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The risk of antimicrobial agents used in food-producing animals on public health

associated with antimicrobial resistance continues to be a current topic of discussion as

related to animal and human public health. In the present review, resistance monitoring

data, and risk assessment results of some important antimicrobial agents were cited to

elucidate the possible association of antimicrobial use in food animals and antimicrobial

resistance in humans. From the selected examples, it was apparent from reviewing the

published scientific literature that the ban on use of some antimicrobial agents (e.g.,

avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and

did not mitigate the intended goal of minimizing antimicrobial resistance. The use of

some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food

animals may have an impact on the antimicrobial resistance in humans, but it was

largely depended on the pattern of drug usage in different geographical regions. The

epidemiological characteristics of resistant bacteria were closely related to molecular

mechanisms involved in the development, fitness, and transmission of antimicrobial

resistance.

Keywords: antimicrobial agents, food-producing animal, antimicrobial resistance, public health, molecular basis

INTRODUCTION

Antimicrobial agents have been used in food animal production since the 1950s. Antimicrobial
agents have contributed significantly to the prevention and treatment of infectious diseases in
food animals and some of them have played a very important role in the promotion of animal
growth and feed efficiency (Dibner and Richards, 2005; Niewold, 2007). Since many classes of
antimicrobial agents used in food animals are also used in human medicine, there is the potential
for selection, and spread of antimicrobial resistant bacteria in animals to humans through the food
supply. Human health consequences have been raised concerning whether the use of antimicrobial
agents in food animals may minimize the effectiveness of the same classes of medically important
antimicrobial agents to treat antimicrobial resistant infectious diseases in humans (Salisbury et al.,
2002). In this respect, the administration of low doses (5–40 mg/kg.feed) of antimicrobial growth-
promoters in animal feed were banned by Europe (EU) in 2006 to protect public health, and this
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ban drew a great attention of other countries and international
organizations (Marshall and Levy, 2011) since this low dose drug
exposure over a long period of time could elicit selective pressure
leading to the emergence of resistant bacteria.

For comprehensive surveillance monitoring of antimicrobial
resistance in food-borne pathogens, many countries have
established antimicrobial resistance monitoring systems,
such as the National Antimicrobial Resistance Monitoring
System (NARMS) in United States of America (USA) and
Danish Integrated Antimicrobial Resistance Monitoring and
Research Program (DANMAP). The Food and Agriculture
Organization (FAO), World Health Organization (WHO),
and World Organization for Animal Health (OIE) have
organized expert workshops on the risk assessment and
management of non-human antimicrobial usage and their
resistance(FAO/OIE/WHO, 2003, 2004, 2006). WHO/FAO/OIE
have jointly carried out systematic evaluation of veterinary
antimicrobial resistance for the impact on public health
(FAO/OIE/WHO, 2006). The European Medicines Agency
(EMA), European Food Safety Authority (EFSA) and European
Center for Disease Prevention and Control (ECDC) have
also work together for the Joint Interagency Antimicrobial
Consumption and Resistance Analysis (JIACRA) and have also
published reports on antimicrobial use in food animals and
antimicrobial resistance recently (ECDC/EFSA/EMA, 2015).

In the present review, results of risk assessments based
on data from different antimicrobial resistance monitoring
systems are reported to evaluate the stewardship programs
of antimicrobial use in food animals. Resistance to some
representative antimicrobial agents (e.g., cephalosporins,
tetracyclines, fluoroquinolones, macrolides, glycopeptides, and
streptogramins) in some selected pathogens (e.g., Enterococci
spp, Campylobacter spp, Salmonella spp, and Escherichia coli)
were taken as examples to describe the relationship between
antimicrobial resistance and drug usage in food animals. The
molecular mechanism involved in the development, fitness, and
transmission of antimicrobial resistance was also integrated
into the review to provide a comprehensive understanding of
the antimicrobial resistance and to identify the need for risk
management of antimicrobial drugs.

AVOPARCIN AND
GLYCOPEPTIDE-RESISTANT
ENTEROCOCCI

Avoparcin, a vancomycin analog, was effective against gram-
positive bacteria by disturbing their cell wall synthesis. Avoparcin
had been widely used as a feed additive in food animals during
1940s–1990s. As a member of glycopeptides, there was concern
that the misuse of avoparcin may confer cross-resistance to
glycopeptides and in particular vancomycin which is known
as one of the important last-line antimicrobials in human
medicine. In 1993, isolation and frequency of vancomycin-
resistant Enterococci (VRE) from food-producing animals in
Great British drew public health concern about the consequences
of wide use of avoparcin as a growth promoter in animals.

From 1995 to 2000, Denmark, United Kingdom, EU members,
Japan and China gradually banned the use of avoparcin in food-
producing animals.

