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Heat treatment and cooking are common interventions for reducing the numbers of
vegetative cells and eliminating pathogenic microorganisms in food. Current cooking
method requires the internal temperature of beef patties to reach 71◦C. However, some
pathogenic Escherichia coli such as the beef isolate E. coli AW 1.7 are extremely heat
resistant, questioning its inactivation by current heat interventions in beef processing. To
optimize the conditions of heat treatment for effective decontaminations of pathogenic
E. coli strains, sufficient estimations, and explanations are necessary on mechanisms of
heat resistance of target strains. The heat resistance of E. coli depends on the variability
of strains and properties of food formulations including salt and water activity. Heat
induces alterations of E. coli cells including membrane, cytoplasm, ribosome and DNA,
particularly on proteins including protein misfolding and aggregations. Resistant systems
of E. coli act against these alterations, mainly through gene regulations of heat response
including EvgA, heat shock proteins, Eσ and Sσ , to re-fold of misfolded proteins, and
achieve antagonism to heat stress. Heat resistance can also be increased by expression
of key proteins of membrane and stabilization of membrane fluidity. In addition to the
contributions of the outer membrane porin NmpC and overcome of osmotic stress from
compatible solutes, the new identified genomic island locus of heat resistant performs
a critical role to these highly heat resistant strains. This review aims to provide an
overview of current knowledge on heat resistance of E. coli, to better understand its
related mechanisms and explore more effective applications of heat interventions in food
industry.
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INTRODUCTION

Pasteurization and domestic cooking are common interventions for reducing the numbers of
vegetative bacterial cells including pathogens in food. Heat kills vegetative bacterial cells by
inactivation of cellular components, particularly membranes, proteins, and ribosomes (Tsuchido
et al., 1985; Mackey et al., 1991; Mohácsi-Farkas et al., 1999; Lee and Kaletunc, 2002). Thermal food
processing has an excellent record of establishing and maintaining food safety. However, consumer
preferences for raw or minimally processed food, and the aim to minimize thermal degradation
of nutrients are incentives to reduce the intensity of thermal processing. Moreover, fresh foods
including meats and produce cannot be heated to temperature that are lethal to all pathogens, and
bacterial pathogens are highly resistant to thermal processing in the dry state (Santillana Farakos
et al., 2014; Syamaladevi et al., 2016). In addition, the heat resistance of pathogens is variable and
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heat resistant strains may withstand thermal processes that are
lethal to the majority of strains of the same species (Ng et al., 1969;
Murphy et al., 1999; Dlusskaya et al., 2011).

Escherichia coli has been considered to be a relatively heat
sensitive organism; however, strains of E. coli belong to the
most heat resistant vegetative foodborne pathogens (Figure 1;
Jay et al., 2005; Doyle and Beuchat, 2013). Heat resistant E. coli
have D60 value of more than 6 min (Figure 1; Liu et al., 2015;
Mercer et al., 2015), and their resistance matches or exceeds
Salmonella Senftenberg 755 with D60 of 6.3 min (Ng et al., 1969;
Baird-Parker et al., 1970) and Staphylococcus aureus with D60
of 4.8−6.5 min (Jay et al., 2005; Kennedy et al., 2005; Doyle
and Beuchat, 2013). Foodborne disease with E. coli has been
linked to consumption of meat and meat products as well as
fruits and fresh produce (Frenzen et al., 2005; Karch et al., 2005;
Greig and Ravel, 2009; Yeni et al., 2015). Heat treatments for
effective microbial decontamination and minimum organoleptic
deterioration of foods (Woodward et al., 2002; Klaiber et al., 2005;
Rajic et al., 2007) necessitate knowledge of the heat resistance of
target foodborne pathogens as well as factors influencing heat
resistance. This review aims to provide an overview of current
knowledge on mechanisms of heat resistance of E. coli to provide
novel perspectives on conventional and novel thermal processing
of foods. Major mechanisms of heat resistance are active in all
strains of E. coli; however, relatively few studies elucidated genetic
determinants for strain-specific acquisition of heat resistance.
A recently identified genomic island termed locus of heat
resistance (LHR) substantially increases the heat resistance of
about 2% of strains of E. coli (Mercer et al., 2015). Where

appropriate, E. coli will be compared to Salmonella enterica, a
closely related organisms exhibiting comparable resistance to
heat.

