is oxidized by methane-oxidizing sulfate-reducing
microorganisms (Barnes and Goldberg, 1976; Treude et al., 2005;
Caldwell et al., 2008). In the sulfate reduction zone, sulfate-
reducing microorganisms typically outcompete methanogens
for shared energy substrates, such as H2 and acetate, by
bringing the concentrations of these compounds to such low
levels that methanogenesis is not thermodynamically feasible
(Hoehler et al., 1998, 2001). Nonetheless, small populations
of methanogens are ubiquitous in sulfate-reducing sediment,
and typically consist of methanogens that are capable of
metabolizing “non-competitive substrates,” i.e., C1 compounds,
such as methanol, methylamines, and methyl sulfides, which are
not utilized by most sulfate reducers (Oremland and Polcin,
1982; Orsi et al., 2013; Watkins et al., 2014). Similarly, in recent
studies, sulfate reduction was also detected in methane zones,
operating at low background concentrations of sulfate (Leloup
et al., 2006; Holmkvist et al., 2011; Treude et al., 2014; Brunner
et al., 2016; Orsi et al., 2016). This shows that although there
is a general zonation of predominant microbial processes in
the sediment column determined by pore water chemistry and
thermodynamics, this zonation is not absolute and exceptions are
common.

When substrate concentrations and concomitantly the
available energy for the microbial activity decrease, microbes
slow down their metabolism, and biomass turnover to generation
times of several 100 years (Lomstein et al., 2012; Hoehler
and Jørgensen, 2013). However, slow turnover rates and long
generation times also reduce the speed of necessary cellular
maintenance processes, such as DNA and protein repair (Johnson
et al., 2007; Morita et al., 2010; Lever et al., 2015). Increasing
burial depth does not only lead to exhaustion of energy-
rich substrates but also leads to increasing damage rates as
sediment temperature increases (Lever et al., 2015). Recently
it was discovered that, despite the slow metabolic rates in the
deep biosphere, the expression of DNA repair genes increases
with sediments depth (Orsi et al., 2013), highlighting the
increased importance of damage repair for microorganisms in
deeply buried sediments. Consequently, there is a balance of
available substrates providing the metabolic energy for necessary

maintenance of basic cell functions and environmentally induced
damage that marks the boundary between life and death. A
potential strategy for microbial life to cope with periods of
starvation is the formation of endospores (Schrenk et al., 2010;
Lomstein et al., 2012). In this dormant stage of life, the cell
has formed a metabolically inactive endospore that will only
germinate when conditions become more supportive of growth.
However, it is questionable if such a strategy helps to increase
survival as damage to the cell will continue to occur and nutrient
supply is greatly limited in the deep biosphere. Nevertheless,
endospores might persist over long timespans in nutrient limited
sedimentary environments.

The deeply buried coalbeds off Shimokita explored during
the Integrated Ocean Drilling Program (IODP) Expedition
337 represent a very unique environment to investigate the
boundaries ofmicrobial life in deep subsurface sediments. Several
layers of thermally immature lignites were buried sub-adjacent
to marine sediments and contain energy-rich potential substrates
that may create oases of life in the deep subseafloor (Fry et al.,
2009; Glombitza et al., 2009b). Microbial life discovered in the
Shimokita coalbeds consists mainly of persisters of microbes that
initially inhabited the ancient forest soil and that have survived
more than 20Ma of burial (Inagaki et al., 2015). Cell numbers
are extremely low in these deep sediments (1–10 cells cm−3)
but are elevated up to ∼1000 cells cm−3 in the coal bearing
horizons. The increased temperature of >45◦C most likely
causes difficulties for microbial survival as DNA depurination
and amino acid racemization reactions increase dramatically
at these temperatures (Inagaki et al., 2015; Lever et al., 2015).
The increased abundance of potential substrates in the organic
matter-rich lithologies might, however, provide a large energy
reservoir to sustain microbial life operating at its limits. Little is
known about the variety of in-situmetabolic processes occurring
in these sediments. Based on high concentrations of methane
with an isotopic signature that indicates a biogenic origin,
methanogenesis is an important metabolic process, however, the
potentially huge availability and variety of electron donors might
also enable other biotic processes. In this study, we investigated
sulfate reduction by measurements of potential sulfate reduction
rates (pSRR) in the Shimokita coalbeds using the radio-tracer
(35SO2−

4 ) incubation technique (Jørgensen, 1978; Røy et al.,
2014). The aim of this study was to reveal whether sulfate-
reducing microorganisms were able to persist in the deeply
buried, sulfate-depleted sediments over several millions of years
of burial. In this context, we discuss the availability of potential
electron donors (volatile fatty acids, methane, hydrogen), as well
as the electron acceptor sulfate using the concentrations and
isotopic composition of solid phase sulfur fractions, in particular
of pyrite, in these deep coal-bearing sediments.

MATERIALS AND METHODS

Study Area and Sample Material
IODP Site C0020
IODP Site C0020 is located ca. 80 km west off the coast of the
Shimokita Peninsula, Japan (41◦10.5983′N, 28 142◦12.0328′E) at
a water depth of 1180m. The study site is located in a forarc
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basin, the Hidaka Trough, formed by the subduction of the
Pacific plate under the Okhotsk plate (Maruyama et al., 1997).
The Hidaka Trough extends between the Islands Hokkaido and
Honshu and southeastwards to the Japan Trench (Figure 1).
In this area, Cenozoic sedimentary and volcanic deposits
overlie Triassic to Early Cretaceous rocks and granites (Inagaki
et al., 2012, 2016). Coal-bearing horizons were confirmed
by natural gas exploration drilling at the MITI Sanriku-
oki site located ∼50 km south of Site C0020 (Osawa et al.,
2002).

During the Chikyu Shakedown Cruise CK06-06 in 2006,
a riser-pilot hole was drilled down to 647 meters below
seafloor (mbsf) and casing was installed up to 511 mbsf
(Aioke, 2007). During this cruise, 365m of sediment cores
were recovered by Chikyu’s non-riser drilling, comprising
diatomaceous silty clays that were intercalated with sand
and tephra layers. The Site (JAMSTEC C9001) was later
renamed to C0020 for the IODP drilling operation. Seismic
profiles around Site C0020 suggested the presence of methane
hydrates in sediments down to ∼360 mbsf and a strong

flux of free gas from deeper reservoirs (Inagaki et al.,
2012).