It is important to keep in mind that the term of VRE includes
several combinations of bacterial species (e.g., Enterococcus
faecium and Enterococcus faecalis) and resistance genes (vanA,
B, C, D, E, G, L, M, and N). The characteristics of van A-N
genes are summarized in Table 1. The vanA, B, D, E, G, L,
M, and N are acquired genetic determinants in E. faecium
and/or E. faecalis, while vanC is intrinsic gene present in
E. gallinarum and E. casseliflavus/E. flavescens (Cetinkaya et al.,
2000; Boyd et al., 2008). Among those, E. faecium with vanA type
vancomycin resistance is clinically most important because vanA
is an acquired and transferable gene which is resistant to both
vancomycin and teicoplanin (Nilsson, 2012). The vanB and vanN
are transferable but is susceptible to teicoplanin (Nomura et al.,
2012). The vanM is newly found in China and confirmed to have
transferability and resistance to both vancomycin and teicoplanin
(Xu et al., 2010; Chen et al., 2015).

Extensive use of avoparcin for animal growth promotion in
most parts of Europe may be the reason for high prevalence
of VRE in the intestinal microbiota of farm animals in Europe
during the 1990s (Aarestrup, 1995; Klare et al., 1995). Once
the use of avoparcin was prohibited, prevalence of VRE among
farm animals decreased in some EU countries. According to
DANMAP report, substantial reductions (from 80 to 0%) in
the prevalence of VRE were observed between 1995 and 2013,
after the ban on avoparcin as growth promoter in Denmark
(DANMAP, 2013). Very few vancomycin resistant enterococci
have been isolated from Danish livestock and produced meat
during 2003–2013 (DANMAP, 2013).

However, it was noteworthy that ban on avoparcin did not
effectively reduce incidence of vancomycin-resistant E. faecium
in avian feces. A paper published in 2008 showed that
vancomycin-resistant E. faecium was still highly prevalent in
poultry in Europe (Werner et al., 2008). Even after 15 years of
the EU ban on avoparcin, vancomycin-resistant E. faecium was
still present in the food chain and could be detected in 47% of
the broiler feces (Garcia-Migura et al., 2007; DANMAP, 2010).
The proportion of broilers colonized with vancomycin-resistant
E. faecium increased from less than 1% in 2000 to over 40% in
2005, even though Sweden had forbidden the use of avoparcin
as growth promoter since 1986 (Nilsson et al., 2009). The high
prevalence of vancomycin-resistant E. faecium in EU countries
may be due to the transferability of E. faeciumwith the vanA gene
(Nilsson et al., 2009). The vanN gene with transferability was also
found in vancomycin-resistant E. faecium isolated from chicken
meat (Nomura et al., 2012).

The most important concern is not only that VRE are present
among farm animals but also their potential to transfer resistance
genes to vancomycin susceptible enterococci and other Gram—
positive bacteria that may be transmitted via food products to
humans. Some earlier reports showed that hospital isolates of
E. faecium generally clustered in subgroups which were different
from those found in animals (Top et al., 2004; Willems et al.,
2005). In contrast, some in vivo transfer studies indicated that
vanA gene was located in transposon Tn1546 and may be
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TABLE 1 | Characteristics of glycopetide-resistant genes in Enterococci.

Characteristics vanA vanB vanC vanD vanE vanG vanL vanM vanN

Enterococcus

species

E. faecium;

E. faecalis

E. faecium;

E. faecalis

E. gallinarum,

E. casseliflavus,

E. flavescens

E. faecium E. faecalis E. faecalis E. faecalis E. faecium E. faecium

Vancomycin

MIC (µg/mL)

64–1024 4–1024 2–32 16–64 16–32 16–32 8 >256 16

Teicoplanin MIC

(µg/mL)

16–512 <1 <1 2–16 <0.5 <0.5 <0.5 96 0.5

Genetic

determinant

acquired acquired intrinsic acquired acquired acquired acquired acquired acquired

transferable Yes Yes No No No No No Yes Yes

New precursor

of ligase

D-ala-D-lac D-ala-D-lac D-ala-D-ser D-ala-D-lac D-ala-D-ser D-ala-D-ser D-ala-D-ser D-ala-D-lac D-ala-D-ser

Expression Inducible Inducible constitutive constitutive Constitutive

or inducible

Constitutive

or inducible

Constitutive

or inducible

Inducible constitutive

transferred between animal and human adapted enterococci
(Jensen, 1998; Lester et al., 2006; Lester and Hammerum, 2010).
The vanM gene was also located in transferable element and
could transfer by conjugation (Xu et al., 2010). Similar strains
of VRE have been isolated from both farm animal and human,
indicating that some of those strains may adapt to farm animals
and cause infectious diseases in humans (Freitas et al., 2011).
However, the origin of Tn1546 element encoding vanA resistance
in US hospitals was still unknown (Jensen, 1998; Lester et al.,
2006; Lester and Hammerum, 2010). It was difficult to determine
to what extent did the presence of VRE among farm animals
actually affect public health (Nilsson, 2012).

