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The long term survival of fecal indicator organisms (FIOs) and human pathogenic
microorganisms in sediments is important from a water quality, human health and
ecological perspective. Typically, both bacteria and viruses strongly associate with
particulate matter present in freshwater, estuarine and marine environments. This
association tends to be stronger in finer textured sediments and is strongly influenced
by the type and quantity of clay minerals and organic matter present. Binding to
particle surfaces promotes the persistence of bacteria in the environment by offering
physical and chemical protection from biotic and abiotic stresses. How bacterial and
viral viability and pathogenicity is influenced by surface attachment requires further study.
Typically, long-term association with surfaces including sediments induces bacteria to
enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of
quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance
in sediments. The implications of this in a quantitative risk assessment context remain
unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however,
the factors regulating their persistence remains poorly understood. Quantification of
viruses in sediment remains problematic due to our poor ability to recover intact viral
particles from sediment surfaces (typically <10%), our inability to distinguish between
infective and damaged (non-infective) viral particles, aggregation of viral particles, and
inhibition during gPCR. This suggests that the true viral titre in sediments may be
being vastly underestimated. In turn, this is limiting our ability to understand the fate
and transport of viruses in sediments. Model systems (e.g., human cell culture) are
also lacking for some key viruses, preventing our ability to evaluate the infectivity of
viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria
and viruses into the water column during sediment resuspension also represents a risk
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to water quality.

In conclusion, our

poor process level understanding of

viral/bacterial-sediment interactions combined with methodological challenges is
limiting the accurate source apportionment and quantitative microbial risk assessment
for pathogenic organisms associated with sediments in aquatic environments.

Keywords: sediment, viable but non-culturable bacteria, biofilm, fecal indicator organisms, resuspension, survival,

virus

INTRODUCTION

There are a multitude of bacteria and viruses naturally present
within the aquatic environment of which the vast majority are not
derived from humans (Rosenwasser et al., 2016). In addition, the
majority of bacteria and viruses derived from humans are benign
from a human health perspective, however, a small component is
considered pathogenic (Filippini and Middelboe, 2007; Lowther
et al., 2012). Human pathogenic bacteria and viruses released
from point (e.g., wastewater treatment plants) and diffuse
sources (e.g., agricultural land) frequently contaminate water
bodies downstream and therefore represent a potential risk to
human health (e.g., during recreation, contamination of food
and drinking water). A large proportion of the pathogenic
organisms present in water may also become associated with the
sediment, which can be subject to resuspension (Davies et al.,
1995; Anderson et al., 2005; Drummond et al., 2014a) and could
represent a significant mechanism for delivering pathogens to
coastal waters (Yamahara et al., 2007). In coastal and estuarine
environments, the survival of fecal indicator organisms (FIOs;
indicating the potential presence of pathogenic bacteria and
viruses) is positively linked to the concentration of suspended
matter in the water column (Howell et al., 1996). In contrast,
other factors such as elevated temperatures and exposure to UV
radiation tend to have a negative effect on microbial survival
in the water column (Chigbu et al, 2005; Kay et al,, 2005).
Viruses have also been shown to readily adsorb to solid matter
in the water (reviewed in Jin and Flury, 2002). Viral particles
associated with solids may travel long distances in water, or settle
out during transit, where they become more concentrated in the
sediments that in the overlying water column. Viral attachment
to solid particles may result in permanent inactivation of the
virus, however the adsorbed virus particles are often protected
from inactivation from stressors (e.g., UV) by the surface
they are attached to Schijven and Hassanizadeh (2000) and
Chrysikopoulos and Aravantinou (2012). Current monitoring
schemes, and the majority of research in this field, typically
focuses on quantifying fecally derived bacteria and viruses in the
water column, however, numbers within the sediment (including
beaches, riverbanks and mudflats) are often orders of magnitude
higher (Rao et al., 1986a; Duhamel and Jacquet, 2006; Vignaroli
et al,, 2013, 2015; Perkins et al., 2014). Greater abundance of
pathogenic organisms and viruses in the sediment reservoir is
linked to their binding to particle surfaces and enhanced survival
within the biofilm matrix (Smith et al., 1978; LaBelle and Gerba,
1980; Danovaro et al., 2008; Pachepsky and Shelton, 2011).
Sediments therefore act as a potential reservoir of pathogens
and FIOs in aquatic environments that remain undetected until

they re-enter the water column due to the action of rainfall,
wind, waves, tides recreational boats, and dredging (Howell
et al.,, 1996; Jamieson R. C. et al., 2005) or are accumulated
by filter-feeding shellfish destined for human consumption
(Lowther et al., 2012; Malham et al., 2014). The survival of
human pathogenic bacteria and viruses in rivers and the marine
environment is highly species and strain specific (Gerba et al.,
1980; Anderson et al., 2005; Byappanahalli et al., 2006). This
makes it difficult to generalize about the behavior of pathogenic
organisms in a risk assessment context, particularly when they
may come from sources which vary both spatially and temporally.
Further, these pathogens may have a markedly different viability
in aquatic ecosystems compared to non-pathogenic indicator
organisms that are frequently used to represent fecal pollution
in environmental monitoring (Sinton et al, 2002). Due to
the emergence of new pathogens and the need to reduce the
economic and social burden of human disease outbreaks, the
source-apportionment and transmission of many disease-causing
agents is receiving increased attention (Dobrindt et al., 2004;
Vignaroli et al, 2013). Within this, there is a clear need to
improve our understanding of the behavior, fate and potential
mitigation of pathogens associated with sediments as well as the
main water body itself. Adequate consideration of pathogens
in sediments will enhance our ability to achieve regulatory
compliance with legislation associated with protecting bathing
and shellfish waters and in the provision of more robust risk
assessments (Danovaro et al., 2008; Pachepsky and Shelton,
2011; Malham et al., 2014). Despite significant investment and
research into the factors governing bacterial and viral association
with sediments, areas such as the factors governing bacterial
resuscitation from a viable but non-culturable (VBNC) state, viral
quantification in sediments, and resuspension requires additional
attention.

ABUNDANCE AND DISTRIBUTION OF
FECALLY DERIVED BACTERIA AND
VIRUSES

To effectively determine the human health risk associated
with coastal and estuarine sediments, it is important to
quantify the size of the pathogen pool. The abundance of
FIOs such as Escherichia coli and Enterococcus spp. has
been well studied, however, further attention is required for
pathogens such as Campylobacter spp., Salmonella spp., E.
coli O157:H7 and norovirus, which may cause illness through
shellfish consumption or exposure to recreational water (Malham
et al., 2014). Previous research has primarily focused on the

Frontiers in Microbiology | www.frontiersin.org

November 2016 | Volume 7 | Article 1692


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

Hassard et al.

Enteric Bacteria and Viruses in Aquatic Sediments

presence/absence of these microorganisms in sediments, but for
an apportionment of risk, a quantitative approach is required
(Ramaiah et al., 2005; Setti et al., 2009; Carr et al., 2010;
Soares de Lima Grisi and Gorlach-Lira, 2010). The reported
number of fecally associated bacteria in coastal and estuarine
environment is typically between 0 and 10* colony forming
units (CFU) or most probable number (MPN)/100 ml for water
and 10! to 10° CFU or MPN/100g wet weight for sediment
(Table 1). Similar trends have been observed in viral abundance

in marine and estuarine sediment (Table 1), however, the relative
difference in water/sediment abundance cannot be assessed
due to the small sample size. Nonetheless, Staggemeier et al.
(2015a,b) directly compared the concentrations of adenoviruses
in corresponding water and sediment samples derived from
freshwater streams, dams, and springs and found that the viral
abundance in sediment was significantly higher than in the
overlying water. Importantly, they found that adenoviruses may
be present in sediment in the absence of the virus in the water

TABLE 1 | Abundance of fecal bacteria and viruses associated with coastal and estuarine sediments.