IODP Expedition 337 (July–September 2012) reentered the
hole and extended it to a final depth of 2466 mbsf and
thereby pioneered riser-drilling technology in the deep-biosphere
research through scientific ocean drilling (Inagaki et al., 2013,
2016). The bottom core from Hole C0020A is currently the
deepest sample in the history of scientific ocean drilling,
extending the previous depth record (ODP Leg 148, hole
504B, Alt et al., 1993) by 355m. During Expedition 337, four
lithostratigraphic units were defined on the basis of cuttings,
cores, X-ray CT scans of the cores, and wireline logging
data (Inagaki et al., 2012; Gross et al., 2015). Unit I (647–
1256.5 mbsf) consist of primarily diatom-bearing silty clay of
Pliocene age and results from sedimentation in an offshore
marine environment in a cool-water continental shelf succession
with elevated marine productivity. Unit II (1256.5–1826.4mbsf)
consists of shales with several intervals of siltstone and sandstone.
The sediments are of early to middle Miocene age and were
deposited mainly in a shallow marine environment, whereas

FIGURE 1 | Bathymetric map of the Hidaka Trough, bordered by the Japanese islands Honshu and Hokkaido and the Japan Trench, including the

location of the IODP Expedition 337 Site C0020 Hole A (C0020A) and several previous drill holes in the area. The insert shows the location of the plate

boundaries around the Japanese islands and the exact location of the insert map. The maps are modified from Gross et al. (2015) with permission of the authors.
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the upper part of this unit was deposited in deeper water of
a shelf area. Unit III (1826.5–2046.5mbsf) contains coarse- to
fine-grained clastic deposits with 13 imbedded lignite layers.
Mostly, these seams are about 1m thick, except for two seams
with a thickness of 3.5 and 7.3 m. The thermal maturity of
the lignites is 0.37–0.43% vitrinite reflectance (R0; Gross et al.,
2015). The sediments in Unit III were deposited during early
to middle Miocene in a near-shore environment with tidal flats
and channels and wetlands (back marshes and swamps). Unit
IV (2046.5–2466mbsf) consist of shales, siltstones, sandstones,
and a single small, ∼1m thick lignite layer at the base with
a maturity of 0.47% R0. The pollen flora suggests a maximum
age of late Oligocene for the base of Unit IV (Inagaki et al.,
2012).

Samples for Potential Sulfate Reduction Rate

Measurements and Hydrogenase Enzyme Activity in

the Deep Sediment Cores (IODP Expedition 337)
Samples for pSRR and hydrogenase enzyme activity
measurements were taken from whole round core (WRC)
pieces of ∼5–10 cm length taken from the core section
immediately after retrieval on board the D/V Chikyu and
after a quick CT scan of the core sections. The CT images
were used to identify undisturbed core intervals where no
fractures were found. In such core intervals, contamination
by drilling fluid was expected to be only minor. A total of
27WRC samples were collected between 1276.75 and 2456.72
mbsf (Units II–IV), comprising different lithologies including
fine sands, sandstones, siltstones, silty clays, shales, and lignites
(Table 1). The WRC pieces were vacuum sealed in gas-tight
foil bags (ESCAL R©) after flushing with N2 and stored at 4◦C
until further treatment usually within 1–5 h. For sub-sampling
the sealed WRC pieces were transferred into an anoxic glove
box. The outer centimeter of the core was removed with a
sterile spatula to remove layers where drilling fluid might
have penetrated in. The cleaned WRC was cracked into pieces
and powdered in a sterile titanium mortar if necessary (i.e.,
for consolidated or hard core material) and ∼5 cm3 of the
powder was filled in a baked and pre-weighed 10mL headspace
vial and sealed with a rubber stopper and crimp cap. Four
sub-samples were prepared from each WRC. The samples were
immediately used for the incubation experiments to measure
pSRR.

Additionally, a slice from each cleaned WRC (∼20 cm3 intact
core material) was double-packed in gas-tight plastic foil bags
(ESCAL R©, Mitsubishi Gas Chemical Co. Inc., Tokyo), flushed 3
times with N2, sealed under vacuum and stored frozen at−80◦C.
The hydrogenase enzyme essay only measures the activity of
present, intact enzymes. Thus, in contrast to microbial activity
measurements, it does not require metabolically active cells.
However, immediate deep-freezing is important to preserve the
enzymes in the sediment and prevent activity loss by oxidation
(see Adhikari et al., 2016 for details). These samples were
shipped deep-frozen to the home laboratory for shore-based
hydrogenase enzyme activity measurements (Supplementary
Table 2).

Samples for Potential Sulfate Reduction Rate

Measurements in the Upper 350mbsf (CK06-06, D/V

Chikyu Shakedown Cruise)
All sediment samples of the C9001 Hole C core were sub-
sampled onboard D/V Chikyu during the Shakedown Cruise
CK06-06 in 2006. 5 cm3 of sediment were taken from the center
of the drill cores by a tip-cut sterilized syringe in lamina-flow
clean bench, immediately sealed with butyl rubber cap, and
stored in an anaerobic chamber with an AnaeroPack (Mitsubishi
Gas Chemical Co. Inc.) oxygen-removal reagent filled with
nitrogen at 4◦C. The sample preparation was performed in the
microbiology laboratory onboard the Chikyu.

Samples for Analysis of Sediment Sulfur Fraction and

Isotopic Composition
Sediment samples from nearly all cores covering the three
lithological units were analyzed for reduced sulfide species
(Supplementary Table 2). A total of 48 sample splits were
collected from WRCs designated for microbiology analysis
(Inagaki et al., 2013). The splits were taken in an anoxic glove
box and sealed in gas-tight bags under N2 atmosphere after
contamination screening based on measured concentrations
of perfluoromethylcyclohexane, a perfluorocarbon compound,
which had been added to drilling fluid as a chemical tracer
(Inagaki et al., 2013). The samples were stored (and shipped)
frozen until further processing for geochemical analysis.