Notably, a controversy was perceived in the geographical
distribution of VRE among humans. In the United States, about
20,000 (or 40%) of Enterococcus healthcare-associated infections
in 2013 were vancomycin resistant, including 77% of vancomycin
resistant E. faecium (CDC, 2013). In Denmark, vancomycin
resistance was detected in only 3.4% of E.faecium isolates from
bloodstream infections in 2013 (DANMAP, 2013). In other
Nordic countries, the level of vancomycin resistant Enterococcus
was even lower than in Denmark in recent years (EARS-Net,
2012). Therefore, VRE was more common in US hospitals than
that in European hospitals, although in the USA, avoparcin had
never been approved for use in food animals (Gambarotto et al.,
2000; Bonten et al., 2001). It was likely that the serious problem
of VRE in US hospitals was not related to the use of avoparcin in
food animals but to that of vancomycin use in human medicine,
because therapeutic vancomycin treatment was much higher in
the USA when compared with that in Europe (Acar et al., 2000).

VIRGINIAMYCIN AND
STREPTOGRAMIN-RESISTANT
ENTEROCOCCI

Virginiamycin is a streptogramin antimicrobial which could
block the transpeptidation or translocation of protein synthesis in
bacteria. It has been used for the prevention ofClostridial enteritis

and enhancement of growth and feed efficiency in poultry,
swine and cattle for more than 30 years in Japan, Canada, U.S.A,
and other countries. However, EU prohibited its use in food-
producing animals in 1999 because it was assumed to select for
streptogramin-resistant Enterococci (SRE) and lead to treatment
failure of patients in hospitals with pristinamycin and Synercid
(Quinupristin-Dalfopristin) resistant Enterococcus faecium
infections. Mechanisms conferring resistance to streptogramin
in E. faecium was mediated via related acetyltransferases (VatD
and VatE), erythromycin ribosomal methylase B (ErmB) and
staphylococcal-type lactonase (VgbA) (Werner et al., 2002).

Some epidemiological investigations showed that
streptogramin-resistant genes (vat) were detected in 25% of
virginiamycin-resistant E. faecium isolated from pigs and
chickens, and in 29% of isolates from farm workers in Denmark
(Hammerum et al., 1998; Haroche et al., 2000). The NARMS
report revealed that long-term use of virginiamycin for growth
promotionwas likely to result in the emergence of streptogramin-
resistant Enterococcus which was present in 30–70% of poultry
products purchased from supermarkets (NARMS, 2012).

Transferability of these vat genes was observed among
E. faecium isolates from food-animals (Sørensen et al., 2001).
The resistant strains may also spread indirectly to human beings
from farms through the environment including raw manure
or surface/ground water (Smith et al., 2003). Sørensen et al.
(2001) found that streptogramin- resistant E. faecium from food
animals was able to establish transient populations in the gut after
experimental ingestion. Additionally, similar genetic patterns of
vanA containing Enterococci isolates, from poultry and human,
were reported in Spain (Robredo et al., 2000).

However, streptogramin-resistant E. faecium from poultry
may be well-adapted to cloaca, but difficult to survive against
the gastric barrier and colonization resistance in the gut (Smith
et al., 2003). Despite the high rate of exposure in contaminated
meat, prevalence of streptogramin resistant E. faecium remained
low and therefore, bacteria with high resistance could rarely
establish in human beings (McDonald et al., 2001). By using
pulsed-field gel electrophoresis (PFGE) technique, Hershberger
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et al. (2005) found distinct gene cluster of streptogramin-
resistant E. faecium, isolated from poultry and human beings.
Additionally, numerous studies found the different genetic
profiles of streptogramin- resistant E. faecium, isolated from
food-animals (poultry and pork) and human beings, indicating
that the bacterial strains might be highly host specific (Smith
et al., 2003; Hershberger et al., 2005; Hammerum et al.,
2010).

The US Food and Drug Administration and Center for
Veterinary Medicine (FDA-CVM) reported that there was not
enough data to show the transmission of SRE between animals
and humans (FDV-CVM, 2004). A quantitative risk assessment
performed by US FDA-CVM concluded that risk of SRE,
caused by virginiamycin use in food animals, was about 1–
14 heads per billion due to the treatment failure of VRE
infections (FDV-CVM, 2004). A quantitative human health risk
and benefits assessment for virginiamycin showed that human
health benefits of virginiamycin withdrawal ranged from zero
to less than one statistical life and withdrawal of the drug
may cause more human illnesses than it would prevent (Cox
and Popken, 2004; Cox, 2005). Phillips (2007) showed that
human health risk from resistance among enterococci selected
by virginiamycin was small (Phillips, 2007). Some scientists have
disagreed with the conclusion that the ban of virginiamycin
in EU could lead to an increased prevalence of streptogramin
resistant enterococci (Hammerum et al., 2007). Although an
investigation showed that the continued use of virginiamycin
as growth promoter in poultry may increase the potential
for streptogramin- resistant E. faecium infection in humans
(Kieke et al., 2006).