VARIABILITY OF RESISTANCE OF
STRAINS OF E. coli TO HEAT

The D60-value of E. coli K12 is reported as 0.1 to 0.3 min (Chung
et al., 2007; Jin et al., 2008; Dlusskaya et al., 2011); however, a
majority of strains of E. coli exhibits D60-values exceeding that
value up to 10-fold (Figure 1). Heat resistance is not related to
the phylogenetic group, the serotype, or the virotype of E. coli
(Liu et al., 2015; Mercer et al., 2015). Highly heat resistant strains
of E. coli exhibit D60◦C values exceeding 10 min (Dlusskaya et al.,
2011; Garcia-Hernandez et al., 2015). Genetic determinants of the
variability of heat resistance between strains are only partially
understood. An overview on isogenic mutant strains of E. coli
and their heat resistance is shown in Table 1. Genes that are
related to the heat shock response, including the alternative sigma
factors σH and σE, the heat shock proteins (HSPs) IbpA/B, the
alternative sigma factor σS regulating the general stress response,
the oxidative stress response regulated by SodA/B, and genes
related to envelope properties including synthase of colanic acid,
cyclopropane fatty acids (CFAs), NmpC and EvgA relate to
heat resistance (Table 1 and references therein). E. coli strains
deficient of in σH, σS, SodA/B, IbpA/B, and colanic acid as
well as CFAs were more sensitive to heat compared to their
isogenic parental strains. Overexpression of EvgA increased heat

FIGURE 1 | Heat resistance of Escherichia coli. Data shown are log10 value of D60 (min) of 144 strains collected from past publications: three values of K-12
strains (Chung et al., 2007; Jin et al., 2008; Dlusskaya et al., 2011), 125 of other strains of E. coli (Juneja and Marmer, 1999; Dlusskaya et al., 2011; Enache et al.,
2011; Pleitner et al., 2012; Liu, 2015; Mercer et al., 2015), 2 D-values of strains after overexpression of heat shock proteins (HSP) (Hauben et al., 1997; Ruan et al.,
2011), 7 D-values of strains after adaptation to salt or acid stress (Buchanan and Edelson, 1999; Pleitner et al., 2012; Garcia-Hernandez et al., 2015), 5 D-values of
LHR positive strains (Pleitner et al., 2012; Mercer et al., 2015), and 2 D-values of strains treated by dry heat (Neetoo and Chen, 2011; Kim et al., 2015).
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TABLE 1 | Effect of gene disruption or overexpression on heat resistance of E. coli.

Escherichia coli serotype or strain number Heat conditions (T/time) Lethality (logN/N0) Medium /products Reference

MC4100 (parental strain)
KY1601 (4rpoH)

57◦C, 2 min <0.1
>3.5

M9 medium Jenkins et al., 1991

AB1157 (parental strain)
JI132 (4sodA sodB strain)

48◦C, 2 h <0.5
>6

LB broth Benov and Fridovich, 1995

ATCC 43895 (parental strain)
FRIK 816-3 (4rpoS)

55◦C, 7 min <1
>4

Fermented
sausage

Cheville et al., 1996

MC4100
MC4100 (4ibpA/B)

50◦C, 4 h <2
>3

LB broth Kuczyñska-Wiśnik et al., 2002

W6-13 (parental strain)
M4020 (4wca)

60◦C, 5 min 3.3
6.6

Minimal
glucose broth

Mao et al., 2001

AW1.7
AW1.7 (4cfa)

60◦C, 30 min 2.0
3.1

LB broth Chen and Gänzle, 2016

MG1655
MG1655 (4cfa)

57◦C, 15 min 1.3
2.2

LB broth Chen and Gänzle, 2016

BL21
overexpression of IbpA/IbpB

50◦C, 30 min 1.5
0.7−0.9

M9 medium Kitagawa et al., 2000

E. coli W3110
overexpression of EvgA

50◦C, 2 h 5
1.5

TY broth Christ and Chin, 2008

GGG10
overexpression of NmpC

60◦C, 1 min 3.5
0.5

LB broth Ruan et al., 2011

AW1.7 (pRK767)
AW1.7 4pHR1 (pRK767)
AW1.7 4pHR1 (pLHR)

60◦C, 5 min <1
>8
<1

LBbroth Mercer et al., 2015

LB, Luria-Bertani; TY, Tryptone-yeast extract.

resistance (Table 1). The LHR (Table 1) mediates extreme heat
resistance with D60-values of 10 min or higher (Table 1). The heat
resistance of strains of E. coli also depends on the food matrix
(Table 2). The resistance of E. coli LTH5807 to heating on mung
bean, radish, or alfalfa seeds differed substantially (Table 2). The
survival of the LHR-positive E. coli AW1.7 in beef patties cooked
to 71◦C provides further evidence that the heat resistance of
E. coli depends on the food matrix. Heat treatments that are
considered to be lethal to E. coli thus may fail to safely eliminate
contaminating E. coli (Table 2).