Methods
Potential Sulfate Reduction Rates in the Deep

Sediments
pSRRwere measured by incubation of 35S labeled sulfate tracer in
sediment slurries (Jørgensen, 1978). Slurries were prepared inside
an anoxic glove box by adding 5 mL of sterile, anoxic, artificial
seawater medium to each sample. The medium was prepared
from 25 g L−1 NaCl, 5 g L−1 MgCl2 × 6 H2O, 0.5 g L−1 KCl,
0.2 g L−1 KH2PO4, 0.25 g L

−1 NH4Cl, 0.15 g L
−1 CaCl2 × 2 H2O,

2.5 g NaHCO3, and 1 mL of a 10 g L−1 solution of Resazurin as
oxygen indicator. The pH was adjusted to 7.5 by adding NaOH
solution (1mol L−1) and oxygen was removed by the addition
of a few drops of NaS2 solution (10 g L−1) until the indicator
became colorless. Additionally, the medium was amended with 1
mmol L−1 Na2SO4. To each sample, 30 µL of carrier-free sulfate
tracer (3.7 MBq) were added with Hamilton R© gas tight syringes
through the septum. In 2 of the 4 replicates 10mL of pure CH4

was added via a syringe to the headspace, which increased the
pressure inside the vial to ∼2 bar. The samples were shaken and
incubated for 10 days at 3 different temperatures to approximate
in-situ temperatures. Samples between 1276.75 and 1500 mbsf
were incubated at 25◦C, samples between 1500 and 1980 mbsf
were incubated at 35◦C and samples between 1980 and 2456.75
mbsf were incubated at 45◦C. To terminate the incubations,
3mL of a 20% (w/v) zinc acetate solution were injected through
the septum and the vial was shaken. Subsequently, the vial was
opened and the content was transferred into a 50ml Falcon R©

tube containing 7mL 20% (w/v) zinc acetate solution and frozen
at−20◦C until further analysis in the home laboratory.
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TABLE 1 | Characteristics (core and section numbers, depth, lithology, lithological unit) and mean potential sulfate reduction rate (pSRR) of all replicates

including relative standard deviation (RSD), indicated exclusion of samples with RSD>50% and resulting mean pSRR and RSD for conservatively

selected sample replicates.

Core-section Depth [mbsf] Sample lithology Unit All replicates Excluded samples Conservative replicates

Mean pSRR RSD Mean pSRR RSD

[pmol cm−3 d−1] [%] [pmol cm−3 d−1] [%]

1R-1 1276.75 Fine sand II 0.68 110 All replicates – –

2R-2 1287.87 Sandstone II 110 158 All replicates – –

3R-2 1371.94 Siltstone II 1.52 171 All replicates – –

6R-1 1495.05 Sandstone II 0.08 121 All replicates – –

8L-5 1607.26 Shale II 0.02 65 All replicates – –

9R-1 1625.56 Sandstone II 0.03 42 No 0.03 42

10R-1 1630.16 Siltstone II 0.05 87 1 outlier 0.03 21

11R-1 1738.80 Sandstone II 0.06 40 No 0.06 40

13R-4 1760.49 Siltstone II 0.02 39 No 0.02 39

14R-2 1822.41 Siltstone II 0.04 48 No 0.04 48

15R-3 1921.98 Lignite III 0.04 49 No 0.04 49

15R-6 1924.13 Shale III 0.07 41 No 0.07 41

16R-3 1930.42 Fine sand III 1.31 80 All replicates – –

18R-1 1945.71 Lignite III 1.15 64 1 outlier 0.81 42

19R-1 1950.04 Sandstone III 1.47 157 1 outlier 0.32 49

20R-5 1965.11 Shale III 1.75 19 No 1.75 19

23R-3 1984.25 Siltstone III 1.17 67 1 outlier 0.79 36

25R-2 1997.54 Lignite III 0.56 42 No 0.56 42

25R-3 1998.75 Silty clay III 1.10 45 No 1.10 45

26R-4 2113.51 Shale IV 1.02 40 No 1.02 40

27R-1 2200.91 Shale IV 0.64 37 No 0.64 37

28R-4 2304.83 Siltstone IV 0.36 27 No 0.36 27

28R-5 2305.34 Siltstone IV 0.31 12 No 0.31 12

29R-5 2405.52 Siltstone IV 0.23 36 No 0.23 36

30R-2 2447.61 Lignite IV 0.35 13 No 0.35 13

30R-3 2449.43 Shale IV 0.12 52 1 outlier 0.10 44

32R-1 2456.72 Shale IV 0.18 44 No 0.18 44

To calculate the sulfate reduction rates (SRR), the total
reduced inorganic sulfur (TRIS) was extracted from the sediment
by a cold chromium distillation procedure (Kallmeyer et al.,
2004) following the modifications and recommendations made
by Røy et al. (2014). Na2S (200 µL, 0.5mol L−1) was added to the
reaction flask as a sulfide carrier. At the end of the distillation, the
distillate recovered in the zinc acetate trap was transferred into a
20 ml scintillation vial with 15mL scintillation liquid (Ecoscint
XR, National diagnostics, Atlanta, GA, USA). The radioactivity
of the total sulfur fraction (aTOT) and in the reduced sulfur
fraction (aTRIS) was measured in a liquid scintillation counter
(Packard Tri-Carb 2900 TR liquid scintillation analyzer). Samples
were counted for 30min. Blank samples, which were transferred
to zinc acetate (20% w/v) before tracer injection, were used to
determine the background. SRR were calculated according to
Kallmeyer et al. (2004) (Equation 1):

SRR =
[

SO2−
4

]

× 8 ×
aTRIS

aTOT
×

1

t
× 1.06 (1)

where [SO2−
4 ] is the sulfate concentration (1 mmol L−1), 8 is the

porosity, aTRIS is the radioactivity of the reduced sulfur fraction,
aTOT is the total sample radioactivity, t is the incubation time and
1.06 is the correction factor for the estimated microbial isotopic
fractionation of sulfur during sulfate reduction (Jørgensen and
Fenchel, 1974). Porosity data were measured onboard (Inagaki
et al., 2015; Tanikawa et al., 2016).Measurements of in-situ sulfate
concentrations were disturbed by contamination of pore water
samples by drilling fluid (Inagaki et al., 2013). Based on the
porewater profile at shallow depths (Tomaru et al., 2009) and the
abundant methane (Inagaki et al., 2015) we assume that sulfate in
the deep sediments is depleted or only present in trace amounts.