FLUOROQUINOLONE AND RESISTANCE
IN CAMPYLOBACTER

Fluoroquinolones, a family of synthetic broad-spectrum
antimicrobial agents, played an important role in the treatment
of bacterial infection in both veterinary medicine and in human
medicine. Fluoroquinolones can inhibit the DNA synthesis
of bacteria by selectively inhibiting their DNA gyrase and/or
topoisomerase (Suto et al., 1992). The fluoroquinolone resistance
in Campylobacter was mediated by mutations in the drug
target enzyme (e.g., Thr-86-Ile mutation in GyrA) and/or by
overexpression of efflux pumps (e.g., CmeABC) (Griggs et al.,
2005).

Both enrofloxacin and ciprofloxacin were the second
generation of fluroquinolones. They had similar structural and
antimicrobial activity. The enrofloxacin was approved to treat
bacterial infections in poultry in the USA before 2005, while
ciprofloxacin was used in human medicine to treat foodborne
infections such as Campylobacter, Salmonella, E.coli, and
Shigella. When enrofloxacin was administrated into some food
producing animal, it could be metabolized to ciprofloxacin
(Gratacós-Cubars´i et al., 2007). The close relationship between
fluoroquinolone drug in veterinary medicine and it use in human
medicine may raise the risk of fluoroquinolone resistance from
animal to human.

There was evidence that the use of enrofloxacin in
poultry production would induce fluoroquinolone resistance
in Campylobacter jejuni and these fluoroquinolone resistant
bacteria transferred to humans and contributed to the treatment
failure of campylobacterosis in humans via poultry exposure
(FDA, 2002; Nelson et al., 2007). Some in vitro and in vivo
studies have demonstrated that FQ-resistant strains would
rapidly emerge when Campylobacter was exposed to FQs
(e.g., enrofloxacin). The frequencies of emergence may range
between approximately 10−6–10−8/cell/generation in culture
media, indicating that resistant bacteria would inevitably emerge
when cell population was sufficiently larger than 106 (Yan
et al., 2006; Han et al., 2008). FQ-susceptible C. jejuni in
chicken could rapidly attain FQ-resistance within 24 h after the
initiation of treatment with enrofloxacin (McDermott et al., 2002;
Luo et al., 2003; van Boven et al., 2003; Farnell et al., 2005;
Griggs et al., 2005). The FQ-resistant Campylobacter population
could eventually colonize into intestinal tract of birds and may
be transmitted to human via the contaminated poultry meat
(Luangtongkum et al., 2009).

Due to above reasons, US FDA withdrew the use of
enrofloxacin in poultry in 2005 (USFDA, 2005). After withdrawal
of enrofloxacin from poultry, the rate of FQ-resistance in
C. jejuni decreased in chicken during 2005–2007 (NARMS, 2010).
Human clinicians also observed a reduction in domestically
acquired Campylobacter infections with decreased susceptibility
to fluoroquinolones, and it was thought to be a great achievement
regarding public health (Nelson et al., 2007). However, during
2008–2011, the positive rate of ciprofloxacin-resistant C. jejuni
from retail chicken was again increased (14.6–22.7%) in the USA
(NARMS, 2012). These studies suggest that the policy on the ban
of fluoroquinolone use in poultry did not reduce or eliminate
reservoirs of FQ -resistant C. jejuniwith subsequent reemergence
and persist in poultry products in the USA.

The spread of FQ-resistant C. jejuni in USA might result
from high mutation rate and enhanced fitness of the bacteria in
chicken reservoirs (Luangtongkum et al., 2009). Previous studies
have demonstrated that resistant C. jejuni, carrying Thr-86-Ile
mutation in GyrA, could colonize chicken caecum in the absence
of antimicrobial selection pressure (Luo et al., 2005; Nelson et al.,
2007; Han et al., 2012; Zeitouni et al., 2012). The Thr-86-Ile
mutation in GyrA can modulate DNA supercoiling homeostasis
and result in better survivability of FQ-resistant C. jejuni in
chicken host (Han et al., 2012). Due to the enhanced fitness,
it will be difficult to reduce the prevalence of FQ-resistance in
C. jejuni, even though farmers have not used these antimicrobials
in poultry. Additionally, the NARMS human data showed that
ciprofloxacin resistant C. jejuni in USA kept increasing from 16.7
in 1997 to 25.3% in 2012 (NARMS, 2012).