MECHANISMS RELATED TO OUTER
MEMBRANE AND MEMBRANE FLUIDITY

Cell surface structures and appendages provide the first line
of defense to environmental stress. An overview of heat stress
responses related to cell membranes and the periplasm is
provided in Figure 2. Most strains of E. coli secrete extracellular
polysaccharides, including colanic acid, which forms a thick
mucoid matrix on the cell surface (Whitfield and Valvano,
1993; Mao et al., 2001). A colanic acid-deficient mutant of
E. coli M4020, obtained by insertional disruption of the wsc
genes required for colanic acid biosynthesis, was less tolerant
to exposure to 55 and 60◦C than its parental strain E. coli
O157:H7 W6-13 (Table 1), indicating that colanic acid confers
heat resistance to E. coli O157:H7 (Figure 2) (Mao et al.,
2001). Lipopolysaccharide (LPS) serves as a barrier to prevent
rapid penetration of hydrophobic molecules, and is stabilized
by divalent cations, particularly Mg2+ and Ca2+ (Figure 2)
(Hitchener and Egan, 1977; Vaara, 1992; Hauben et al., 1998;

Li et al., 2016). Expression of the outer membrane porin
NmpC increased survival of E. coli GGG10 at 60◦C by
50- to 1,000-fold (Figure 2) (Ruan et al., 2011). The outer
membrane permeabilizing polysaccharide chitosan decreased the
heat resistance of E. coli in apple juice at 60◦C (Liu, 2015). The
pronounced effect on heat resistance of chitosan occurred on
EHEC when combined with rutin or resveratrol in beef patties,
due to the greater bacterial destruction from outer membrane to
cytoplasmic membrane (Nair et al., 2016).

The fluidity of the membrane influences its function (Zhang
and Rock, 2008). The adjustment of membrane lipid composition
and membrane fluidity by homoviscous adaptation is a major
contributor to the bacterial resistance to heat stress (Sinensky,
1974; Arneborg et al., 1993; Denich et al., 2003; Yuk and
Marshall, 2003; Yoon et al., 2015). Adaptive systems responding
to heat stress in E. coli contribute to the stabilization of
membrane-bound enzymes, and affect physical properties of
the cytoplasmic membrane (Torok et al., 1997; Beney and
Gervais, 2001). Remarkably, heat resistance induced by slow
heating of E. coli was related to adaptation of the membrane
fluidity rather than protein synthesis (Guyot et al., 2010). Heat-
adaptation increased the heat resistance of E. coli strains by
the maintenance of the membrane in the liquid-crystalline state.
The incorporation of saturated fatty acids into membrane lipids
reduces membrane fluidity (Nakayama et al., 1980; Katsui et al.,
1981) and consequently antagonizes the heat-induced increase in
fluidity (Figure 2) (Quinn, 1981; De Mendoza and Cronan, 1983;
Suutari and Laakso, 1994; Mejía et al., 1995; Yuk and Marshall,
2003). The heat resistant E. coli AW1.7 was characterized by
a higher proportion of saturated and CFAs in the cytoplasmic
membrane when compared to heat sensitive strains of E. coli
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TABLE 2 | Examples of heat resistance of E. coli strains in food.

Escherichia coli serotype or strain number Heat conditions (T/time) Lethality (logN0/N) Medium /products Reference

LTH5807 (O157:H−; stx−) 60◦C, 10 min
60◦C, 3 min
60◦C, 4 min

>7.2
>7.2
5.9

Mung bean
Radish
Alfalfa

Weiss and Hammes, 2005

204P (O157:H7) 50◦C, 300 min
55◦C, 30 min

3−5
2−4

Pork sausage
(7−30% fat)

Ahmed et al., 1995

AW1.7
AW1.7 4pHR1
GGG10

Internal 63/71◦C 3−5#/3.5
4−7#/5
4.5/UDL

Beef patties Liu et al., 2015

MG1655 (K12), LMM1030 Internal 63◦C 5−6# Beef patties Liu et al., 2015

O26, O104, O111, O121, and O157 Internal 63◦C 2-NC Beef patties Liu et al., 2015

O26, O104, and O121 Internal 71◦C 6-NC Beef patties Liu et al., 2015

O157:H7 (VTEC)
Non-O157 (VTEC)

Internal 49−71◦C 3.2−4.1
2.5−4.5

Beef steaksˆ Luchansky et al., 2012

8- strain VTEC cocktail∗∗ 191.5◦C, ≤ 1.25 min
1.5−2.5 min

1.6−5.1
UDL

Single cubed
Beef steaks

Swartz et al., 2015

8- strain VTEC cocktail∗∗ ≤3.0 min
3.5 min

0.8−5.3
UDL

Double cubed
Beef steaks

Swartz et al., 2015

Temperature D value (min)