Bacteria

Sediments
Range or average

Water column
Range or average

References

CFU or MPN CFU or MPN
100g ww-1 100 mi—1
Fecal coliforms 80-200,000 8-9400 Alcantara and Aimeida, 1995; Lucena et al., 1996; Bonilla et al.,
2007; Abdelzaher et al., 2010; Luna et al., 2010; Vignaroli et al.,
2013; Borade et al., 2014.
E. coli 19-100,000 0-6700 Evanson and Ambrose, 2006; Bonilla et al., 2007; Abdelzaher et al.,
2010; Stumpf et al., 2010; Borade et al., 2014.
Fecal Streptococci 190-19,000 6-240 Alcantara and Almeida, 1995; Lucena et al., 1996.
Enterococcus spp. 80-136,000 0-240 Evanson and Ambrose, 2006; Bonilla et al., 2007; Abdelzaher et al.,
2010; Stumpf et al., 2010; Vignaroli et al., 2013.
E. faecalis ND 200 Borade et al., 2014.
Clostridium perfringens 300-1,500,000 <2-13 Lucena et al., 1996; Abdelzaher et al., 2010.
Staphylococcus aureus ND ND Abdelzaher et al., 2010.
Salmonella spp. ND-262,500 600-1500 Borade et al., 2014.
Shigella spp. ND 1600 Borade et al., 2014.
Proteus spp. and Klebsiella spp. 6300-543,700 5400-5600 Borade et al., 2014.
Aeromonas spp. 36,000 - Lucena et al., 1996.
Vibrio spp.* 31,300-756,200 3000-6600 Borade et al., 2014.
Viruses Sediments Water column References
Range or average Range or average
PFU or GC PFU or GC
100g ww-1 100 mi—1
Enterovirus 3.3-19.08 (6-75) ND-160 (ND) Gerba et al., 1977a; Rao et al., 1984, 1986a; Le Guyader et al.,
1994; Alcantara and Almeida, 1995; Lucena et al., 1996; Green and
Lewis, 1999; Abdelzaher et al., 2010; Miura et al., 2011.2
Norovirus ND ND Abdelzaher et al., 2010.
Norovirus Gl ND (24) ND (0) Miura et al., 2011; Norman et al., 2013.2
Norovirus GlI BDL (ND-6) ND Miura et al., 2011; Norman et al., 2013.
Rotavirus 12/4 31-265 Rao et al., 1986a; Alcantara and Almeida, 1995; Green and Lewis,
1999.
Hepatitis A virus (0-87.5) ) Le Guyader et al., 1994; Green and Lewis, 1999; Abdelzaher et al.,

Human adenovirus

197,000-6,960,000

15,700-20,800,000

Human polyomavirus (Present) (Present)
Somatic coliphage ND-240,000 (36) <1-6 (19)
F+ coliphage ND-102 (2) <1-3(0)
FRNA-bacteriophage ND-20 <1-3
Bacteroides fragilis bacteriophage 0-2400 0-2640

2010.2
Staggemeier et al., 2015a**
Abdelzaher et al., 2010.2

Alcantara and Almeida, 1995; Lucena et al., 1996; Bonilla et al.,
2007.2

Alcantara and Aimeida, 1995; Bonilla et al., 2007.2
Alcantara and Almeida, 1995.
Alcantara and Aimeida, 1995; Lucena et al., 1996.

*Vibrio spp. are ubiquitous in the marine environment and facultative pathogens. **Human adenovirus detected in freshwater. ND, none detected. —, not analysed; CFU, Colony forming

units; MPN, Most probable number; WW, Wet weight. FRNA bacteriophage, Male specific (F) RNA bacteriophage.
aNumbers in parenthesis indicate the prevalence of the virus in a separate study (%) BDL, below detection limit (GQPCR); PFU, Plaque forming units; GC, Gene Copies.
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column. Anderson et al. (2005) found that sediment had greater
spatial variability in bacterial abundance than water, and that
populations of enteric organisms can persist in the environment.
The high natural variability in the sediment fraction for
both bacteria and viruses, has been linked to methodological
differences in dissociation from sediment particles which may
result in inconsistent enumeration (Anderson et al., 2005; Miura
et al., 2011; Pachepsky and Shelton, 2011).

Pathogens and FIOs also associate with suspended solids
(flocs) present in the overlying water column (Rao et al., 1984,
1986a; Jamieson R. et al., 2005). The floc fraction is prone to
resuspend easily (Pachepsky et al., 2009a) and is an important
but poorly quantified contributor to bacterial loading for water
quality monitoring (Malham et al., 2014). However, flocs are
ephemeral and prone to break up on disturbance, which provides
a technical challenge to enumeration. Numerous studies, have
reported a decrease in the number of bacteria and viruses
with sediment depth (Obiri-Danso and Jones, 2000; Filippini
and Middelboe, 2007; Berthe et al., 2008). Recent research
showed a two-log reduction in culturable E. coli from the
sediment surface (top 1 cm) to 4 cm in depth (Pachepsky
and Shelton, 2011). Generally, the top 2 cm of sediment is
considered to have high FIO abundance whereas below 2 cm
has significantly lower abundance (Ferguson et al., 1996; Haller
and Amedegnato, 2009; Drummond et al., 2014a). Distinct
seasonality of bacteria in sediments has been observed, with
greater abundance in autumn-winter months compared to
spring-summer months (Goyal et al., 1977; Crabill et al., 1999).
In contrast, Ishii et al. (2006) found that summer to autumn had
greater abundance in soils and winter to spring had the lowest
abundance. Meays et al. (2006) noted a distinct diurnal pattern
in E. coli abundance in the water column, possibly due to UV
light inactivation (Kay et al., 2005; Walters et al., 2013), while
the greater stability and protection from stressful conditions
could reduce short term changes in abundance. Physio-chemical
conditions such as temperature, turbidity, salinity, nutrient and
oxygen concentrations and water depth are all important factors
controlling the distribution of bacteria (Perkins et al., 2014).
The weather, season, disease prevalence in the community; tides
and freshwater inputs; time of day; sediment type (sand/mud)
and deposition rates; distance from the shore; and predation
by, and competition with, the intrinsic microbial community
also affects the abundance and distribution of bacteria and
viruses (Kirschner et al., 2004; Jamieson R. C. et al., 2005). The
complexity of interacting factors that influence pathogen and FIO
survival in sediments often restricts direct comparison between
studies. Effective surveillance alongside sufficient site/sediment
characterization may enable further insights into the influence
of the sediment fraction on bathing water quality (Ouattara
et al,, 2013; Huang et al., 2015). Reports suggest that the number
of infectious or culturable pathogens may correlate poorly
with the number detected by molecular approaches. Therefore,
integrated surveillance schemes using both molecular detection
of bacterial/viral genomes by PCR and culture-based methods
(e.g., bacterial culture or viral infectivity cell culture tests) may
be required (Bae and Schwab, 2008). However, high degrees
of inhibition at either the extraction or genome quantification

stages suggest that optimization and standardization of molecular
methodology in sediments is also required (Miura et al., 2011).

Enteric phages (e.g., F™ RNA coliphages) have been utilized as
general markers of fecal pollution. Advantages of this approach
includes, target specificity (each phage is typically specific to one
host) and their greater environmental persistence in comparison
to FIOs; typically 3-fold longer under controlled conditions
(Allwood et al, 2003). In addition, source apportionment
can be undertaken using different genogroups of F© RNA
coliphages (e.g., I, IV for animal and II and III for human)
(Shahrampour et al, 2015). Concentrations of F™ RNA
coliphages were between 9 and 20 fold higher in sediments
than the overlying water column (Alcantara and Almeida, 1995).
Under controlled conditions, F™ RNA coliphages show poor
correlation with E. coli, therefore cannot be readily compared to
larger historic datasets (usually E. coli or intestinal enterococcus).
However, coliphages correlate better with disease incidence
and concentrations of pathogens (e.g., norovirus; Doré et al.,
2000). Typically, next generation approaches are being used
for microbial source tracking (See Section Outlook), however,
FT RNA coliphages still provide a useful indicator of viral
culturability.