Contrary to the situation in USA, the ECDC/EFSA/EMA
JIACARA reported data showed no associations between the
consumption of fluoroquinolones in food-producing animals
and the occurrence of resistance in Campylobacter spp from cases
of human infection (ECDC/EFSA/EMA, 2015). Although the
growth promoting agents of fluoroquinolone were withdrawn
in European countries earlier in the Twenty first century, the
incidence of FQ -resistant C. jejuni in broilers raised from 5.3 in
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2001 to 26% in 2013 (DANMAP, 2013). The relationship between
fluorquinolone use in food animals and antimicrobial resistance
in humans may be different based on the geographic region,
poultry production environment and fluoquinolone surveillance
monitoring protocols.

MACROLIDES AND RESISTANCE IN
CAMPYLOBACTER

Macrolides inhibit bacteria protein biosynthesis by
preventing peptidyltransferase location and/or inhibiting
ribosomal translation (Tenson et al., 2003; Liang and
Han, 2013). Macrolides were the first choice for treatment
infections caused by Gram-positive bacteria in animal and
campylobacterosis in human. Macrolide resistance develops
in Campylobacter by point mutation in target genes of 23S
rRNA, ribosomal protein and by overexpression of efflux pumps
(Hao et al., 2013).

In food-producing animals, macrolide drugs, such as tylosin
and tilmicosin, have been used as growth promoters for decades
in USA and Canada. However, two macrolide members, tylosin,
and spiramycin were banned for their use as animal growth
promoters in Finland and EU since 1995 because exposure of
animals to these drugs was implicated as a possible cause of
treatment failure in Campylobacter infections in humans.

From the ECDC/EFSA/EMA JIACARA report, positive
associations were noted for total consumption of macrolides in
food-producing animals in 2011 and 2012 and the occurrence
of resistance in C. jejuni from cases of human infection
(ECDC/EFSA/EMA, 2015). However, the data obtained from
European antimicrobial resistance monitoring systems, like
DANMAP, revealed that macrolide resistance in C. jejuni isolates
from Danish broilers kept at a relatively low level (lower than
1%) and there was no significant temporal variation during
2000–2012 (DANMAP, 2013).

Contrary to the ECDC/EFSA/EMA JIACARA report, the
USA risk assessment data showed that tylosin and tilmicosin
in food animals did not result in a risk to public health in
relationship to the development and dissemination of macrolide
resistant Campylobacter (Hurd et al., 2004). The probability
of treatment failure of drug resistant Campylobacter infections
was only one person in 2.36, 14, and 53 billion per year due
to consumption of beef, poultry, and pork, respectively (Hurd
et al., 2004). In other words, the probability of therapy failure
of human campylobacteriosis due to resistant bacteria in food
animals exposed to tylosin or tilmicosin, was much less than
the mortality due to automobile accidents (1/7,000), shootings
(1/10,000), motorcycle and car accidents (1/500,000), aircraft
accidents (1/1,000,000), lightning strikes (1/3,000,000) and
shark attacks (1/100,000,000) in USA (Hurd et al., 2004).
Therefore, the two veterinary macrolide drugs (tylosin and
tilmicosin) may have negligible risk for human health (Casewell
et al., 2003; Phillips et al., 2004a,b; Turnidge, 2004). Data
obtained from NARMS also revealed that macrolide resistance
in C. jejuni isolates from American chicken breast kept at
a relatively low level (lower than 1%) and there was no

significant temporal variation during 2000–2012 (NARMS, 2012;
DANMAP, 2013).

The mutation frequency for macrolide resistance in
Campylobacter was reported to be about 10−10/cell/generation
which is approximately 10,000-fold lower than that of FQ
resistance (Yan et al., 2006; Lin et al., 2007). Themutants obtained
by single-step selection tend to have low-to-intermediate levels of
macrolide resistance (Erythromycin MIC = 8–64 µg/ml) (Kim
et al., 2006; Lin et al., 2007; Caldwell et al., 2008). These mutants
generally had fitness cost in the absence of macrolide drugs
(Kim et al., 2006; Caldwell et al., 2008). Acquisition of mutations
in 23S rRNA, which conferred a high level of resistance to
erythromycin (MIC ≥ 512 µg/ml), appeared to require stepwise
selection and/or prolonged exposure to macrolide drugs (Lin
et al., 2007; Caldwell et al., 2008). In the absence of macrolide
selection pressure, most of the 23S rRNA mutations could be
stably maintained without competition (Gibreel et al., 2005;
Caldwell et al., 2008), but due to their fitness burden, they
could be rapidly outcompeted by the erythromycin susceptive
C. jejuni in both vitro or vivo environment (Hao et al., 2009;
Almofti et al., 2011a,b; Luangtongkum et al., 2011; Zeitouni et al.,
2012).