O157:H7 E0139
SEA 13B88

57◦C 8.2/9.1
6.2/7.9

Cantaloupe/wat-
ermelon juice

Sharma et al., 2005

Heat resistant strains of 7 VTEC serotypes (O26,
O45, O103, O111, O121, O145, and O157)

56◦C
60◦C
62◦C

2.1−4.5
0.4−1.0
0.2−0.5

Apple juice Enache et al., 2011

ATCC25922 55◦C 10.9 Goat milk Pereira et al., 2006

380-94 (O157:H7) 58◦C
60◦C
62◦C

14.4
6.1
2.5

Postfermented
pepperoni

Riordan et al., 2000

4-strains cocktail of EDL-931, A 9218-C1,
45753-35, 933 (all are O157:H7)

55◦C
60◦C
65◦C

11.5−12.0
1.9−2.0
0.3−0.4

Ground turkey,
lamb, and pork

Juneja and Marmer, 1999

UDL, cell counts after treatment were under detection limit.
NC, no surviving cells after enrichment.
#Reductions depend on fat content from 15 to 35% in ground beef.
ˆThickness of beef steaks is 2.54 or 3.81 cm; initial cell counts are around 5.50 cfu/g.
∗∗Temperature is the surface temperature; cooking time refers to the time per side; initial cell counts are around 6.3−6.8 cfu/g.

(Figure 2) (Ruan et al., 2011). A contribution of CFAs to heat
resistance of E. coli was confirmed by disruption of cfa coding
for CFA synthase (Chen and Gänzle, 2016). The cfa deficient
derivatives of E. coli AW1.7 and MG1655 did not produce CFAs;
the unsaturated fatty acid C16:1 and C18:1 replaced CFAs in
membrane lipids and the mutant strain was less resistant to
heat when compared to the parent strains (Figure 2) (Chen and
Gänzle, 2016).

REGULATION OF HEAT RESPONSE BY
EvgA, HSPs, AND σE

Cytoplasmic mechanisms of heat resistance relate to the effect of
HSPs and compatible solutes on protein folding, and to oxidative
stress (Figure 3). The regulation of the heat shock response of
E. coli is governed by the two alternative sigma factors σH and σE

(Figure 3A). The heat shock response is induced by temperatures
around the growth/no-growth interface which aggravate protein
misfolding but permit gene expression and protein synthesis

(Lindner et al., 2008; Winkler et al., 2010; Govers et al., 2014;
Lee et al., 2016). σH and σE are encoded by rpoH and rpoE,
regulate transcription of heat-shock regulons coping with protein
misfolding in the cytoplasm and the periplasm, respectively, and
mediate cytoplasmic stress and envelope stress responses (Bukau,
1993). HSPs including chaperones and proteases function by
holding partially unfolded proteins to prevent aggregation
of heat-denatured proteins, and disaggregation of denatured
proteins to allow refolding or proteolytic degradation (Parsell and
Lindquist, 1993; Landini et al., 2014; Lee et al., 2016). The small
HSPs IbpA and IbpB are holdases; DnaK, DnaJ, GrpE facilitate
protein folding during translation, and guide aggregated proteins
to the disaggregase ClpB. ClpP and other heat-shock proteases
degrade aggregated proteins. The expression of HSPs is induced
by σH under sublethal heat stress and increases heat resistance of
E. coli (Arsène et al., 2000). A σH deletion in E. coli eliminated
synthesis of HSPs including DnaK, GroEL, and HtpG and the
resulting strain was very sensitive to exposure to 57◦C (Table 1).
Starvation significantly enhanced the heat resistance of this strain
(Jenkins et al., 1991). Small HSPs prevent protein aggregation by
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FIGURE 2 | Heat effects on cell membranes and attributes to heat resistance of E. coli. Extracellular polysaccharides including colanic acid forms a thick
mucoid matrix on cell surfaces and provide protection of cells; disruption of wsc genes required for colanic acid biosynthesis substantially decreased heat resistance
when compared to its parental strain (Whitfield and Valvano, 1993; Mao et al., 2001). LPS is a barrier to prevent rapid penetration of hydrophobic molecules, and is
stabilized by divalent cations Mg2+ and Ca2+ against heat or pressure stress (Hitchener and Egan, 1977; Vaara, 1992; Hauben et al., 1998; Li et al., 2016). The
solute transport proteins and the outer membrane porin NmpC contribute to heat resistance of E. coli AW1.7 (Ruan et al., 2011). Addition of antimicrobials including
chitosan decreased the heat resistance due to the increased permeability of outer membrane (Liu, 2015). The master transcriptional regulator evgA is a cytoplasmic
protein that increased heat resistance through activation of genes involved in periplasmic functions (Christ and Chin, 2008). The alternative sigma factors σS and σE