SEDIMENT CHARACTERISTICS
GOVERNING BACTERIA PARTICLE
INTERACTION

Bacterial Adsorption

Bacterial adsorption principally occurs through physicochemical
forcing as described by the extended Derjaguin-Landau-
Verwey-Overbeek (DVLO) theory (van Loosdrecht et al., 1989).
However, a number of factors can increase the rate of association
with particle surfaces. Hermansson (1999) showed that a high
ionic strength promotes adsorption between particulate matter
and bacteria (Jiang et al., 2007). Cao et al. (2011) found that
bacterial adsorption to extracellular polymeric substance (EPS)
occurs at a greater rate in the presence of sodium ions. Cations
reduce the repulsive electrostatic charge of clay particles and
allow formation of cation bridges between functional groups of
EPS and negatively charged sites of clays. After the long range
DVLO interactions have occurred, bacterial cell wall constituents
such as extracellular lipopolysaccharides and surface appendages
act to increase adsorption by reducing fine scale repulsive
forces (e.g., van Loosdrecht et al., 1989; Gilbert et al., 1991).
The surface physicochemical properties of particle surfaces
therefore influences attachment (Mills and Powelson, 1996;
Foppen et al,, 2010). A principal factor governing interaction
with particles is the surface charge of bacteria. Surface charge
can influence binding efficacy to sediment surfaces, as chemical
interactions in the electrical double layer dominate effective
charge and therefore association between sediment and bacteria.
E. coli and other FIOs typically have an overall net negative
surface charge due to the prevalence of carboxyl groups within
the cell wall and EPS (Foppen and Schijven, 2006), which
could result in attraction or repulsion to strongly positively or
negatively charged particles respectively. The surface charge of
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Escherichia coli varies with serotypes suggesting bacteria from
different sources could bind differently to sediment (Castro and
Tufenkji, 2007; Foppen et al., 2010). Furthermore, Gottenbos
et al. (2001) found that bacteria adhered more rapidly to
positively charged surfaces but electrostatic interaction impeded
bacterial growth after adsorption in pure culture experiments.
This interaction decreased the bacterial adenosine triphosphate
content and proton motive force upon adhesion (Hong and
Brown, 2009) supporting the decreased cell viability identified
by van der Mei et al. (2008). Conversely, negatively charged
surfaces could promote the opposite, favoring growth of bacteria.
Hadjiev et al. (2007) found biofilm attachment is greatest at
the maximum surface energy difference between biofilm and
material surface. Surface characteristics such as flagellar antigen
sites, can vary significantly with species and strain altering the
hydrophobicity, electrostatic balance, roughness and surface area
parameters of the bacterial surface resulting in markedly different
adsorption characteristics to sediment (van Loosdrecht et al.,
1987; Stenstrom, 1989; Bilge et al., 1996; Pachepsky et al., 2009b;
Foppen et al., 2010).

Surface characteristics may also be affected by biological
aspects such as the metabolic state of the organism. For
example, both hydrophobicity and zeta potential (as a measure
of wetness) has been shown to be related to the growth rate
or phase in E. coli (Allison et al., 1990; Smets et al., 1999). A
comparison of 17 E. coli strains, isolated from livestock or water
sources, showed an order of magnitude difference in attachment
efficacy when binding to quartz sand, with the most efficient
stains concurrently possessing the highest number of genes
associated with adhesion, toxin production, iron acquisition, or
capsular synthesis (Cook et al., 2011). The mineral chemical
and surface composition, organic content and particle size affect
the propensity of bacterial cells to adhere or release to the
particles (Pachepsky et al., 2009b; Hazen and Sverjensky, 2010).
Scholl and Harvey (1992) showed that the mineral surface charge
controlled initial adhesion of hydrophilic bacteria. Mineralogy
and elemental composition often differs between sediment size
fractions, with the smaller particles of the clay fraction providing
a larger and more reactive surface area for adsorption (Perkins
et al,, 2014). Most surfaces are coated in reactive groups such as
metals, metal oxides and hydroxides and organic material such as
proteins through a process known as surface conditioning (Mills
and Powelson, 1996). Quartz tends to have greater adhesion
when the isoelectric point (pI) of the compound differs greatly
from the point of zero charge of quartz. In contrast, a large
difference in plI reduces adhesion in clay minerals (Hazen and
Sverjensky, 2010). However, surface properties may not modify
the microbial viability post initial adhesion (Busscher et al., 1995).
The presence of a conditioning film could mask the impact of
surface properties by acting as a barrier to chemical and spatial
heterogeneity, for example Lorite et al. (2011) showed that a
conditioning film reduces film hydrophilicity and roughness of
a material surface, which could influence the rate of subsequent
film formation. Alternatively, the film could provide a link
between the material surface and bacteria (Singh et al., 2011).
The importance of roughness is twofold: firstly, it protects the
initial bacteria during adhesion from deleterious effects of shear

and second, provides greater surface area for adhesion to occur
(van Loosdrecht et al., 1989; Stephenson et al., 2013). Singh et al.
(2011) identified a threshold of ~20 nm surface roughness where
superior protein adsorption substantially decreased attachment
rates and biofilm formation by clogging nanoscale pores on the
material surface, although whether this influences adhesion of
sediment in the field requires further attention.

Fecal coliforms such as E. coli predominantly attach to
small particles (<2 pm), increasing the ease by which they
are transported and dispersed in the environment (Muirhead
et al., 2006; Goldscheider et al., 2010). Bacterial binding to
surfaces, including sediment particles, can be reversible or more
permanent (van Loosdrecht et al., 1989; Van Houdt and Michiels,
2005). Fecally derived bacteria are more frequently associated
with finer sediments and particles (Chan et al., 1979; Ferguson
etal., 1996) than suspended free within the water column (Gerba
et al., 1977a; Table 1). Particulate association is important for
transport processes: cells attached to larger particles settle to the
stream bed, whilst unattached cells, or those attached to small
buoyant particles, are likely to be transported further, particularly
during storm events (Jamieson, R. C. et al., 2005). Previous
research has defined coastal or estuarine sediments as a sink of
fecally derived bacteria (Obiri-Danso and Jones, 2000; Deloffre
et al., 2005; Berthe et al., 2008; Perkins et al., 2014). Subsequent
sediment re-entrainment during storm events, recreational water
use, mechanical disturbance and tidal resuspension on mudflats
can, therefore, lead to deterioration in microbiological water
quality (Crabill et al., 1999).

Survival of Bacterial FIOs in Water and

Sediment

Growth and Persistence of FIOs and Pathogens

The growth of fecally derived bacteria in the environment
appears to be restricted mainly to tropical climates or sediments
that are subject to intermittent immersion and drying such as
riverbank soil, estuaries or coastlines subject to tidal drying
and wetting (Table 2) or in the absence of predators (Davies
et al., 1995). Maximum decay rates of FIOs in sediments of
between —1.1 and —1.3 log;oCFU/100 g.sediment./d have been
reported (Table2). Although lower inactivation of FIOs of
between —0.011 and —0.138 log;oCFU/100 g.sediment./d and
persistence of human pathogens has been reported (Davies et al.,
1995). Highly variable survival of E. coli in freshwaters has
been reported (Table 3) Research suggests sediment associated
bacteria exhibit greater survival in marine and river waters
compared to free floating bacteria (Roper and Marshall, 1979).
For example, the presence of clays resulted in increased E. coli
survival from phage attack by ~60% (Roper and Marshall, 1974).
Particle-bound fecally derived bacteria are partially shielded
from most antimicrobial agents or harmful processes such as
UV light that might occur in the water. Schultz-Fademrecht
et al. (2008), found a 2-4 log increase in FIOs in a streambed
biofilm compared to the overlying water column, possibly due to
light inactivation in the water but not the sediment or biofilm.
In comparative studies, E. coli survives longer in sediments
containing at least 25% clay (<2 pm) than in those with larger
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particles (Burton et al., 1987). Sediment particle size plays a role,
with coliforms able to survive for between 76 and 83% longer
in sediment comprised mainly of clay particles compared with
coarser sediments (Howell et al., 1996). Garzio-Hadzick et al.
(2010) showed that fine particulates and organic carbon resulted
in slower inactivation in streambed sediments. The composition
of clay was also found to impact pathogen survival with goethite
reducing viability of pathogenic E. coli by 95% compared to
other clay types (Cai et al., 2013). The levels of montmorillonite
in soil has been associated with reduced occurrence of some
human pathogens and greater survival of indigenous bacteria
(Filip, 1973); whilst bentonite clays have been shown to inhibit
protozoal grazing of Rhizobium in liquid culture (Heijnen et al.,
1991) and illite clay antagonizes E. coli by action of Fe** ions
on the particle surface resulting in loss of outer membrane
integrity and therefore viability (Williams et al., 2011; Cai et al,,
2013). Future research is necessary to determine whether the
elemental/mineral composition of sediment influence the spatial
variability of pathogens and fecal indicator bacteria in the
environment under representative conditions.