Since Campylobacter coli is the most common Campylobacter
species in pigs, we also discuss the topic of macrolide resistant
C. coli in this review. The ban on tylosin as growth promoter
had a remarkable effect on the level of erythromycin resistance
in C. coli from pigs, as it decreased from 66 to 20% in
Denmark between 1998 and 2005 (Hammerum et al., 2007).
However, DANMAP data showed that during 2006–2010, the
macrolide resistance in C. coli varied within the range of 10–20%
without significant reduction (DANMAP, 2010). The macrolide
resistance in C. coli isolates, although more prevalent than that
in C. jejuni isolates, also did not increase over the past 10 years
since the beginning of the monitoring in the U.S.A (NARMS,
2010). A previous study demonstrated that C. coli were not
intrinsically more mutable than C. jejuni, because no elevated
mutation frequency for erythromycin was observed inC. coli (Lin
et al., 2007).

TETRACYCLINES AND RESISTANCE IN
SALMONELLA

Tetracyclines are protein synthesis inhibitors. They bind to the
30S ribosomal subunit and prevent the binding of aminoacyl-
tRNA tomRNA-ribosome complex (Bassetti et al., 2013). Bacteria
could develop resistance to tetracycline by efflux pumps (TetA,
B, C, D, E, F, G, H, I, J, K, L, P(A), P(B),V, Y, Z, 30, OtrB,
TcrC), ribosomal protection (TetM, O, Q, S, T, U, W, OtrA,), and
enzymatic inactivation of drugs (TetX) (Linkevicius et al., 2015).
Moreover, the tetracycline resistance genes are often located in
some transferable elements including plasmids and integrons
(Szmolka et al., 2015).

Tetracyclines have widely been used in human and veterinary
medicine since the first discovery of tetracycline in 1948. In
food animal production, tetracyclines, like oxytetracycline, and
chlorotetracycline, were broadly used for growth promotion
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and prophylaxis (Chopra and Roberts, 2001). The data from
antimicrobial resistance monitoring programs showed that
tetracycline resistance was commonly detected in foodborne
pathogens (DANMAP, 2014; EFSA, 2015). EU countries have
banned the use of tetracyclines for growth promotion since 2006.

However, withdrawal of tetracycline growth promoters
did not alter the epidemiology of tetracycline resistance in
EU counties. DANMAP reported that tetracycline resistant
Salmonella Typhimurium isolated from pigs had increased
from less than 30% in 2001 to 47% in 2013 (DANMAP,
2013). It was also stated that 29,797 kg (active compound)
of tetracyclines were sold to the pig industry in Denmark
during 2013 and total consumption of the drugs in pig
industry was increased by 2-fold in 2013 as compared to
that in 2001 (DANMAP, 2013). The increased therapeutic
use of tetracyclines might be a primary reflection of the
increased occurrence of drug resistance in S. Typhimurium
and E.coli isolates from pigs (DANMAP, 2010). Using logistic
regression analysis, the results from a previous study also
showed that both the S.Typhimurium phage type (p < 0.0001)
and the increase in tetracycline consumption (p = 0.0007)
were significantly associated with the antimicrobial resistance
(Emborg et al., 2007). The ECDC/EFSA/EMA JIACARA
reported positive associations for total consumption of
tetracyclines and the occurrence of resistance in Salmonella
spp from cases of human infection in 2011 and 2012
(ECDC/EFSA/EMA, 2015). Additionally, tetracycline-
resistant S. Typhimurium also became more prevalent
in human cases and reported as domestically acquired
sporadic (36%) and outbreak related (21%) (Emborg et al.,
2007).

The high prevalence of tetracycline resistance in zoonotic
pathogens could be explained by the transfer of already
established or new resistant clones rather than the conversion
of well-established susceptible clones into resistant ones by
uptake of resistance genes (Szmolka et al., 2015). The serotype
of Salmonella may also decide the prevalence of resistance
to tetracylines. It is known that Salmonella Enteritidis and
S. Typhimurium are two general serotypes of Salmonella
associated with public health. However, the resistance to
tetracycline in S. Enteritidis (5%) from human was much lower
than that in S. Typhimurium (DANMAP, 2010). The drug
resistance among S. Typhimurium isolates might be due to
the transferrable ability of tetracycline resistance determinants
(e.g., class 1 integron and Salmonella genomic island 1) and the
possible fitness of these determinants in pig host (Anjum et al.,
2011).

CEPHALOSPORINS AND RESISTANCE IN
SALMONELLA AND E. COLI

The cephalosporins are a class of β-lactams which can disrupt
the synthesis of the peptidoglycan layer forming the bacterial
cell wall. Cephalosporins have great significance in the treatment
of bacterial infection in human medicine. The third and fourth
generation cephalosporins are the most common antimicrobial

drugs used as human medicine worldwide. However, the third
generation cephalosporins, such as ceftiofur, has also been
extensively used in many different food animals and the fourth-
generation cephalosporin, like cefquinome, was approved by the
US Food, and Drug Administration (US FDA) in 2007 soon after
its approval by the European Union.