also influence the properties of cell envelope (Lange and Hengge-Aronis, 1991; Bukau, 1993). LPS proteins SurA and PpiD lead to overall reduction in the level and
folding of outer membrane proteins, consequently induce the periplamic heat shock response (Missiakas et al., 1996; Dartigalongue and Raina, 1998). Incorporating
more saturated fatty acids such as palmitic acid and cyclopropane fatty acids (CFAs) into membrane lipids antagonizes the heat-induced increase in fluidity and
achieves an ideal physical state of membrane (Katsui et al., 1981; Ruan et al., 2011; Chen and Gänzle, 2016). Disruption of cfa coding for CFA synthase of E. coli
AW1.7 and MG1655 induced accumulation of the unsaturated fatty acid C16:1 and C18:1 in membrane lipids, consequently reducing the heat resistance of them
(Chen and Gänzle, 2016).

heat (Jakob et al., 1993; Lee et al., 1997; Kitagawa et al., 2000;
Mogk et al., 2003). Overexpression of IbpA and IbpB increased
resistance not only to heat but also to superoxide (Kitagawa
et al., 2000; Table 1). Small HSPs IbpA and IbpB prevent the
aggregation of denatured endogenous proteins (Laskowska et al.,
1996; Veinger et al., 1998; Kuczyñska-Wiśnik et al., 2002). The
DnaK system also prevented protein aggregation induced by heat.
This disaggregation is more efficient when DnaK acts in concert
with ClpB (Mogk et al., 1999, 2003). However, disruption of
clpA, htpG, and ibp in E. coli did not affect the viability at 50◦C
(Thomas and Baneyx, 1998). The pressure resistant strains E. coli
LMM1010, LMM1020, and LMM 1030 exhibit an increased
basal expression of HSPs including DnaK, Lon, and ClpX; this
increased expression may also account for the moderate increase
of heat resistance of these strains (Hauben et al., 1997; Aertsen
et al., 2004). Overall, the inducible heat shock response is a key
contributor for growth of E. coli at temperature exceeding the
optimum temperature of growth, but it makes only a modest

contribution to the strain-specific differences of the resistance to
lethal heat challenge.

Four key proteins involve in the regulation of σE-dependent
envelope stress response, including RseA, RseB, DegS, and Yael
(Alba and Gross, 2004). The activity of σE is modulated by the
expression of outer membrane proteins and outer membrane
proteins induce σE activity (Mecsas et al., 1993). Moreover,
deletions of LPS proteins SurA and PpiD lead to overall reduction
in the level and folding of outer membrane proteins, and to
the induction of the periplamic heat shock response (Figure 2)
(Missiakas et al., 1996; Dartigalongue and Raina, 1998).

A master transcriptional regulator evgA activates genes
involved in periplasmic functions, as well as in membrane and
permeability functions. Its overexpression significantly increases
heat resistance of E. coli (Christ and Chin, 2008; Table 1;
Figure 2). The response regulator EvgA is part of a two-
component regulatory system with sensor kinase EvgS, binding
the intergenic region of evgAS and emrKY coding for efflux

Frontiers in Microbiology | www.frontiersin.org 5 November 2016 | Volume 7 | Article 1763

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01763 November 1, 2016 Time: 17:2 # 6

Li and Gänzle Heat Resistance of Escherichia coli

FIGURE 3 | Cytoplasmic determinants of heat resistance in E. coli. (A) Preventions of protein aggregation. Heat enhances misfolding of proteins and
consequently induces protein aggregation. General stress response factors σS, σH, and σE, as well as some small HSPs can suppress protein aggregation (Parsell
and Lindquist, 1993; Landini et al., 2014).Small HSPs IbpA and IbpB bind to misfolded proteins and thus contribute to disaggregation of during sublethal heat shock
(Laskowska et al., 1996; Veinger et al., 1998; Kuczyñska-Wiśnik et al., 2002). The DnaK system acts together with ClpB to prevent protein aggregation induced by
heat (Mogk et al., 1999, 2003). (B) Compatible solutes accumulation induced by salt contributes to heat resistance through overcoming osmotic stress and
stabilizing ribosomes (Ramos et al., 1997; Lamosa et al., 2000; Pleitner et al., 2012). Accumulation of amino acids including glycine betaine and proline as major
cytoplasmic solutes, and the accumulation of carbohydrates including glucose and trehalose occurred in response to the addition of NaCl in E. coli, resulting in
increased thermal stability of ribosomes during heat treatment (Pleitner et al., 2012). Mannosylglycerate and diglyerol phosphate protect proteins during heat
treatment (Ramos et al., 1997; Lamosa et al., 2000). (C) Mitigation of oxidative stress. Oxidative stress induced by heat damages intracellular components including
proteins, ribosomes and DNA. The general stress response factor σS and the DNA binding protein dps acts against oxidative stress (Choi et al., 2000; Zhao et al.,
2002; Landini et al., 2014). Pyruvate and catalase contribute to recovery of sublethally injured cells after heat treatments (Czechowicz et al., 1996; Mizunoe et al.,
2000). (D) Regulation of the locus of heat resistance (LHR). LHR is unique genomic island contributing to extreme heat resistance in E. coli (Mercer et al., 2015). LHR
contains 16 predicted ORF encoding small HSPs (sHSP, Orf2, and Orf7), hypothetical proteins yfdX family (Orf8 and Orf9), proteases (Orf3, Orf15, and Orf16),
thioredoxin (Orf12), and sodium/hydrogen antiporters (Orf13), accordingly contributing to heat shock response, osmotic stress response, turnover of misfolded or
disaggregation proteins, oxidative stress response, osmotic and heat stress response, respectively (Mercer et al., 2015; Lee et al., 2016). Predicted functions of LHR
are indicated by dashed lines.