Biofilm Formation

Biofilm formation is an important microbial survival strategy in
aquatic systems and biofilms are produced when nutrients are
abundant (Costerton et al., 1995). Typically, biofilm formation
consists of five stages (Van Houdt and Michiels, 2005). The
first stage is a reversible association/attachment between the
bacterium and the solid surface when brought together by flow of
the medium (Figure 1A). This particle association can improve
bacterial survival under stressful conditions (Figure 1B). The
second stage of biofilm formation is the production of EPS,
an important bacterial surface determinant of attachment and
fimbriae that anchor the bacterium irreversibly to the solid
surface (Junkins and Doyle, 1992; Figure 1C). During the third
and fourth stages, the structure of the EPS matrix matures
with the addition of macromolecules such as proteins and
deoxyribonucleic acid (DNA) (Sutherland, 2001). The fourth
stage is distinguished by the alteration of the biofilm to trap and
funnel nutrients to those bacteria immobilized in that matrix.
The final stage is the steady release of bacteria from the fully
mature biofilm, which can occur through shear or sediment
resuspension (Figure 1D). It is thought that quorum sensing
plays a determinate role in biofilm formation (Costerton et al.,
1995) and the response of bacteria to high velocity fluid flow
which varies at the transcriptional level (Kim et al, 2016).
Further work could elucidate the role of quorum sensing and FIO
abundance in sediments.

Intertidal mudflats are comprised of very small silt and clay
particles deposited when low energy currents and wave action
prevails (Stal and de Brouwer, 2003). The stabilization of the
sediment is due to a combination of compaction of the sediment
during periods of drying (Stal and de Brouwer, 2003) and
through the release of EPS by diatoms and bacteria creating
stabilizing biofilms (Madsen et al., 1993). Enteric organisms such
as E. coli (pathogenic strains), Campylobacter spp., Salmonella
spp. and the pathogenic protozoan Cryptosporidium parvum
are known for both creating and colonizing existing biofilms

in drinking water systems (Wingender and Flemming, 2011).
Enterococcus spp. form biofilms in beach sand (Piggot et al,
2012), whilst non-pathogenic E. coli are known to persist or even
grow within coastal and estuarine environments, particularly in
tropical/subtropical climates (Byappanahalli and Fujioka, 1998)
and non-pathogenic Clostridium spp. have been isolated from
an estuarine mudflat (Villanueva et al., 2007). At locations
where significant fecal contamination occurs, FIOs/pathogens
can colonize existing biofilm communities. Enteropathogenic
E. coli O157:H7 is known to produce biofilms on a range of
solid surfaces such as plastic, steel, wood, plant roots and leaves,
facilitating long-term survival in the environment (Cooper et al,,
2007). The ability of E. coli O157:H7 to produce biofilms,
however, was dependent on the presence of other bacteria
(Bauman et al, 2009; Klayman et al, 2009), and it is likely
that surface roughness and the age of the biofilm are major
determinants for survival (Korber et al., 1997). Biofilms have also
been shown to be a reservoir for enteric viruses, suggesting that
these entities persist longer in biofilms than in drinking water
and wastewater (Skraber et al., 2005, 2009). Biofilms have been
shown to provide protection from the surrounding environment,
such as from antimicrobial compounds (e.g., chlorine) and UV
exposure (Quignon et al., 1997; Ryu and Beuchat, 2005), and can
enhance the infectivity of some organisms such as Legionella spp.
(Wingender and Flemming, 2011); thus, facilitating persistence
of these organisms and viruses. Another important aspect of
biofilms is their potential for harboring bacteria in the VBNC
state (Bryers, 2000; Schultz-Fademrecht et al., 2008; Wingender
and Flemming, 2011). Therefore, quantifying the survival of
bacteria in the environment is not a straightforward exercise.

Metabolic Activity of Fecal Bacteria

Fecally derived bacteria are introduced into the aquatic
environment through surface run off, wastewater discharge
or direct defecation. However, the viability, persistence and
metabolic activity within or between indicator species is not
constant in the environment (Anderson et al., 2005). For
example, the metabolic activity of a bioluminescent strain of E.
coli O157:H7 decreased due to exposure to salt water, whilst
elevated nutrients boosted its microbial activity (Williams et al.,
2007) possibly resulting in growth (Shelton et al., 2014) or
reduction in inactivation (Garzio-Hadzick et al., 2010). In most
fresh and marine waters, metabolic activity rapidly declines
after release from feces, which may result from insufficient
carbon source or absence of host factors (Thorn et al., 2011;
Li et al., 2014). Knowledge of the physiological state of E. coli
is particularly important, as inactive cells (stationary phase),
possess greater resistance to environmental stresses such as
acidity and anoxia, thereby increasing the probability of survival
(Cheville et al., 1996; Saby et al., 1999). Experimental evidence
shows that in the log phase, E. coli O157:H7 was more vulnerable
to biocides and environmental stress (Arnold and Kaspar, 1995);
however, if the environment is suitable for growth, this facilitates
rapid resource exploitation and proliferation. Current evidence
suggests that E. coli O157:H7 enters a stationary phase after
detachment from intestinal margins in ruminants (Poulsen
et al, 1995). Subsequently, the bacterium leaves its host in
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FIGURE 1 | Factors stimulating bacterial accumulation in the environment, induction to and resuscitation from VBNC state. (A) Bacterial-particle
association and bacteria-bacteria association. (B) Environmental stressors such as high/low nutrients, oxygen, redox potential, and oxidative stress induce biofilm
formation. (C) Transport and sedimentation provides a downward flux to sediment. As the biofilm grows on the sediment the mass transfer rate is no longer sufficient
resulting in localized gradients in electron acceptors and nutrients. This results the induction of VBNC bacteria. (D) High flow events result in shear and can slough the
biofilm, reducing the stabilizing effect of the EPS. (E). This can further exacerbate the resuspension of bacteria within the water column leading to increased particulate
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the stationary phase, increasing its chances of survival in the
environment. E. coli from cattle feces was shown to be in
the VBNC state prior to any environmental exposure (Wu
et al., 2009b), suggesting a large fraction of the fecal indicator
population may be recalcitrant but non-culturable in agricultural
sources when enumerated by conventional microbiological plate
counting.

Viable but Non-culturable (VBNC) State of Fecal
Indicators and Pathogens

VBNC bacteria are defined as cells that are in a state of low
metabolic activity, and are therefore viable, but are unable to
be cultivated on solid selective microbiological culture media;
however, under favorable conditions, VBNC cells may resuscitate
and regain the ability to grow on microbiological media.
The VBNC state is therefore an important methodological
limitation, thus preventing the representative enumeration of
bacterial abundance in the environment and clinical settings by
microbiological plate count analysis (Oliver, 2010). Under sub-
optimal conditions such as starvation, salinity, electron acceptor
conditions, temperature or pH bacteria enter a “dormant” state.
Return of optimal conditions may result in resuscitation (Oliver,
2005). Therefore, standard water quality monitoring surveys do
not adequately represent this sub-population of fecally associated