Gram-negative bacteria may develop resistance to β-lactams
by producing β-lactamase to inactivate the drugs. The major
public health concern is that use of third and fourth generation
of cephalosporins in food animals might result in resistance
development in foodborne pathogens (e.g., Salmonella and
E. coli). Some evidence, provided by Keep Antibiotic Working
(KAW), Union of Concerned Scientists (UCS), the American
Medical Association (AMA) and the Infectious Diseases Society
of America (IDSA), showed that approval of cefquinome might
induce the development of resistance in foodborne pathogens
and enhance the transfer risk of resistance to human which may
compromise public health. Recently the FDA ordered to prohibit
extra label use of cephalosporin drugs in food-producing animals
(FDA, 2015).

Interestingly, NARMS data showed that there was no
considerably change of cephalosporins resistance in E. coli and
Salmonella isolates from ground turkey, ground beef and pork
chop during 2002–2012 (NARMS, 2012). Although there was a
transient increase in cephalosporin resistance of Salmonella from
ground turkey during years of 2007–2009, yet it decreased again
in the year 2012. During 2002–2012, antimicrobial resistance was
increased (10–35%) in Salmonella isolates from chicken breast
and the resistance rate was considerably lower in E. coli isolates
than that in Salmonella isolates. In the case of E. coli from chicken
breast, ground turkey and pork chop, resistance was lower than
10% (except for 11.7% in chicken breast in 2009) and even less
than 1% for the ground beef bacteria from 2002 to 2010 (NARMS,
2010).

Additionally, the NARMS human data showed that
cephalosporins resistance in Salmonella and E.coliO157 kept at a
very low level (less than 1%) during 2000–2012 (NARMS, 2012).
From the ECDC/EFSA/EMA JIACARA report, no associations
were observed between the consumption of 3rd—and 4th—
generation cephalosporins in food-producing animals and the
occurrence of resistance to this sub-class in selected bacteria
from human (ECDC/EFSA/EMA, 2015).

Concern of resistant bacteria carrying extended-spectrum
β-lactamases (ESBLs) has been raised after the use of third
and fourth generation of cephalosporins. The ESBLs encoding
genes (e.g., blaOXA, blaPSE, blaSHV, blaTEM, blaCTX-M), as
well as the plamid-mediated AmpC β-lactamases (PMAβ, such
as blaCMY and blaFOX), and carbepenemases (e.g., blaIMP,
blaKPC, blaVIM) could be involved in the resistance to extended-
spectrum β–lactams (Liebana et al., 2013; Rubin and Pitout, 2014;
Bae et al., 2015). There were many reports about the transmission
of ESBL carrying bacteria (Hasman et al., 2005; Collignon and
Aarestrup, 2007), but the possible zoonotic spread of ESBL is still
controversial. Some investigators found that there was similarity
between ESBL genes and bacterial properties in isolates from
human, livestock and companion animal populations, indicating
that exchange of ESBL genes and ESBL bacterial between these
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reservoirs (Valentin et al., 2014; Dahms et al., 2015). A review
paper by Ewers et al. (2012) showed that the European, American
and Asian countries (e.g., Japan) shared a similar population
of ESBL subtypes, but ESBL subtype (blaCTX−M) from human
was similar to that from pets but significantly different with
that from food-producing animals (Ewers et al., 2012). Largely
unknown environmental factors might impact the spread of
resistant pathogens and increase the complexity of development
and transfer of resistance enzymes. For example, wild animals like
waterfowl, prey and rodents carry similar subtype of ESBL E. coli
to humans, indicating that wildlife could be an environmental
reservoir and melting pot for enzymatic resistance. The bacteria
might re-infect humans through the omnipresent bird feces.
Similar to humans traveling, the birds migration might also

contribute to the worldwide spread of the resistant organism
(Guenther et al., 2009, 2010, 2011; Dolejska et al., 2011).

CONCLUSIONS

The relationship between use of antimicrobial agents in food
animals and antimicrobial resistance associated with human
public health is a complex and controversial subject (Table 2).
The risk of the use of some antimicrobial agents in food-
producing animals with consequences on human public health
is still problematic because there are so many factors to consider
from an antimicrobial resistance perspective (Table 2). There is
not enough of compelling evidence to assert that the prevalence

TABLE 2 | Summary of risk assessment of some veterinary antimicrobial drugs on human public health associated with antimicrobial resistance and their

molecular basis.

Veterinary drug

Use and ban

Associated Public

health

Resistance monitoring

data in animasl

Resistance monitoring

data in humans

Risk assessment;

Risk association

Molecular basis

Avoparcin, Used

1940s–1990s;

Banned 1995–2000;

Not approved in USA

for use in animal.

Vancomycin-resistant

Enterococci (VRE),

and E. faecium (VREF)

In EU, high prevalence of

VRE in 1990s and in poultry

after 2000;

In Denmark, VRE reduced

from 1995 to 2013; few

VRE in livestock during

2003–2013.

In U. S. A, 40% VRE

infections in 2013;

In EU, <5% VRE in 2013.