pump, and regulating the expression of both operons (Kato et al.,
2000). Comparison of the genome-wide transcription profile
of EvgA-overexpressing and EvgA-lacking strains revealed that
EvgA conferred acid resistance to E. coli (Masuda and Church,
2002). EvgA controls the expression of wide range of genes,
including gadABC, hdeAB, emrKY, yhiUV, and yfdX which are
related to acid resistance, osmotic adaptation, drug resistance and
other functions (Nishino et al., 2003).

REGULATION OF HEAT RESISTANCE BY
σS, AND CROSS-RESISTANCE TO ACID,
OXIDATIVE, AND HIGH PRESSURE
STRESS

Stationary phase cells are more resistant than exponential
phase cells, mainly because of the increased expression of σS

(Figure 3A) (Cheville et al., 1996; Kaur et al., 1998). The σS

regulon contributes to the general stress response and increase
acid, heat, and / or osmotic resistance of E. coli (Hengge-Aronis
et al., 1991; Cheville et al., 1996; Robey et al., 2001; Hengge-
Aronis, 2002; Allen et al., 2008; Landini et al., 2014). Adaptation
to acid stress provides cross-protection to heat stress (Ryu and
Beuchat, 1998; Buchanan and Edelson, 1999; Ryu and Beuchat,
1999; Mazzotta, 2001; Yuk and Marshall, 2003). For example,
adaptation of enterohemorrhagic E. coli to pH 4.6 increased
the heat resistance at 58◦C 2−4 fold when compared to cells
grown at pH 7.0 (Buchanan and Edelson, 1999). Induction of
acid resistance in E. coli O157:H7 increases levels of CFAs in the
cytoplasmic membrane (Brown et al., 1997), which stabilize cells
against several environmental stressors including heat (Grogan
and Cronan, 1997; Chen and Gänzle, 2016). Moreover, σS

dependent gene expression increased the heat resistance of E. coli
O157:H7 after adaptation to temperatures above the optimum
growth temperature (Cheville et al., 1996; Yuk and Marshall,
2003; Table 1). Starvation of E. coli O157:H7 substantially
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increased D52-values; this enhanced heat resistance was related
to the expression of starvation-induced proteins UspA and GrpE
(Zhang and Griffiths, 2003).

Heat induces production of O2 in E. coli under aerobic
conditions, possibly by disruption of the electron transport
systems of the membrane, and consequently induces the
manganese-containing superoxide dismutase (Privalle and
Fridovich, 1987). Accumulation of reactive oxygen species after
exposure to sublethal stress results in lethal damage to DNA,
RNA, proteins, and lipids (Aldsworth et al., 1999; Cabiscol et al.,
2000; Aertsen et al., 2005). The general stress response factor σS

also protects against oxidative stress (Figure 3C) (Landini et al.,
2014). The σS-regulated DNA binding protein dps binds DNA as
homo-dodecamer and prevents DNA damage by oxidative stress
or low pH (Choi et al., 2000; Zhao et al., 2002). The synthesis
of CFAs in E. coli also increases resistance to oxidative stress
(Grogan and Cronan, 1997). Proteins that are alter the resistance
of E. coli to pressure-induced oxidative stress, including systems
for thiol-disulfide redox homeostasis and proteins containing
iron−sulfur clusters, probably also contribute against oxidative
stress induced by heat (Malone et al., 2006; Charoenwong et al.,
2011; Imlay, 2013; Gänzle and Liu, 2015).