VBNC bacteria/pathogens within the water. Recently, studies
have examined VBNC FIOs in sediments and biofilms. These
environments tend to be deficient in a growth limiting electron
acceptor or nutrient and therefore facilitate a greater proportion
of VBNC bacteria than expected in free floating systems (Bryers,
2000; Amel et al., 2008; Lieleg and Ribbeck, 2011). For example,
greater numbers of E. coli and Salmonella have been isolated from
sediments by molecular methods, than recorded by culturing
techniques, indicating that these bacteria could enter the VBNC
state in sediments (Amel et al., 2008; Berthe et al., 2008; Luna
etal,, 2010). In addition, dissolved nucleic acids are more readily
extracted than particulate forms which could represent a bias for
enumeration (Paul et al., 1991). Vibrio spp. are frequently used as
model organisms for VBNC studies and enter and recover from
the VBNC state under a variety of different stimuli (see: Oliver
and Bockian, 1995; Oliver et al., 1995; Amel et al., 2008; Li et al.,
2014; Pinto et al., 2015 for different stimuli). In contrast, studies
on sediments are sparse, for example, Amel et al. (2008) found
that V. fluvialis entered the VBNC state in sediments and could
be resuscitated even after 1 year. Fukushima and Seki (2004) and
Randa et al. (2004) challenge the VBNC notion by suggesting
that extremely low abundance of suspended V. vulnificus and
V. parahaemolyticus in winter months is due to the sediment
acting as a microbial reservoir, as opposed to the bacteria
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entering VNBC. Further, Fukushima and Seki (2004) highlight
that the proliferation of Vibrio spp. after a water temperature
increase is due to the replication and release of the daughter
cells in the sediment or biofilm rather than the resuscitation
of cells from the VBNC state in the water column. Lee et al.
(2007) found that drinking water pipe material composition
was critical in governing the relative proportion of VBNC and
culturable bacteria. However, further research is required on
methods to enumerate the numbers of fecally associated bacteria
entering the VBNC state in sediments (Amel et al., 2008).
Delineating resuscitation from growth remains a significant
challenge for the use of direct approaches (Ayrapetyan et al.,
2014a; Ramamurthy et al., 2014, Table 4). Physiochemical factors
governing induction to and resuscitation from VBNC in biofilms
requires further attention, particularly on methodologies to
sample VBNC bacteria in sediments/biofilms non-destructively.

Indirect approaches such as microscopy combined with
live/dead staining, taxon-specific fluorescent in situ hybridization
(FISH) and qPCR have all been utilized for measurement of
VBNC bacteria in environmental samples by comparing “total”
or “live” bacteria with “culturable counts” (Table 4). Indirect
methods for VBNC quantification bacteria in environmental
water samples are also not appropriate for sediments due
to the 3D nature of the matrix, extracellular polymers and
blocking of incident light for methods such as BacLight™
staining. Direct methods (utilizing microbiological plate counts)
such as the application of resuscitation promotion factors
(e.g., autoinducers) have been shown experimentally to be
useful for measuring the total bacterial population including
the VBNC fraction in water but have yet to be applied to
sediment (Atkinson and Williams, 2009; Bari et al., 2013;
Ayrapetyan et al, 2014a). The principal issue for these
approaches is delineating resuscitation of existing bacteria from
growth of daughter bacteria (Ayrapetyan et al., 2014b) and
this problem remains with sediment. The phenotypic changes
that occur in the VNBC state can be assessed using reverse
transcription quantitative PCR (RT-qPCR; Table 4) as alterations
to membrane lipid composition, fluidity and a rearrangement of
the outer membrane composition have been reported previously
(Scherber et al., 2009). Membrane changes in response to
stress are modulated via the osmosensor protein EnvZ, which
is sensitive to changes in external solute concentration. This
cascade is potentially regulated by MzrA, and upregulation
increases outer membrane proteins such as ompW (Asakura
et al., 2008; Darcan et al., 2009). The porin protein encoded
by ompW gene is known to be upregulated by extremes
of pH (Wu et al, 2009a), whilst E. coli osmoregulation
proteins OmpC/F production are regulated by changes to solute
concentration. This is an important survival strategy for coastal
and transitional zones, such as estuaries (Rozen and Belkin,
2001). The analysis of pre-ribosomal RNA (pre-rRNA) has
received interest recently (Cangelosi et al, 2010). Reported
advantages include greater relative abundance of pre-rRNA
compared to messenger RNA (mRNA) so response is quicker,
which subsequently allows separation of resuscitation from
growth (Table 4). The method relies on the ratiometric increase
in pre-rRNA levels in bacteria subject to a nutrient-based

resuscitation compared to a control in the absence of nutrients;
this provides a dormant to non-dormant ratio (Cangelosi
et al, 2010). It is still unclear if this approach is valid for
sediments.

Viable but non-culturable Pseudomonas spp. exhibited
a reduction in nutrient transport, respiration rates and
macromolecular synthesis compared to culturable equivalents;
however these VBNC cells can still actively divide at a reduced
rate (Peneau et al., 2007). Adhesion to the external surface
of zooplankton also stimulates fecal enterococci to enter a
VBNC state (Signoretto et al, 2004) and this may form a
vital part of the transmission pathway (Cellini et al., 2005).
Favorable growth conditions and an ideal stoichiometric ratio
of carbon to inorganic elements enables recovery from VBNC
state, although the resuscitation rate is highly variable depending
on species and conditions studied (Arana et al, 2007; Bari
et al., 2013; Ayrapetyan et al., 2014a) and may take days to
occur (Scherber et al.,, 2009). Reversion to a culturable state
probably involves a resuscitation-promoting or anti-dormancy
factor which can cleave peptidoglycan, altering the mechanical
properties of the cell wall to facilitate cell division or release lysis
products that function as anti-dormancy signals (Ward et al,,
2006). Whether VBNC cells are capable of causing infection
is poorly understood, and is dependent on the reactivation
time, external conditions and if additional vectors/cofactors
are required or involved prior to infection. Research into
Salmonella has indicated that newly formed VBNC cells do
not mount a strong infection response (Passerat et al., 2009)
possibly due to lack of suitable resuscitation factors. The
resuscitation window is defined as the time or amount of stress
a VBNC bacteria can undergo and still resuscitate. If conditions
remain unfavorable, then VBNC bacteria go beyond the period
where resuscitation can occur, and are considered injured, but
may still be viable. Finally, eventual death may occur (Pinto
et al., 2015; Figure 1). Zhang et al. (2015) utilized a method
known as dilution to extinction (Table 4) and showed that E.
coli had significant resuscitation potential after UV treatment,
suggesting that routine disinfection induces the VBNC state as
opposed to cell death in bacteria. Whether bacterial FIOs and
pathogens have “resuscitation potential” which could represent
a risk to public health or water quality requires further
attention.

The potential for bacteria to enter the VBNC state suggests
that sediments may be a greater store of fecally-derived bacteria
than previously quantified. Sediments and biofilms provide
distinct gradients of nutrients, electron acceptors and pH,
whilst protecting from some environmental stressors, such
as shear and light (Bryers, 2000). Additional methodological
improvements are required to reliably quantify VBNC bacteria
in sediment. Gene targets which are expressed and specific to
the VBNC response can be used in combination with RT-qPCR
quantification, providing a useful approach for VBNC analysis in
sediment. This is because probes may be species/strain-specific
and are based on the production of messenger RNA (mRNA)
or pre-rRNA molecules which are short-lived and can provide
high resolution information on temporal gene expression (Yaron
and Matthews, 2002; Cangelosi et al., 2010). However, the low
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Technique

Bold indicates the factors used to calculate VBNC.

extraction efficiency of RNA and downstream qPCR inhibition
which is a particular challenge in sediment needs to be overcome
(Miura et al., 2011; Carreira et al., 2015).

FATE AND BEHAVIOR OF FECALLY
DERIVED VIRUSES IN SEDIMENTS

There has been considerable attention attributed to the fate
and transport of viruses in environmental matrixes, such as
soil, groundwater and surface water (Schijven and Hassanizadeh,
2000; John and Rose, 2005; Sen and Khilar, 2006). The main
factors affecting viral adsorption and persistence in porous media
include the type of virus and media, temperature, pH, ionic
strength and the presence of organic matter (Jin and Flury, 2002).
The dominant mechanisms are well-understood in porous media,
however, little information is available on their importance
in sediment. Enteric viruses readily adsorb to many types of
sediment with reported adsorption rates of between 37 and 100%
(Carlson et al., 1968; Gerba et al., 1977b; LaBelle and Gerba,
1979; Gerba et al., 1980; Bitton et al., 1982; Tsai et al.,, 1983;
Johnson et al., 1984). The high adsorption levels in estuarine
and marine sediment (Table 5) may be attributed to the high
organic content and hydrophobicity of the sediment particles
(Chrysikopoulos and Syngouna, 2012). Other factors shown to
influence viral adsorption to porous media may have limited
impact in sediment due to the production of conditioning films.
However, the physico-chemical properties of viral particles and
water may play a role in viral adsorption-desorption kinetics
in sediment. For instance, Bitton et al. (1982) found complete
adsorption (100%) of poliovirus to marine sediment compared
to lower adsorption to freshwater sediment (37-45%). LaBelle
and Gerba (1979) showed that increased salinity and decreased
pH enhance the desorption (5-10%) of echovirus from estuarine
sediment, whereas the desorption of other enteric viruses
(rotavirus, poliovirus, and coxsachieviruses) was not affected by
those changes. Carlson et al. (1968) found that the presence
of bivalent cations in solution enhanced viral adsorption to
clay, whereas albumin promoted desorption. These results imply
that enteric viruses may desorb from sediment when conditions
change, for example to heavy rainfalls or tidal changes.