Potential Sulfate Reduction Rates in Shallow (<350

mbsf) Sediments
pSRR were determined by incubations of sediment slurries with
35S-labeled sulfate, similar as described above. In an anaerobic
glove box, 3 cm3 of a 5 cm3 mini-core sample stored at 4◦C
in anaerobic chamber were transferred into a 15ml test tube
(1 cm3 at both ends was removed) and 10ml of sterilized anoxic
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artificial seawater containing 10mmol L−1 sulfate was added.
The test tubes were capped with a rubber stopper, and 500 kBq
of 35S-labeled sulfate was injected. After 100 days of incubation
at 5◦C, the reaction was stopped by adding 20ml of zinc
acetate (20% w/v). Reduced sulfur compounds were distillated
by following the cold chromium distillation method (Kallmeyer
et al., 2004). After the distillation, 3ml of the solution in the zinc
acetate trap containing the TRIS fraction was mixed with 12ml
Hionic-Fluor liquid scintillation cocktail (PerkinElmer) and the
radio-activities of the total reduced sulfur fraction (aTRIS) and the
total sulfur fraction (aTOT) were determined with a Tri-CarbTM

2900TR Liquid Scintillation Analyzer (PerkinElmer). pSRR were
calculated as described above.

Solid Phase Sulfur Species and Isotopic Composition
The samples were sequentially analyzed using ∼2–3 g frozen wet
sediment. For determination of acid volatile sulfide (AVS) and
chromium reducible sulfur (CRS) the samples were treated with
a two-step acid Cr(II) method (Canfield et al., 1986; Fossing and
Jørgensen, 1989) under anoxic conditions. The released sulfide
was trapped in a 5% (w/v) zinc acetate solution for each step
(AVS and CRS). Aliquots of the sulfide precipitate as ZnS were
analyzed upon dilution by the methylene blue method (Cline,
1969). The sulfide concentrations are reported on a dry weight
basis adjusting for sample wet weight.

For sulfur isotope (δ34S) analysis, the trap-solutions were
centrifuged, the supernatant decanted, and the precipitated
rinsed with oxygen-free double-ionized water. ZnS precipitates
were converted to Ag2S by treatment with 3% (w/v) AgNO3 and
subsequent washing with NH4OH to remove colloidal silver. The
cleaned Ag2S precipitate was dried at <40◦C. All sulfur isotope
samples were weight into tin capsules and V2O5 was added
to ensure complete combustion. The samples were analyzed
at Indiana University-Purdue University Indianapolis using a
Costech Elemental Analyzer connected under continuous flow to
a Thermo Delta V Plus stable isotope ratio mass spectrometer
(EA-IRMS). All sulfur isotope measurements were calibrated
with reference materials IAEA S1 (δ34S = −0.30h), IAEA S2
(δ34S = −22.65h), and IAEA S3 (δ34S = −32.50h) and the
precision (1σ) based on repeated measurement of each standard
(n= 5) was better than 0.2h.

Sample δ34S values were reported relative to Vienna Canyon
Diabolo Troilite (VCDT) according to Equation (2):

δ34 S =

[

(34S/32S)sample

(34S/32S)VCDT
− 1

]

× 1000 (2)

Hydrogen Utilization Potential by Hydrogenase

Enzymes in the Deep Sediments
A tritium–based hydrogenase enzyme assay was used to measure
potential oxidation rates of hydrogen (Soffientino et al., 2009;
Adhikari et al., 2016) at the University of Bremen. In short,
three replicates and a killed control were prepared from frozen
sediment for the incubation experiment using anoxic autoclaved
synthetic seawater medium. The slurries were incubated with
tritium (20% H2/N2) at room temperature (∼25◦C) under

continuous shaking (250 rpm). Five subsamples were collected
after 0.5, 1, 2, 3, and 4 h of incubation. Unreacted tritium
was removed by flushing with N2 and the suspended particles
were separated by centrifugation. 100 µL of the supernatant
was mixed with 4 mL liquid scintillation fluid (Perkin Elmer

Ultima Gold
TM

LLT) and the radioactivity was measured in a
liquid scintillation analyzer (Perkin Elmer TriCarb R© TR2810).
The increase in radioactivity over time was used as a measure of
the potential hydrogenase activity (see (Adhikari et al., 2016) for
details).

X-Ray Computer Tomography
X-ray computer tomography (CT) images were generated for
each core section using a GE Yokogawa Medical Systems
LightSpeed Ultra 16 (GE Healthcare, 2006) on board the Chikyu
during Expedition 337 (Inagaki et al., 2013). Analytical standards
included air (CT number = −1000), water (CT number = 0),
and aluminum (2477 < CT number < 2487) in an acrylic core
mock-up. For detailed description see Inagaki et al. (2013).

RESULTS

Potential Sulfate Reduction Rates in the
Shallow (<350mbsf) Sediments
pSRR measured during the Chikyu Shakedown Cruise CK06-06
in 2006 are shown in Figures 2A,B. Rates measured in slurries
with the amendment of methane to the headspace are shown
in red, incubations without methane amendment in blue. pSRR
decreased with depth from ∼5 pmol cm−3 d−1 in the upper 1–2
mbsf down to 0.7 pmol cm−3 d−1 in the deepest samples down to
346.28 mbsf. Samples incubated with the amendment of methane
to the headspace showed an intermittent increase in pSRR
between 4 and 12 mbsf with a maximum of 1380 pmol cm−3 d−1

at 8.1 mbsf (Figure 2B). This coincided with the depletion of
porewater sulfate (Tomaru et al., 2009) and the onset of methane
in the sediments (Kobayashi et al., 2008), and indicates increased
rates of anaerobic oxidation of methane (AOM) in the SMTZ.
Below 12mbsf, the measured pSRR were indistinguishable
in incubations with and without the amendment of
methane.

Potential Sulfate Reduction Rates in the
Deep Sediments
pSRR could be determined in nearly all sample replicates from
the cores between 1276.75 and 2456.72 mbsf (Table 1). There was
no evident difference between incubations with (red symbols)
and without (blue symbols) the amendment of methane to the
headspace of the incubation vials (Figures 2A,C). Thus, we can
consider all incubation slurries of each WRC as replicates. The
mean values of all four replicates of the WRCs range between
0.02 pmol cm−3 d−1 and 1.75 pmol cm−3 d−1 with exception
of core 2R-2, which was two orders of magnitude higher. For
some samples, the relative standard deviation (RSD) of the four
replicates was extremely high, e.g., 171 and 158% for cores
3R-2 and 2R-2, respectively (Table 1), which indicates broad
differences between replicates. However, the relative standard
deviation of the method is usually around 10–20% (Røy et al.,
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FIGURE 2 | Potential sulfate reduction rates (pSRR) measured in incubations of sediment slurries at IODP Site C0020. Incubations with methane amended

to the headspace are shown in red, incubations without methane amendment to the headspace are shown in blue. (A) Mean pSRR incubated with 35S labeled

sulfate. (B) Mean pSRR in the upper 350 mbsf, incubated during CK06-06 (note the log depth scale). The green zone highlights the sulfate methane transition zone

(SMTZ; (Kobayashi et al., 2008; Tomaru et al., 2009)). (C) pSRR of individual sample replicates from incubations during IODP Expedition 337 (note only pSRR values

below 3pmol cm−3 d−1 are plotted). (D) Mean pSRR of all replicates (with and without methane amendment) from incubations during the IODP Expedition 337 after

conservative exclusion of potentially contaminated samples (see text). The error bars represent ± one standard deviation.