Oxidative stress induced by sublethal thermal damage
may also account for the phenomenon termed “viable but
nonculturable state” (VBNC). VBNC cells cannot be detected
by standard culture techniques but can be resuscitated under
favorable conditions (Bogosian et al., 2000; Gupte et al., 2003;
Morishige et al., 2013). Addition of sodium pyruvate recovered
cells of E coli after heat-induced sublethal injury. This protective
effect was related to the ability of pyruvate to degrade hydrogen
peroxide (Czechowicz et al., 1996; Mizunoe et al., 2000).
Addition of sodium pyruvate or catalase to medium agar also
resuscitated VBNC Salmonella Enteritidis or Vibrio vulnificus
cells, respectively, which had become sensitive to hydrogen
peroxide (Bogosian et al., 2000; Morishige et al., 2013).

EFFECTS OF SALT OR SUGAR ADDITION
IN HIGH MOISTURE FOODS

The water activity of food and particularly the salt content
influence the heat resistance of E. coli. E. coli responds to an
increase of the osmotic pressure by accumulation or synthesis
of compatible solutes, small organic solutes that balance the
osmotic pressure without interfering with cytoplasmic functions
(Kempf and Bremmer, 1998). High cytoplasmic concentrations
of compatible solutes increase heat resistance of E. coli and other
bacterial cells by stabilizing ribosomes and proteins through a
mechanisms referred to as “preferential hydration” (Figure 3B)
(Ramos et al., 1997; Lamosa et al., 2000; Pleitner et al., 2012).
A reduction in water activity from 0.995 to levels between 0.98
and 0.96 in salt or sucrose solutions significantly enhanced
the heat resistance of E. coli (Kaur et al., 1998). The heat
resistance of several strains of E. coli was also increased by
addition of 2–6% of NaCl (Garcia-Hernandez et al., 2015).
Addition of 2% NaCl resulted in the accumulation of amino
acids including glycine betaine and proline as major cytoplasmic

solutes; accumulation of carbohydrates including glucose and
trehalose occurred in response to the addition of 6% NaCl
(Pleitner et al., 2012). The accumulation of solutes corresponded
to an increased heat resistance of E. coli, and a higher thermal
stability of ribosomes (Pleitner et al., 2012). The effect of NaCl
addition on solute accumulation and heat resistance of E. coli
is observed at concentrations that are typical for food systems.
A critical concentration of NaCl in ground beef, about 2.7−4.7%,
substantially increased heat resistance of E. coli O157:H7 at
55−62.5◦C (Juneja et al., 2015). In addition, pre-exposure to 5%
NaCl at room temperature for 24 h increased the heat resistance
of E. coli O157:H7 at 55◦C (Bae and Lee, 2010).

The effect of the fat content on heat resistance of E. coli
is controversial. An increased fat content in food products
increased the heat resistance of E. coli in some studies (Line et al.,
1991; Huang et al., 1992; Ahmed et al., 1995; Smith et al., 2001;
Liu et al., 2015), while other studies reported decreased resistance,
no effect, or strain-specific effects (Kotrola and Conner, 1997;
Vasan et al., 2014; Liu et al., 2015). The potential direct effects
of fat on heat resistance of E. coli are confounded by the strong
effect of fat on heat transfer in solid foods. Reduced heat transfer
increases the heating times to a certain target temperature and
thus profoundly affects process lethality.

LHR AND EXTREME RESISTANCE TO
HEAT

Extreme heat resistance of E. coli is conferred by the LHR
(Figure 3D, Mercer et al., 2015). The LHR is a genomic island
of about 14 kbp which encodes for 16 genes; six of these genes
are unique to heat resistant strains of E. coli (Mercer et al.,
2015). Acquisition of the LHR increases survival after exposure
to 60◦C for 5 min by more than 7 log(cfu/mL); the LHR is
thus one of the most powerful mediators of heat resistance
in E. coli (Table 1; Mercer et al., 2015). Loss of the LHR
also reduces the pressure resistance in E. coli AW1.7 (Garcia-
Hernandez et al., 2015; Liu et al., 2015; Mercer et al., 2015).
Remarkably, the presence of a truncated LHR in wild type
strains of E. coli, or cloning of fragments of the LHR had
little effect on heat resistance, indicating that the 16 genes act
in concert to provide heat resistance in LHR-positive strains
(Mercer et al., 2015). A genomic island with high similarity to
the LHR, the Pseudomonas aeruginosa clone C-specific genomic
island (PACGI-1) was characterized in Pseudomonas (Lee et al.,
2015).