Gerba et al. (1980) observed species/strain specific differences
in viral adsorption to sediment, suggesting that capsid properties
may play an important role in adhesion. The physico-chemical
characteristics of viral particles, e.g., pl, hydrophobicity and
capsid structures have been shown to play an important role in
the adsorption of viruses to porous media. Dowd et al. (1998)
highlighted the influence of viral pI on the adsorption rate of
viruses, where a smaller pI (3.9-5.3) showed more adsorption
than a larger pI (6.6-7.7) despite examined viruses being of
similar sizes. Farkas et al. (2015) observed that the adsorption
of rotavirus viral surrogates with similar size and pI adsorbed
differently to hydrophobic media. Further differences were found
in the adsorption of viral surrogates with similar size, zeta
potential and hydrophobicity to porous media, suggesting that
the composition of viral capsid also affects viral adhesion (Pang
et al.,, 2014; Farkas et al., 2015). Further, Samandoulgou et al.
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TABLE 5 | Fecally-derived virus adsorption to sediment.

Virus type Sediment type Adsorption (%) References
Poliovirus 1 Marine (99.7% sand, 0.3% clay) 99% Bitton et al., 1982
Marine, organic muck 100%
Estuarine (20.7% sand, 24.88% ~100 LaBelle and Gerba, 1980
clay, 54.4% silt, 3.8% organic matter)
Estuarine 99.9 Gerba et al., 1980
Estuarine (mud and sand) 99.2-99.98 Gerba et al., 1977b
Estuarine (99% sand, 1% silt) 93.4 Johnson et al., 1984
Estuarine (52.3% sand, 30.3% silt, 17.4% clay) 99.8
Estuarine (89.3% sand, 6% silt, 4.6% clay) 98.3
Estuarine (37.3% sand, 39.2% silt, 23.5% clay) 99.9
Estuarine (10.1% sand, 48.2% silt, 41.7% clay) >95 Tsai et al., 1983
Estuarine (79.2% sand, 11.8% silt, 9.1% clay) >95
Freshwater (99.6% sand, 0.4% clay) 37% Bitton et al., 1982
Freshwater (99.7% sand, 0.3% clay) 45%
Coxsackievirus B1 Estuarine (99% sand, 1% silt 64.6 Johnson et al., 1984
Estuarine (52.3% sand, 30.3% silt, 17.4% clay) 98.4
Estuarine (89.3% sand, 6% silt, 4.6% clay) 98.6
Estuarine (37.3% sand, 39.2% silt, 23.5% clay) 99.0
Coxsackievirus B3 Estuarine (20.7% sand, 24.88% 100 LaBelle and Gerba, 1980
clay, 54.4% silt, 3.8% organic matter)
Estuarine 99.8 Gerba et al., 1980
Estuarine (10.1% sand, 48.2% silt, 41.7% clay) >95 Tsai et al., 1983
Estuarine (79.2% sand, 11.8% silt, 9.1% clay) >95
Coxsackievirus B4 Estuarine 95 Gerba et al., 1980
Echovirus 1 Estuarine (20.7% sand, 24.88% 90 LaBelle and Gerba, 1980
clay, 54.4% silt, 3.8% organic matter)
Estuarine 87.0-99.99 Gerba et al., 1980
Echovirus 7 Estuarine >99.99
Echovirus 29 Estuarine >99.99
Echovirus 11 Estuarine (99% sand, 1% silt 66.6 Johnson et al., 1984
Estuarine (52.3% sand, 30.3% silt, 17.4% clay) 98.9
Estuarine (89.3% sand, 6% silt, 4.6% clay) 99.0
Estuarine (37.3% sand, 39.2% silt, 23.5% clay) 99.5

(2015) found that extremes of pH and temperature can change
the mechanism of norovirus association with sediment from
electrostatic to predominantly hydrophobic, as loss of ordered
molecular structure in the protein head results in an increase in
hydrophobic attachment sites resulting in greater adsorption of
norovirus. Hydrophobic interactions of proteins are enhanced
by high salinity thus viral attachment/detachment kinetics in
estuarine environments may change rapidly.

From a public health perspective, the inactivation of enteric
viruses in sediment is also important. However, most studies
focus on the presence/absence and concentration of enteric
viruses in sediment and little is known about the inactivation
and degradation of viral particles. Viruses in the water column
are inactivated at a faster rate than in sediments (Smith et al,,
1978; LaBelle and Gerba, 1980; Liew and Gerba, 1980; Rao et al.,
1986b), indicating that sediments confer protection for viruses
from degradation. The persistence of viruses is largely dependent

on sediment and virus type. For instance, coxsachievirus
degradation ranged from 0.2 to 2.5 log in three types of sediment
in 20 days, whereas poliovirus and echovirus degraded by 0.5-
4 log and 2-4 log, respectively (Table 6). As in water, microbial
activity enhances the degradation of enteric viruses in the
sediment, whereas small changes in temperature and salinity
have little effect on inactivation. Inactivating substances, such as
enzymes, may also adsorb to particles and thus have no effect on
viral degradation (Gerba and Schaiberger, 1975). Interestingly,
virus inactivation increased in polluted water even in the absence
of microorganisms (LaBelle and Gerba, 1980) probably due to
reaction with humics in water. Viral adsorption to sediment
particles has also been shown to increase viral thermostability,
possibly explaining the recalcitrant nature of enteric viruses in
sediments (Liew and Gerba, 1980).

Viruses may reversibly attach and detach from sediment
and re-enter the water column or the sediment-associated viral
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particles may be transported from polluted to non-polluted
waters. Hence, viruses entering the water body from sediment
may increase the public health risk. Furthermore, due to water
turbulence the viral particles attached to less dense sediment
may be easily resuspended. Rao et al. (1986b) implied that
solid-associated rotavirus may be transported >5 km (>3 miles)
in estuarine water. Furthermore, sediment-associated viruses
may be taken up by shellfish or crustacea that are destined
for human consumption. Despite the risks of viral presence in
sediment being well-recognized, little is known about the fate
of viruses in sediment, and especially the factors which may
affect viral adsorption and inactivation in situ e.g., sunlight,
chemical contamination and organic matter. This is pertinent
when considering the impact of sediment/particle association
on the suitability of using viruses as regulatory indicators for
drinking waters and bathing/shellfish water quality (Bosch et al.,
2008).

Methods for the Enumeration of Fecally

Derived Viruses from Sediments
The identification and quantification of enteric viruses in the
environment is challenging mainly due to the lack of reliable
methods for accurate quantification and the difficulty in eluting
viruses from sediment. The most frequently used methods
for quantification of enteric viruses in environmental studies
are tissue culture, electron microscopy (EM), enzyme-linked
immunosorbent assay (ELISA), flow cytometry and qPCR or
RT-qPCR (Weinbauer, 2004; Duhamel and Jacquet, 2006).
Traditional tissue culture approaches involve incubation of
virus-containing samples with suitable host cell lines that allow
viral replication. The cytopathic effects (host cell damage) can
be observed under the light microscope (Dulbecco, 1952; Moce-
Llivina et al., 2004). For viruses which do not lyse host cells, a
focus-forming assay is used which involves the use of fluorescent
antibodies that bind to viral antigens allowing the detection
of clusters of infected cells (foci) by fluorescent microscopy
(Payne et al., 2006). Nonetheless, culture-based assays can take
weeks to perform (Storch, 2000) and often underestimate the
number of viruses due to viral aggregation; however, as loss
of infectivity is permanent, this provides a useful estimate of
infectivity decay rates (Charles et al., 2009). Furthermore, some
enteric viruses such as human noroviruses and sapoviruses
cannot be maintained in vitro, hence they cannot be quantified by
culture. Intact virus particles after incubation with an appropriate
dye can be visualized using EM, however this approach cannot
reliably distinguish between viral strains or infectious from non-
infectious viral particles (Dancho et al., 2012). Tissue culture
and EM both require expensive equipment and skilled staff,
hence are rarely applied for routine examinations. However,
early studies investigating the recovery of enteric viruses from
sediment usually applied tissue culture for viral enumeration. In
order to detect and quantify sediment-associated viruses using
tissue culture or EM, viral particles are eluted from sediment and
re-concentrated to reduce sample volume. As shown in Table 7A,
the usefulness of different approaches has been evaluated, and
recoveries exhibited high variations depending on methodology
and sediment/virus type. The best recoveries (>60%) were

achieved with the use of casein or beef extract solution as
an eluent, followed by polyethylene glycol (PEG) precipitation
(Johnson et al., 1984; Lewis et al., 1985).