2014) whereas in some low activity environments deviations
up to ∼50% were reported (Nickel et al., 2012). In particular,
outliers with very high values were measured in cores 2R-2
(12 and 309 pmol cm−3 d−1) and 3R-2 (5 pmol cm−3 d−1),
(Figure 2A). However, at the spatial scale (∼20 cm3 of inner
core material) of which the individual replicates were sampled,
a rather homogeneous distribution of microorganisms can be
expected if the sample lithology also appeared homogenous.
Thus, the individual technical replicates should result in similar
rate measurements. A broad scattering within the four replicates
(Figure 2C) and especially outliers with unusual high rate
numbers could therefore indicate potential contamination (e.g.,
by intrusion of drilling fluid into micro-fractures). To carefully
exclude such potentially contaminated samples, we made a
conservative selection of samples on the basis of the RSD of
the four replicates. We excluded the upper outlier of the four
replicates if the RSDwas>50%. For 5 cores (10R-1, 18R-1, 19R-1,
23R-3, and 30R-3), this procedure resulted in new mean values
of the remaining three technical replicates with RSD meeting
the criterion. For six other cores (1R-1, 2R-2, 3R-2, 6R-1, 8L.5,
and 16R-3) this procedure did not lead to mean values that
meet the criterion. These cores were fully excluded from the
conservative selection of samples (Table 1). The mean values of
the pSRR from the conservatively selected samples contained
replicates with an RSD <50% only (Figure 2C, Table 1). In
this data-set, the scale of variability observed between the
lithological units was far greater than the internal variability
observed for each depth. In cores from Unit II, pSRR values are
consistently low, between 0.02 pmol cm−3 d−1 and 0.07 pmol
cm−3 d−1. In the Unit III containing the embedded lignite layers,
the pSRR were elevated by one to two orders of magnitude,
with values up to 1.75 pmol cm−3 d−1. The highest rate was
measured in core 20R-5 (1.75 pmol cm−3 d−1) representing
a shale while the shale sample from core 15R-6 showed only
0.07 pmol cm−3 d−1 (Table 1). Similar, pSRR in the lignite
sample of core 18R-1 (1.15 pmol cm−3 d−1) was higher than in

the lignite layer ∼50m deeper in core 25R-2 (0.56 pmol cm−3

d−1). This shows that high rates are not necessarily tied to
a specific lithology and conclusions about a certain lithology
representing a “hot-spot” for sulfate reducers cannot be drawn.
This might also be concealed by our relatively low sampling
resolution, as e.g., heterogeneity in cell distribution even over
a small scale of a few mm were recently reported in lacustrine
sediments (Kallmeyer et al., 2015). Nevertheless, the overall
elevated pSRR in Unit III are clearly visible in Figure 2. In
Unit IV, the pSRRs decreased continuously with depth from
1.02 pmol cm−3 d−1 to 0.12 pmol cm−3 d−1 but in the deepest
sample (32R-1, 2456.72mbsf) they were still approximately
one order of magnitude higher than in core samples from
Unit II.

Solid Phase Sulfur Fractions and Isotopic
Composition in the Coal Beds
The amount of the acid-volatile sulfide (AVS) fraction was very
low in all investigated samples, with the majority of samples
below 0.6 ppm. In one sample from Unit II (9R-4, 1628.45
mbsf) and in three samples from Unit III (16R-2, 1929.6
mbsf; 17R-1, 1936.53mbsf and 19R-5, 1954.53 mbsf), the values
were slightly elevated, between 1.35 and 2.25 ppm (Figure 3A,
Supplementary Table 2). The amount of AVS, however, was too
low for stable sulfur isotope analysis. The sediments display
a broad range (3.7–10753 ppm) of the chromium-reducible
sulfur (CRS), which generally decreases with increasing sediment
depth (Figure 3B, Supplementary Table 2). However, samples
from Unit III had consistently low values (<2681 ppm) and
comprised the samples with the lowermost CRS amounts (3.7–
198 ppm, cores 23R, 24R and 25R). The δ34S of CRS varied over a
broad range from −33.1 to +45.6h (Figure 3C, Supplementary
Table 2). The lowest δ34S values were found in Unit II with a
median of −9.8h. The coal bearing Unit III contained CRS
with higher δ34S (median: +26.9h) and included the samples
with the most pronounced 34S-enrichment, in cores 15R-5
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FIGURE 3 | Concentrations of solid phase sulfur fractions. (A) AVS (acid-volatile sulfide) fraction, (B) CRS (chromium-reducible sulfur) fraction. (C) Isotopic

composition (δ34S) of the CRS fraction.

(1923.74mbsf, +45.6h), 20R-7 (1966.38 mbsf, +43.3h), and
21R-4 (1971.78mbsf, +40.5h), these samples mainly comprised
coals and coaly shales. For some of the coal samples (i.e., in cores
22R, 23R, and 24R) the CRS content was too low to determine
the isotopic composition. In Unit IV, the δ34S values in the upper
sediment layers (2100–2200 mbsf) have significantly lower δ34S
values compared to samples deeper in the unit (2300–2448 mbsf;
Figure 3C).