Positive risk;

Still some controversy

questions

vanA gene located

in transferable

transposon Tn1546

Virginiamycin,

Used as GP for 30

years; Banned in

1999 in EU

streptogramin-resistant

Enterococci (SRE), and

E.faecium (SREF)

In Denmark, 25% SREF

from pigs and chickens;

In USA, 30–70% SREF from

poultry products in 2012.

Very rare in human hospital. FDA-CVM: risk is little

weight

VatD, VatE; ErmB;

VgbA;

Hard resistance

development

Veterinary

fluoroquinolones,

e.g., enrofloxacin

Banned use on

poultry in 2005 in

USA

fluoroquinolones resistant

Campylobacter jejuni

In USA, high prevalence of

FQ-resistant C. jejuni in

poultry before 2005,

resistance reduced during

2005–2007, resistance

increased during

2008–2011.

In USA, ciprofloxacin

resistant C. jejuni kept

increasing from 16.7% in

1997 to 25.3% in 2012.

FDA-CVM: Positive risk

ECDC/EFSA/EMA

JIACARA: no risk

associations

Thr-86-Ile mutation

in GyrA; high

mutation rate and

enhanced fitness in

chicken

Veterinary Macrolides

e.g., tylosin,

tilmicosin.

EU banned tylosin

and spiramycin as

GP since 1995

Macrolide resistant

Campylobacter spp

Resistant C.jejuni kept low

level (<1%) in USA and

Denmark;

Resistant C. coli in pig

reduced during 1998 –2005

and kept at about 10%

during 2006–2010 in

Denmark; kept at a stable

level in USA in the past

decade.

Erythromycin resistant C.

jejuni is rare in human

FDA-CVM: negative

risk

ECDC/EFSA/EMA

JIACARA: positive risk

associations

point mutation in

target genes of 23S

rRNA; low mutation

frequency and

fitness cost of

resistance

Veterinary

tetracyclines

EU banned

tetracyclines as

growth promotor

since 2006

Tetracycline resistance in

Salmonella Typhimurium

In Denmark, resistant

S.Typhimurium from pigs

had increased from less

than 30% in 2001 to 47% in

2013.

High prevalent of

tetracycline-resistant S.

Typhimurium in human

ECDC/EFSA/EMA

JIACARA report:

positive associations

Tet genes were

normally located in

some transferable

elements

Veterinary

Cephalosporins

Cephalosporins

resistance in E. coli and

Salmonella

In USA, no significant

change of resistance from

animal product during

2002–2012;

Resistance kept at a very

low level (<1%) during

2000–2012 in USA.

ECDC/EFSA/EMA

JIACARA report: no

risk associations

Complex distribution

of ESBLs in animal,

human and

environment.

GP was Growth promotor; ESBL was extended-spectrum β-lactamases; ECDC/EFSA/EMA JIACARA was European center for disease prevention and control/European food safety

authority/European Medicines Agency. Joint Interagency Antimicrobial Consumption and Resistance Analysis report. Risk association means the association between consumption of

veterinary antimicrobial drugs in food-producing animal and the occurrence of resistance bacterial from human infection. The FDA-CVM risk means the relationship between the use of

antimicrobial agents in food-producing animal and human public health associated with antimicrobial resistance in special foodborne pathogens.
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of some resistant bacteria in humans was due to antimicrobial
agents used in food animals (NAMI, 2010; Horigan et al.,
2016). The zoonotic spread of antimicrobial resistant bacteria or
resistant genes is also questionable because resistant pathogens
could be found in soil, water and environment and long-
term occurrence of antimicrobial resistant genes in nature was
even known before the antimicrobial era (Casewell et al., 2003;
Aminov andMackie, 2007; Kobayashi et al., 2007; Aminov, 2010).
Therefore, it is not wise to oversimplify the opinion that the
resistant bacteria from food producing animal is a major origin
of human infection and neglect the highly complex environment
scenario.

Furthermore, the ban on some antimicrobial usage has not
altered or decreased the incidence of resistance in foodborne
pathogens. This may be due to the enhanced fitness or
high transferability of some resistant determinants. To control
the increased animal disease, therapeutic levels of some
antimicrobial drugs (e.g., fluroquinolones and tetracyclines) has
been increased. This may also be a reason for the increased
detection of resistance to some therapeutic drugs in food borne
pathogens isolated from food animals after the ban of growth
promoters (Koluman and Dikici, 2013).

On the concept of “one health one world,” international
governments need to cooperate to establish an international
antimicrobial resistance surveillance monitoring program and
monitor the antimicrobial resistance trends in human and

animals for a long time. Both the benefit and risk outcomes
should be considered into the risk assessment and management.
To find wise strategy to control antimicrobial resistance, it
is necessary to considerate the chemotherapeutic medicine,
microbiology and agricultural environment and fully understand
molecular basis involved in the emergence of antimicrobial
resistance.
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