The ELISA approach involves binding of viral antigens to
specific antibodies that are subsequently quantified by adding an
enzymatic substrate that produces color changes when bound.
This technique has been applied in environmental studies (Fu
et al., 1989; Park et al., 2010), and results correlate well with
tissue culture findings (Nasser et al., 1995). For many enteric
viruses, commercial ELISA Kkits are available allowing rapid
detection, however, the assay may detect degraded viral capsid
along with infectious particles. The usefulness of ELISA for
sediment samples has not been investigated. The most frequently
used methods for viral enumeration are qQPCR and RT-qPCR
which quantify a small segment of the viral genome of DNA
and RNA viruses, respectively. These assays are rapid, sensitive,
suitable for all virus types, and can be selective for individual
strains (Girones et al., 2010). However standard PCR approaches
do not provide any information on the integrity and infectivity
of the target virus. When (RT-)qPCR is used, the elution of
viral particles is not necessary as nucleic acids can be extracted
directly from sediment. Recoveries of viral RNA from sediments
range from 0.09 to 11% for direct extraction and RT-qPCR, with
improved extraction efficiency when applying indirect elution-
concentration approaches (Table 7). There are numerous reports
of inhibition of PCR assays by organic matter (e.g., humic
acids) often found in environmental samples (Meschke and
Sobsey, 1998; Rock et al., 2010) and extraction and enumeration
methods strongly influence estimates of viral abundance in
sediments (Williamson et al., 2013), which can greatly influence
attributed risk in pathogenic strains (Petterson et al., 2015).
Recently, methods have been applied to overcome this; for
example, Carreira et al. (2015) found that a combination of
EDTA in addition to probe sonication and enzymatic pre-
treatments resulted in 4.5 fold increase in viral recovery from
sediments. Miura et al. (2011) found that a direct extraction
method utilizing SDS, EDTA coupled with phenol-chloroform-
isoamyl alcohol resulted in an 11% recovery of poliovirus 1
(Table 7). Commercial kits for environmental applications are
also available and used to extract viral nucleic acids from various
matrixes including biosolids (Ikner et al., 2012), however, their
efficiency for sediment has not been evaluated. Comparison
of viral abundance in sediments (enterovirus 102.g’1) to the
titre which is shed from infected individuals (10°-10%.g~!) and
the high adsorption efficiencies measured in vitro (Table 5)
suggests dilution, dispersal, and/or high inactivation in sediments
(Melnick and Rennick, 1980; Miura et al., 2011).

Determining viral infectivity is a particular challenge in
sediments. Most recently, integrated cell culture (ICC) qPCR/RT-
qPCR approaches have been developed (Greening et al., 2002;
Fongaro et al,, 2013; Ogorzaly et al., 2013). During the assay,
cultured viruses are enumerated using qPCR or RT-qPCR,
which are more sensitive than microscopy and less affected by
viral aggregation. This combined approach allows the accurate
quantification of infectious viral particles for strains that can
be cultured in vitro within days (Ogorzaly et al., 2013). Viral
recoveries may be improved by the combination of traditional
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indirect extraction followed by ICC-RT-qPCR (Fongaro et al.,
2013). An initial assessment of direct nucleic acid extraction
followed by RT-qPCR may be useful for rapid evaluation. Also
sediments are difficult to isolate and purify viruses without
leaking other compounds which also affect quantification.
Research on both improving viral recoveries and role of
sediment on the persistence of human pathogenic viruses in
the environment could further inform modeling viral pathogens,
environmental epidemiology and improve risk assessment.

SEDIMENTS AS A SINK/SOURCE OF
FECAL BACTERIA AND VIRUSES?

Sediments may accumulate enteric bacteria and viruses and
release them back in to the water under specific conditions.
Therefore, quantifying the mass balance of fecally derived
organisms in an estuary is not a simple task. Inputs of bacteria
and viruses will be different for each estuary, depending on the
surrounding land use, water use, and hydrological processes such
as rainfall and tides. Spatial variation within the estuary itself can
also confound the issue (Quilliam et al., 2011a; Perkins et al,,
2014), as can the seasonal prevalence of bacteria and viruses
(Ishii et al., 2006; He and He, 2008; Siem-Jorgensen et al., 2008).
Characterization of individual estuaries is underway (Stapleton
et al, 2007; Ouattara et al, 2011; Huang et al, 2015) and
data from these surveys are being used in models that monitor
the fluxes of FIOs, with the primary aim of predicting beach
closures due to poor water quality (Stapleton et al., 2007; He
and He, 2008; de Brauwere et al., 2014). The sources of fecally
derived bacteria and viruses in the typical mixed estuary include
wastewater, agricultural runoff, persistent populations, in situ
growth and infrequent deposition events such as animal feces.
The vast majority of fecally derived inputs from agriculture are
due to livestock farming, although run-off from arable farming
may also contribute to the bacterial/viral loading (Cox et al,
2005). Understanding viral pathogen persistence in wastewater
treatment works and whether these viruses persist in sediments
is in its infancy (Miura et al., 2011; Kitajima et al., 2014). In
contrast bacterial persistence has been studied in detail. For
example, Ouattara et al. (2011) reported that wastewater inputs
of E. coli and intestinal enterococci were 35 and 15 times
higher, respectively, than non-point source inputs in the Scheldt
Estuary. Weather can also impact the relative contributions
of agricultural (diffuse) and wastewater (point source) inputs
(Stapleton et al., 2007) further complicating the understanding
of pathogen behavior.

Deposition and Retention of Fecal Bacteria

in Sediments

Settling and deposition of FIOs and pathogens in sediments
is a complex process. Laboratory based estimates of settling
velocities are 1.17 and 2.4 m/d for small (0.45-10 wm) and
large (>10 pm) particles respectively (Auer and Niehaus, 1993).
From a modeling perspective, an approximate deposition rate is
taken, although reports vary with reported ranges from 2.6 to
25 md™! (Jamieson, R. et al., 2005). For a review see Pachepsky

and Shelton (2011). The settling rate in the field, however, is
likely to be lower than these estimates and vary depending on
other factors such as turbulence due to waves, wind and tides
(Malham et al., 2014). Jamieson, R. et al. (2005) suggested that
high bed shear stress limits the exchange between sediments and
water column, although in contrast Drummond et al. (2014a)
found that deposition of both E. coli and inert fluorescent beads
occur rapidly, with 74% of the E. coli in the top 3 cm. Biofilms,
vegetation, organic debris and flocs are likely to reduce the
deposition and exchange of FIOs and pathogens to the sediment
bed (Arnon et al., 2010; Drummond et al., 2014a,b). Arnon et al.
(2010) found that the greater flow velocity and sediment particle
size increases the mass transfer of particulate and soluble tracers
to the sediments and biofilm and that particles preferentially
deposit in biofilms as opposed to underlying sediment. Soluble
matter is subject to advective and diffuse mass transport between
the water column and bed, particulate matter including FIOs
are subject to transport, sedimentation, and filtration (Ren and
Packman, 2002; Arnon et al, 2010). The dynamic exchange
between deposition and resuspension has received increased
attention recently.

Release and Resuspension of Bacteria

from Sediments

During base flow and in the absence of turbulence, sediment-
bound bacteria are unlikely to contribute to the bacterial
pathogen abundance in the water column (Pachepsky and
Shelton, 2011). Turbulence generated during peak flow results
in mixing, an increase in oxygenation, bubble generation, and
shear stress, which increases detachment rates from sediment and
is dependent on bacterial shape and strain, and biofilm cohesive
strength (Gomez-Suarez et al., 2001; Young, 2006; Lemos et al.,
2014; Figure 1D). The release/resuspension of bacteria from
biofilms within sediments is dependent on the combination of
physicochemical forcing (Walter et al., 2013) and biotic factors,
such as grazing and quorum sensing (Costerton et al., 1995; Kim
et al., 2016) which could impact particulate loading to the water
column (Figure 1E).