Potential for Hydrogen Utilization in the
Deep Sediments
The potential hydrogen oxidation rates (Figure 4A) could be
measured in all cores with exception of 16R-3, 25R-3, and 28R-5.
The measured values ranged between 13 nmol H2 g−1 d−1

(11R-1) and 5200 nmol H2 g−1 d−1 (30R-2; Supplementary
Table 1). As a result of the diversity of hydrogenase enzymes with
different activities utilized by various anaerobic microorganisms,
the measured rates of hydrogen oxidation cannot be used to infer
in-situ rates of metabolic processes in the sediments (Adhikari
et al., 2016). However, they are suggested to indicate the presence
of metabolically active cells utilizing hydrogen in sediments
(Soffientino et al., 2009). Recently it was reported that sulfate
reducers actively express hydrogenases in subseafloor sediments
(Orsi et al., 2016). Because the samples used for the tritium assay
were not taken from the exact same splits as the samples for pSRR
measurements, we did not exclude measured hydrogen oxidation
rates on the basis of excluded pSRR replicates. However, the
samples from the WRCs that were excluded in pSRR data are
indicated by gray symbols (Figure 4A). The measured rates in
Unit II are all less than 2000 nmol H2 g

−1 d−1, with mean values
around 600 nmol H2 g

−1 d−1. Highest values were found in the
coal bearing Unit III in samples 15R-6 (1924.13 msbf, max. rate:
3579 nmol H2 g

−1 d−1) and 19R-1 (1950.04, max rate: 4538 nmol
H2 g

−1 d−1), as well as in the WRC sample adjacent to the deep
lignite layer (ca. 2447 mbsf) in sample 30R-3 (2449.43 mbsf, max.
rate: 5201 nmol H2 g

−1 d−1) but not in the lignite itself.

DISCUSSION

Potential Sulfate Reduction Rates in the
Deep Coalbeds
The highest rates of sulfate reduction are typically found in
near-surface sediments (the upper 10’s of centimeters up to a
meter sediment depth) and decrease with depth in an exponential
manner (Jørgensen, 1977, 1982; Jørgensen and Parkes, 2010).
This general pattern was also observed in the near-surface
sediments at Site C0020 retrieved during the shakedown cruise
CK 06-06 (Figure 2A). The significant increase of pSRR in
incubations with amended methane between 4 and 12 mbsf
indicates the occurrence of AOM in the SMTZ (Barnes and
Goldberg, 1976; Iversen and Jørgensen, 1985; Caldwell et al.,
2008). However, the detection of pSRR in the deep samples
between 1500 and 2456.75 mbsf was surprising because pore
water sulfate was likely depleted already in much shallower and
younger sediments similar as observed in the shallow cores
retrieved during the CK 06-06 cruise (Tomaru et al., 2009).
Persisting sulfate reducers in the deep sediments off Shimokita
thus would have remained metabolically intact over long periods
of starvation at no or only trace amounts of sulfate. However,
our finding shows that the deep sediments host microorganisms
capable of sulfate reduction even after 20–25 million years of
burial.

In addition to nutrient availability in the deep sediments
(which is discussed further in the following sections) resulting
in energetic limits of life in the deep biosphere (Lever et al.,
2015; Jørgensen and Marshall, 2016), the sulfate reducing
microorganisms buried in the deep sediments offshore Shimokita
have to cope with physiological effects of increasing pressure
and temperature. Increasing pressure affects e.g., motility, cell
division, DNA replication, transcription, translation, or certain
enzymatic reactions (Marietou and Bartlett, 2014) and increasing
temperature has recently been shown to increase damage of cell
walls and DNA by protein racemization and DNA depurination
reactions (Lever et al., 2015). In a recent study, sulfate reducers
isolated from deep and hot (∼60◦C, 30 MPa) sediments at the
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FIGURE 4 | (A) Potential hydrogen oxidation rates measured by incubations

with tritium gas (3H2). The error bars represent minimum and maximum values

of the sample replicates, circles represent average values. Gray symbols

represent samples from WRCs that were excluded from the conservative

selected pSRR data. (B) Log of hydrogen concentrations in the sediment pore

water, determined by the extraction method (Inagaki et al., 2015). Yellow areas

represent zones with imbedded lignite layers.

Juan de Fuca Ridge showed adaptation to the increased pressure
and temperature e.g., by exchanged membrane lipid composition
and an increase of their optimum growth temperature (Fichtel
et al., 2015).

The measured potential rates in the deep samples (0.02–1.75
pmol cm−3 d−1) were among the lowest sulfate reduction rates
measured so far (around 0.1 pmol cm−3 d−1; Jørgensen and
Marshall (2016), Parkes et al. (1990), and references therein).
The detectability of such low sulfate reduction rates was a result
of our optimized long incubation times and the high initial
radioactivity (3.7 MBq) incubated in each sample. The highest
potential rate, observed in the Unit III that contained the coal
beds was at the level of the lowest rates measured in the deepest
samples from the CK06-06 cruise at ∼350 mbsf (Figure 2A). It
is important to note that the rates measured in our incubation
experiments are not in-situ rates. It has been demonstrated that
making sediment slurries affects the measured rates and the
results differ from incubations of sub-cores where the original
sediment structure remains undisturbed (Jørgensen, 1978; Meier
et al., 2000). An important factor is also that the sediment slurries
were amended with 1 mmol L−1 sulfate to maintain a sufficient
background concentration of sulfate to avoid immediate turnover
of the carrier-free 35SO2−

4 tracer, which would result in false
positive rates. This background concentration is a significant
difference from the natural conditions in the deep sediments at
Site C0020, where pore water sulfate is assumed to be depleted.
The chosen incubation time (10 days) was rather long and
in combination with the elevated sulfate concentration in the
slurries, it is likely that sulfate-reducers have been stimulated
during incubation. The sulfate-reducers might have been present
only as spores in these sediments and the incubation experiment
might have triggered germination. It has been shown previously
that spores are frequently abundant in marine sediments with
numbers equal to those of vegetative cells (Lomstein et al., 2012).
In fact, spore-like particles were also detected by microscopic

observations in the deep sediment samples (Inagaki et al., 2015).
However, even if the sulfate reducers have only survived in
a dormant, spore-like state, our results indicate the capacity
for microbial sulfate reduction in the very deep sediments and
provide evidence for the deepest occurrence of sulfate reducers
in sediments to date.