The 16 predicted open reading frames (ORF) within LHR
encode small HSPs (Orf2 and Orf7), proteins of the YfdX
family with unknown function (Orf8 and Orf9), heat shock
proteases (Orf3, Orf15 and Orf16), thioredoxin (Orf12), and
a sodium/hydrogen antiporter (Orf13) (Mercer et al., 2015).
According to the predicted function of proteins encoded by
the LHR, the genomic island may thus contribute to the
turnover of misfolded or aggregated proteins, the osmotic stress
response, and mitigate oxidative stress (Mercer et al., 2015).
The contribution of genes encoded by the LHR to protein
folding and protein turnover was confirmed in the homologous
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gene cluster PACGI-1 in P. aeruginosa (Lee et al., 2015). The
small HSPs sHsp20c and ClpGGI contribute to thermotolerance
in P. aeruginosa through their function as holdases and
disaggregating chaperones (Lee et al., 2015, 2016). Cloning of
the homologous LHR proteins in E. coli, however, had no
influence on the heat resistance in E. coli (Mercer et al., 2015),
demonstrating that the effect of LHR-encoded genes is species
specific, and that extreme heat resistance in E. coli necessitates
HSPs acting in concert with other biochemical functions.

HEAT RESISTANCE OF DESICCATED
E. coli

Desiccated strains of E. coli and Salmonella are characterized by
extreme resistance to physical and chemical stressors including
heat (Beuchat and Scouten, 2002; Beuchat et al., 2013; Studer
et al., 2013; Syamaladevi et al., 2016). Parameters for the
heat inactivation of dry bacterial cells are comparable to the
moist heat inactivation of bacterial endospores spores rather
than pasteurization (Brandl et al., 2008; Du et al., 2010;
Podolak et al., 2010). Hot air roasting of almonds even at
very high temperature (130-150 ◦C) achieve less than a 4 log
(cfu/g) reduction of Salmonella on almonds (Yang et al., 2010).
Similarly a 2 log (cfu/g) reduction of Salmonella on dry alfalfa
seeds required 10 days of treatment at 60◦C; an equivalent
bactericidal effect was achieved after 5 min of treatment with
wet heat at 60◦C (Jaquette et al., 1996; Neetoo and Chen,
2011).

Mechanisms of dry heat resistance are best understood for
Salmonella (Podolak et al., 2010; Finn et al., 2013). The heat
resistance of Salmonella at 75◦C in meat and bone meal was
higher at aW 0.77 than at aW 0.88 (Riemann, 1968). Comparable
to the effect of NaCl in high-moisture foods, the heat resistance
of dry cells is related to the intracellular concentration of
compatible solutes, including K+, glutamate and trehalose. The
up-regulation of σS, σE, fatty acid catabolism, and formations
of Fe−S clusters and filaments also contribute to the resistance
to dry conditions (Finn et al., 2013). It was speculated that
the extent and strength of the vibration of water molecules
in dry bacteria are limited substantially because of the very
low water contents. The low water content thus prevents
denaturation of cytoplasmic and membrane proteins even at
very high temperatures (Earnshaw et al., 1995; Archer et al.,
1998). This mechanism was proposed in analogy to bacterial
endospores, where the reduced core water reduces the amount
of water associated with proteins, thus preventing thermal
denaturation (Nicholson et al., 2000). Desiccation of bacterial

cells may also stabilize ribosomal units (Syamaladevi et al.,
2016).

Several studies demonstrate that concepts and mechanisms
that were identified in Salmonella are also relevant in E. coli.
Desiccated VTEC survived at 70◦C for 5 h, thus exhibiting almost
the same level of heat resistance as Salmonella (Hiramatsu et al.,
2005). The lethality of treatments of radish seeds at 60◦C against
E. coli O157:H7 increased as the aW increased from 0.25 to 0.65
and 1.0 (Kim et al., 2015). However, information on the dry
heat resistance of E. coli remains limited when compared to the
information on the wet heat resistance of the organisms.

CONCLUSION

The resistance of E. coli strains to heat intervention treatments
has been widely evaluated in the past decades, particularly using
strains of E. coli O157: H7. Although E. coli has been considered
as a relatively heat sensitive organisms, the D60- values of some
strains of E. coli are increased to several minutes or even hours
by the heat shock response, adaptation to salt or acid stress,
acquisition of the LHR, or desiccation (Figure 1). About 2% of
E. coli including food isolates and pathogens harbor the LHR and
exhibit extreme resistance to wet heat (Mercer et al., 2015). The
biochemical function of the LHR links to proteins aggregation
and folding as well as thiol- and ion homeostasis, however, the
mechanisms of LHR –mediated heat resistance are only partially
understood. Current pathogen intervention methods or cooking
recommendations may not suffice to control these highly heat
resistant strains of E. coli (Dlusskaya et al., 2011; Liu et al.,
2015; Mercer et al., 2015). Additional hurdles need therefore to
be developed to assure the inactivation of highly heat resistant
strains. Further evaluations on inactivation of heat resistant
strains under improved heat interventions and mechanisms of
heat resistance allow us to design more effective applications in
food industry.
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