The release of E. coli from estuarine silts has been linked
to rapid decreases in salinity of the water, which can occur in
estuarine environments (Weiss, 1951). However, in freshwater
systems, the number of E. coli released in successive events
are limited to the deposited/proliferated bacteria between events
(Shelton et al., 2014) and the sediment depth which is subject to
scour (Harvey et al., 2012). The bacterial abundance increases in
the water column on the rising curve of the storm hydrograph,
due to particulate resuspension under periods of high turbulence
(Howlett et al., 2015) often with a delay between the peak in
riverflow and the peak in bacterial abundance (Jamieson R.
C. et al., 2005; Jamieson R. et al., 2005; Henson et al., 2007).
Controlled water release from a reservoir to a stream accounted
for a 1-2 log increase in E. coli in the water column, but is
dependent on the abundance in the sediment (Drummond et al.,
2014a). Similarly, for viruses, desorption of viruses from clay
particles can be attributed to reductions in salinity and the
addition of organic matter due to rainfall or tides (Gerba and
Schaiberger, 1975). In saline environments cations such as Ca?*
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form bridges to stabilize bacteria binding to the sediment and
also decreases the electrostatic repulsion during the initial stages
of adsorption (van Loosdrecht et al., 1989; de Brouwer et al,
2002; Kierek and Watnick, 2003). The input of freshwater into
estuarine systems could reduce the efficacy of these bridges,
releasing pathogenic bacteria such as V. cholerae from sediment
into the water column (Kierek and Watnick, 2003). Guizien
et al. (2014) found that bacterial numbers decreased due to
grazing and that viral titre in the water column did not
significantly increase due to re-settlement of virus-clay complex,
suggesting a complex story governing resuspension of enteric
microorganisms. The risk associated with the sediment of enteric
microorganisms depends on concentration, the ease with which
bacteria resuspend or release back into the water column, and
the frequency with which this will occur (Cox et al, 2005).
Understanding viral resuspension in the environment is reliant
on development of suitable methodology to enumerate viruses
with accuracy and precision in a reproducible manner.

OUTLOOK

Traditional molecular approaches are useful for absolute
quantification of target organisms (e.g., E. coli, Salmonella
spp, Enterococcus spp). However, advances in high throughput
sequencing (HTS) have been applied to monitor fecal pollution,
on a variety of different environmental matrices including
wastewater, drinking water, riverine/coastal waters and ground
water (Tan et al., 2015). For a more comprehensive review
of HTS for assessing water quality see Tan et al. (2015).
Targeted sequencing of 16S rRNA for bacteria and 18S rRNA for
eukaryote small sub-unit rRNA permits an estimate of diversity
and abundance (Henry et al., 2016), although the resolution
of the 185 RNA gene as a phylogenetic marker us variable
amongst taxa and is often not suitable for the resolution of
FIOs belonging to the enterobacteriaceae for example. However,
coupled sequencing and flow cytometry approaches can be used
for more accurate taxon quantification (Props et al., 2016),
although a different quantitative technology would be required
for sediments. Bacterial diversity can be readily established in
sediments using HTS; however rare sequences (e.g., pathogens)
may evade detection, which is dependent on sequencing depth.
Therefore, quantitative methods (e.g., qPCR, RT-qPCR) in
sediments, remain a critical approach for inferring quantitative
change associated with relative abundance HTS datasets.

Host associated genetic markers from bacterial groups such
as Bacteroidales have been identified in sediments, which
provides useful information for source apportionment (Tan et al.,
2015). Genetic fingerprints of 16S rRNA gene or metagenome
sequencing can reveal similarities between source (outfall, runoff
etc.) and sink (beach sands and sediments) through community
analysis (Ervin et al, 2014; Neave et al,, 2014). Neave et al.
(2014) confirmed the importance of local pollution sources of
fecal species, in determining the fecally derived component
of sediment associated microbial communities, which have a
significant impact on beach sediment quality (e.g., Vignaroli et al.,
2013). Sediments provide natural areas of high microbial density,
which is of particular concern considered the elevated persistence
and accumulation of antimicrobial resistance (AMR). Port et al.

(2014) estimated the potential for gene transfer and pathogenicity
potential from sediment fecal bacteria from pyrosequencing
datasets of sediments. This is pertinent for developing suitable
baseline AMR/pathogenicity levels used to inform policy makers
on fecally derived hazardous microorganisms/pathogens in
sediments. The structuring effect of physiochemical variables
such as salinity and sediment porosity on bacterial communities
is unsurprising (Hamdan et al, 2013); from a pollution
perspective, chemical contamination appears to drive bacterial
community structure at least at a local level (Staley et al., 2014),
although FIOs appear strongly source dependent.

HTS data has provided novel insights into the dynamics
of sediment associated enteric viruses (Paez-Espino et al,
2016). Predictions of viral relative abundance and potential
pathogenicity genes can be undertaken with HTS of sediments
(Yoshida et al., 2013). However, viral enrichment is often
required for the detection of pathogenic components of
the virome. Concentration through tangential ultraflow
filtration has been applied on dispersed sludges. Following
this, immunoprecipitation through antibodies, affinity capture
has been applied to isolate pathogenic polioviruses, followed
by deep HTS (Furtak et al., 2016), although to our knowledge
this approach has yet to be applied for sediments. From
an environmental quality perspective, understanding the
physiochemical drivers governing the mainitence of the
abundance and persistence of viruses and bacterial pathogens
in sediments is of principal concern for regulators and requires
more attention.

CONCLUSIONS

It is anticipated that enteric microorganisms in sediments will
continue to be of significant interest for the foreseeable future.
It is unlikely that environmental legislation will be widened
to cover FIOs/pathogens in sediments; however, understanding
the fate of enteric and pathogenic viruses in the environment,
including sediments, will be important for implementing
potential viral standards. The influence of wastewater treatment
works on viral abundance and infectivity, VBNC bacteria, and
the role of particulate matter and sediments on source/sinks
of these organisms is still unclear. Furthermore, a lack of
standardized effective methods for enumerating both VBNC
and viruses from environmental matrices (including sediments)
has hampered research in these areas. Significant headway on
applying correction factors for viral extractions using internal
standards has shed light on the problem of poor extraction
efficacy and inhibition of molecular methods. However, these
workaround methods have yet to be applied to sediment
and do not address the fundamental quantification problems.
Environmental monitoring should now apply a holistic approach
using novel technologies such as “lab on chip” and structural
integrity methods which may improve on site diagnostics
and should include tests for viral infectivity where this is
lacking, all of which are currently not applied to sediments.
Further studies are also required to close the loop between
conventional plate count and qPCR based methods in sediments
particularly regarding the role of VBNC bacteria (if any) on
bathing water quality and human/environmental health. An
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improved process-level understanding is required to consider
if FIOs and pathogens from different sources (diffuse or point
source derived or from human or animal) have different
VBNC or resuscitation potentials. Complete life cycle analysis
from terrestrial, fluvial and coastal zones is also required to
fully understand the role of sediments in viral transport and
infectivity persistence in the environment. Studies which model
pathogenic viral abundance to observed FIO numbers have
been successfully applied to water and applicability in sediments
requires increased attention. Finally, increased acquisition of
physiochemical data in addition to routine biological samples
will improve our understanding of the fate of viruses, VBNCs
and FIOs in sediments and enable the development of suitable
environmental risk assessment for microbiological risk of
sediments to human health. In conclusion, our poor process-level
understanding of viral/bacterial-sediment interactions combined
with methodological challenges is limiting accurate source
apportionment and quantitative microbial risk assessment for
pathogenic organisms associated with sediments in aquatic
environments.
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GLOSSARY

Culturability

Viable but non-culturable

Viable

The ability of bacteria to form colonies on agar
microbiology plates.

Bacteria which can no longer form colonies on agar
plates, but are still metabolically active and remain
viable.

Refers to all living bacteria
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