Availability of Potential Electron Donors
It is remarkable that the pSRR were elevated in the Unit III where
the coal beds are located. It suggests that a larger number of
sulfate reducers have survived in that particular, organic matter-
rich sediment zone. The most important electron donors for
sulfate reduction in anoxic sediments are organic acids such as
volatile fatty acids (Sørensen et al., 1981; Christensen, 1984; Finke
et al., 2006; Glombitza et al., 2015) and amino acids, which have
been found to be actively cycled in the subsurface (Lomstein et al.,
2012), especially by sulfate reducing bacteria (Parkes et al., 1994;
Orsi et al., 2016). Volatile fatty acids are primary products of
fermentation. As intermediates in the microbial mineralization
of organic carbon in the sediments, their concentrations in the
pore water especially in surface-near sulfate reducing sediments
are usually relatively low, a result of their fast turnover (Sansone
and Martens, 1982; Glombitza et al., 2014, 2015). In sediments
where the turnover is slow or even prevented, volatile fatty acids
can, however, accumulate and are found in higher concentrations
(e.g., Martens, 1990; Wellsbury et al., 1997; Dhillon et al., 2005;
Heuer et al., 2009). Substantial concentrations of volatile fatty
acids have been found in water extracts of organic matter-rich
sediments, in particular from coals and organic matter rich shales
(Bou-Raad et al., 2000; Vieth et al., 2008; Zhu et al., 2015).
Coals contain high amounts of macromolecular organic matter
(Vandenbroucke and Largeau, 2007; Vu et al., 2009). Especially in
low maturity coals, this macromolecular organic matter contains
significant amounts of oxygen bearing functional groups, such as
esters (Glombitza et al., 2009a, 2016) and ethers (Glombitza et al.,
2011). In a previous study we showed that lignites can release
acetate and formate from the macromolecular organic matter
network during ongoing maturation in rates that are sufficient
to sustain deep microbial life (Glombitza et al., 2009b). Such
a constant supply of volatile fatty acids may provide electron
donors for sulfate reduction in the deeply buried coalbeds.

In addition to organic acids, the sediments in Unit III are
characterized by high amounts of methane (Inagaki et al., 2015).
Methane can be oxidized by sulfate reduction in the deep
sediments at Site C0020, in a similar fashion as it was observed
by increased sulfate reduction rates in the SMTZ at 4–12mbsf.
The observation that no difference between incubations with and
without amendment of methane to the headspace was found
during incubations of the deep samples suggests that sulfate
reduction at depth is not coupled to AOM. However, the coal
bearing sediments have excess methane, and combined with the
high adsorption affinity of hydrocarbons (including methane
gas) in the microporous coal matrix (Clarkson and Bustin,
2000; Strapoc et al., 2007), splits from these samples might have
led to methane-saturated incubation slurries in all incubations
containing higher amounts of lignite. In this case, the pSRR from
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the coal-bearing Unit III might indeed reflect methane-driven
sulfate reduction.

Another important electron donor utilized in microbial
sulfate reduction is hydrogen (Lovley and Goodwin, 1988; Lovley
and Chapelle, 1995; Hoehler et al., 1998), which was suggested
to be of increased importance in deep sediments (Adhikari
et al., 2016). Especially in deep methanogenic sediments (Schink,
1997) or in sediments lacking sufficient organic matter (Chapelle
et al., 2002; Nealson et al., 2005) microbial processes were found
to be dominated by hydrogen utilization. Usually hydrogen
concentrations in shallow, relatively active sediments remain
low as a result of the fast turnover rates (Hoehler et al.,
2001). In contrast, at Site C0020 the concentrations of dissolved
hydrogen below 1500 mbsf are relatively high with up to
500 µM (Inagaki et al., 2015; Figure 4B), pointing to very
slow turnover rates and decoupling of hydrogen producing
and consuming processes; the onset of such decoupling starts
already in the shallower subsurface (Lin et al., 2012). As
a result of the high hydrogen concentrations, Gibbs energy
yield of hydrogenotrophic methanogenesis at Site C0020 is
more negative (i.e., ∼−100 kJ mol−1) than previously reported
for deep sediments, and the combined carbon and hydrogen
isotopic compositions of methane support its production by
hydrogenotrophic methanogenesis (Inagaki et al., 2015). Gibbs
energy yield for hydrogenotophic sulfate reduction should be
highly negative as well, even at very low sulfate concentrations.
However, Gibbs energy yield from sulfate reduction cannot be
calculated due to the lack of pore water sulfide and sulfate
concentrations. An indication of hydrogen utilization might be
found in the hydrogen oxidation rates measured by the tritium
assay (Figure 4A). Themeasured hydrogen oxidation rates reflect
the activity of hydrogenases in the sediment (Adhikari et al.,
2016). Hydrogenases form a diverse group of enzymes that are
employed by microorganisms for both, hydrogen production
(e.g., in fermentation) or hydrogen utilization. Thus, the increase
in hydrogen oxidation rates observed in the Unit III might
partly be the result of increased fermentation but at the same
time the rates might indicate increased hydrogen consumption.
The increase in hydrogenase enzyme activity in Unit III is not
reflected by a significant increase in hydrogen concentrations.
This suggests increased turnover of hydrogen in the coal-
bearing unit. The fact that this increase was observed in the
same depth interval as the increase in pSRR might point to
potential hydrogenotrophic sulfate reduction. This is consistent
with the observation that sulfate reducers were found to express
hydrogenases in deeply buried sediments such as the carbon-
monoxide dehydrogenase, as recently reported from the Peru
Margin subseafloor (Orsi et al., 2016).

There are several potential electron donors for sulfate
reduction (volatile fatty acids, amino acids methane, and
hydrogen) that are presumably or evidently available in high
amounts in the deep sediments at Site C0020. They are all
released by biotic and abiotic degradation of organic matter
and their high abundance relates to the high organic matter
concentrations in the coals. Thus, sulfate reduction in the deep
coalbed biosphere is obviously not electron donor limited.

Availability of the Electron Acceptor Sulfate
The availability of the electron acceptor sulfate is most likely the
limiting factor for the occurrence of in-situ activity and presence
of sulfate reducers at depth in Site C0020. Sulfate concentrations
in the pore water obtained from the deeper samples of the
CK06-06 cruise were between 0.1 and 0.3mmol L−1, or below
detection (Tomaru et al., 2009). Thus, the deep sediments drilled
during IODP Expedition 337 are most likely almost sulfate-free
or contain sulfate only in trace amounts. Sulfate concentrations
measured in pore water samples from the deep drill cores
were used as an indicator for a potential contamination of the
pore water sample by seawater-containing drill mud (Inagaki
et al., 2013). This approach was furthermore justified by the
observation that the highest amounts of sulfate in pore water
samples were found in samples, in which a contamination assay
involving perfluorocarbon tracer indicated contamination (Lever
et al., 2006; Inagaki et al., 2013).

Recently, it has been shown that sulfate reducers can persist
also in methane bearing sediments below the SMTZ (Leloup
et al., 2007, 2009) in sediments where trace amount of sulfate
can be generated enabling a reductive sulfur cycling (Brunner
et al., 2016). It was demonstrated that sulfate reduction occurs
at low rates (0.2–1 pmol cm−3 d−1) also in the methane zone
at constantly low background sulfate concentrations below 0.5
mmol L−1 (Holmkvist et al., 2011). It was speculated that the
sulfate reduced in this depth was regenerated in a “cryptic
sulfur cycle” by which the sulfide produced by microbial sulfate
reduction is partly re-oxidized to sulfate in the presence of
deeply buried Fe(III). In the sediments at Site C0020, glauconite
was identified (Inagaki et al., 2013)—a Fe(III) source that can
further be reduced to the final product pyrite via sulfide oxidation
to thiosulfate by Fe(III) and subsequent disproportionation to
sulfide and sulfate (e.g., Canfield and Thamdrup, 1994). The
reduced Fe(II) can then form pyrite in the reaction with sulfide
(Berner, 1970, 1984) whereas the sulfate is available for microbial
reduction. By this process, part of the sulfate might be recycled
and help to drive sulfate reduction in the deep sediments. As
recently reported from Peru Margin sediments, the oxidation
of sulfide via Fe(III) in the sediments may also be mediated by
chemolithoautotrophic sulfur oxidizers (Orsi et al., 2016). It is
interesting that the AVS fraction (e.g., the iron monosulfides)
was at such low concentrations (Figure 3A), because in sulfide
limited and iron rich sediments the metastable monosulfides are
usually more abundant (Kasten et al., 1998). However, the in-situ
sulfate reduction rates in the deep sediments off Shimokita are
probably extremely low, considerably lower than the potential
rates that we have measured in the slurry incubations. Such low
rates might simply not significantly increase the AVS fraction
and the slowly forming FeS may transform into pyrite at a
similar pace. The major sulfur fraction in the sediments was
the CRS fraction comprising mainly the pyrites (Figure 3B). It
is remarkable that CRS concentrations in Unit III seem to be
lower than in the overlaying sediments. This can, however, simply
be a result of the accumulation of the pyrite in large granules
and pyrite veins found in the coalbeds (Figure 5, and the movie
clip showing a CT scan of core 30R-2, https://figshare.com/s/
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FIGURE 5 | Colored x-ray computer tomography pictures of a 34cm long core segment of core 30R-2 showing vertical pyrite veins and pyrite

granules. (A) Vertical picture with indications of the positions of horizontal panels (B–E). (B) Patchy pyrite precipitates, (C) Multiple vertical pyrite veins, (D) Mud-coal

interface with small pyrites, (E) multiple pyrite veins in coal cavities.

6ac50e6f31d5ce0b45f3). The analysis of the CRS fraction in bulk
sediment samples might have captured only the low amounts of
dispersed pyrite.

The distribution of sulfur isotopes revealed highly 34S-
enriched sulfur in the CRS fraction (up to +45.6h). This
points to the formation of CRS in deeper sediments (Zaback
and Pratt, 1992) from the reduction of isotopically enriched
sulfate that had already experienced intense sulfate reduction
in the sediment horizons overlaying the coal beds. In general,
pyrites formed in coals can retain a large variability in δ34S
ranging from approximately −15 to +27h (e.g., Price and
Shieh, 1979). Smith and Batts (1974) described the occurrence
of isotopically enriched pyrite in coalbed that were overlain
by marine sediments and explained this by the reduction of
sulfate that has diffused downwards and was already isotopically
enriched during microbial reduction in the marine sediments.
In sediments from the Black Sea, Jørgensen et al. (2004) showed
that pyrite enriched in 34S (up to +33h) can be formed during
AOM of residual pore water sulfate with high δ34S (+43h).
Additionally, Canfield (2001) showed that the fractionation
between sulfate and sulfide during microbial sulfate reduction
diminishes at low sulfate concentrations. In our study, the
isotopically heavy pyrite with δ34S > +45h in the Shimokita
coalbeds might be explained by continuous sulfate reduction
of an increasingly smaller, increasingly 34S-enriched sulfate
reservoir. Although we cannot determine when exactly the
pyrites in the Shimokita coalbed have been formed it is obvious

that this has continued over long time scales and consequently
also long after burial, as also suggested by the pSRR data.

The findings of sulfate reducers with DNA from ancestral cell
lines in ∼100 Ma old black shales led to the discussion of a
“paleome,” a pool of ancient DNA and/or descendants preserved
in the sediments by living microorganisms buried millions of
years back in time which thus can provide insights into ancient
forms of life (Inagaki et al., 2005). The finding of cells capable of
sulfate reduction more than 20 Ma after burial in the sediments
offshore Shimokita highlights the ability of sulfate reducers to
persist in sediments over geological timespans even in sulfate-
depleted environments. Although our data only capture a few
tens of millions of years, this observation might support the
“paleome” concept.

CONCLUSION

pSRR was detected in the deep sediments at IODP Site C0020
off the Shimokita Peninsula, Japan, down to 2456m below the
ocean floor. The potential rates were extremely low but showed
a significant increase in the coal-bearing horizon. Although
the measured potential rates do not reflect in-situ activity of
sulfate reducers, they show that microorganisms capable of
employing sulfate reduction are still present in the deep coal-
bearing sediments. This represents the deepest persistence of this
type of microorganisms in marine sediments to date. The finding
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highlights the ability of sulfate reducers to survive over geological
timespans even in sulfate-depleted environments, which might
support the existence of a “paleome.” After having survived over
more than 20 million years after burial, it might well be that
sulfate reducers in the coalbeds to date have entered a dormant,
spore-like state and were reactivated by the supply of excess
sulfate during our incubations. Nevertheless, it is suggested from
the strongly δ34S-enriched pyrite present in the coals, that they
have been active long after burial and it might even be that
a small fraction is still active operating at extremely low rates.
The organic matter rich habitat provides significant amounts
of energetically rich substrates (volatile fatty acids, methane,
and hydrogen) and the availability of the electron acceptor
sulfate is the obvious limitation for the survival of deeply buried
sulfate reducers in the coalbed biosphere. A slow recycling of
sulfate by Fe(III) might provide trace amounts of sulfate via
re-oxidation and disproportionation and may have prevented a
small population from dying out.
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