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In food microbiology, novel strategies to fight foodborne pathogens are certainly welcome. In
this data report, cationic nanostructures built from combinations of nanoparticles, antimicrobial
peptide and cationic lipid are evaluated against important foodborne pathogens such as Escherichia
coli, Salmonella enterica subsp. serovar Typhymurium, Staphylococcus aureus and Listeria
monocytogenes.

The cationic lipid dioctadecyldimethylammonium bromide (DODAB), the antimicrobial
peptide gramicidin D (Gr), the antimicrobial cationic polymer poly (diallyldimethylammonium
chloride) (PDDA) and the biocompatible polymer poly (methyl methacrylate) (PMMA) can be
combined to yield a variety of antimicrobial cationic nanostructures as previously described by our
group (Carmona Ribeiro and Chaimovich, 1983; Martins et al., 1997; Lincopan et al., 2003, 2005;
Pereira et al., 2008; Melo et al., 2010, 2011; Carvalho et al., 2012; Naves et al., 2013; Ragioto et al.,
2014; Carrasco et al., 2015; Sanches et al., 2015). However, these nanostructures were not specifically
evaluated against foodborne pathogens before. This data report aims at filling up this gap.

The cationic lipid (DODAB) and the cationic polymer PDDA bear quaternary
antimicrobial nitrogens and form a variety of cationic nanostructures as the closed or
open bilayers; the hybrid polymeric nanoparticles NPs and the DODAB/Gr combinations.
Schemes, physical properties and antimicrobial activity for the cationic assemblies against
the foodborne pathogens are on the data set (https://www.researchgate.net/publication/
308140571_September_15_2016_data_set_on_cationic_assemblies_against_food_pathogens.)

DODAB, Gr, PDDA, PMMA, ethanol, 2,2,2-trifluoroethanol (TFE) and NaCl were from Sigma-
Aldrich (St. Louis, MO, USA). DODAB LV were obtained by hydrating and vortexing the DODAB
powder in 1 mM NaCl aqueous solution, at 60◦C at 2mM DODAB (Carmona Ribeiro and
Chaimovich, 1983). For obtaining theDODABBF, LVwere ultrasonically disrupted with amacrotip
(85W/15min/70◦C) before centrifuging (10,000 rpm/60min/4◦C) and collecting the supernatant
(Carmona-Ribeiro, 2006). DODAB analysis was via microtitration of its bromide counterion
(Schales and Schales, 1941).

A Gr stock solution (6.4mM Gr) in TFE was added to previously prepared LV or BF
at a 1:10 Gr:DODAB molar ratio. DODAB/Gr dispersions were prepared from DODAB LV
incubated for 1 h/60◦C with Gr (Ragioto et al., 2014). DODAB LV/ Gr sonicated with macrotip
(85W/15min/70◦C) and centrifuged (10,000 rpm/60min/4◦C) yield the DODAB BF/Gr.

Abbreviations: ATCC, American Type Culture Collection; BF, Bilayer fragments; CFU, Colony forming unit; CTAB,

cetyltrimethyl ammonium bromide; DLS, Dynamic light scattering; DODAB, Dioctadecyldimethylammonium bromide;

Dz, zeta-average diameter; Gr, Gramicidin D; LV, Large vesicles; MBC, minimal bactericidal concentration; MIC,

Minimal inhibitory concentration; MHA, Mueller-Hinton agar; NP, nanoparticle; P, Polydispersity; PDDA, poly

(diallyldimethylammonium) chloride; PMMA, poly (methylmethacrylate); TFE, 2,2,2-trifluoroethanol (TFE); ζ , zeta-

potencial.
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PMMA/DODAB and PMMA/PDDA NPs were obtained as
previously described (Naves et al., 2013; Sanches et al., 2015).

All nanostructures were characterized for sizing (zeta-
average diameter or Dz), zeta-potential (ζ ) and polydispersity
(P) using a Zeta Plus-Zeta Potential Analyzer (Brookhaven
Instruments Corporation, Holtsville, NY, USA) equipped with a
laser (677 nm) for DLS with measurements at 90◦ (Grabowski
and Morrison, 1983). ζ values were calculated from the
electrophoretic mobility (µ) and Smoluchovski equation (ζ =

µη / ε, where η is the medium viscosity and ε, the dielectric
constant).

Food pathogens from American Type Culture Collection
(ATCC) (Manassas, VA, USA) were S. aureus ATCC 29213, E.
coli ATCC 25922, L. monocytogenes ATCC 19111 and S. enterica
ATCC 14028. After reactivation from frozen stocks in MHA,
strains’ cultures incubated in MHA (37◦C/18–48 h depending
on the pathogen) had some colonies transferred to a 1mM
NaCl solution and turbidity was adjusted to 0.5 McFarland
(Chapin and Lauderdale, 2007). After 1 h interaction between
nanostructures and bacteria in 1 mM NaCl over a range of
DODAB, Gr or PDDA concentrations in the nanostructures,
mixtures were diluted up to 100,000 before plating 0.1mL onto
MHA surface in triplicate. Controls were bacteria only in 1mM
NaCl (plated after 1 h). After incubation (37◦C/24–48 h) and
CFU/mL counting, MBC is the lowest concentration yielding the
minimal CFU counting.

Gr insertion in DODAB LV bilayer reduced Dz and increased
the positive ζ -potential. Gr tryptophans anchoring the peptide
at the bilayer-water interface sterically stabilized DODAB/Gr.
Disrupting DODAB LV/Gr led to cationic bilayers with Gr
molecules inserted as dimeric channels so that the packing of the
cationic lipids in the bilayer and the ζ -potentials increased. Other
assemblies also tested in this work against the food pathogens had
DODAB embedded in PMMA or PDDA making an outer layer
(shell) in core-shell PMMA/PDDA positively charged NPs.

DODAB not only carried Gr but also displayed antimicrobial
activity and reduced the MBC values against most strains
tested. Table 1 shows MBCs in mM or mg/mL and the total
reduction in viability caused by the antimicrobials. The Gr
peptide was effective against the two Gram-positive bacteria.

TABLE 1 | MBC (mM; mg/mL) and log of viability reduction at MBC for cationic nanostructures against food pathogens.

Assembly MBC in mM; mg/mL/ Reduction in log(CFU/mL)

E. coli S. enterica S. aureus L. monocytogenes

Gr 0.010; 0.019/ 0.3 0.010; 0.019/ 0.5 0.010; 0.019/ 2.1 0.005; 0.009/ 7.6

DODAB BF 0.063; 0.039/ 7.6 0.500; 0.316/ 1.3 0.063; 0.039/ 3.4 0.125; 0.079/ 7.8

DODAB BF/Gr 0.031; 0.019/ 7.5 0.250; 0.158/ 0.9 0.015; 0.010/ 3.8 0.125; 0.079/ 8.0

DODAB LV 0.015; 0.010/ 4.5 0.500; 0.316/ 0.7 0.015; 0.010/ 2.9 0.250; 0.158/ 5.7

DODAB LV/Gr 0.015; 0.010/ 4.6 0.500; 0.316/ 0.4 0.031; 0.019/ 2.7 0.063; 0.039/ 6.0

PMMA/DODAB ------; 2.500/ 2.2 ------; 1.250/ 0.1 ------; 5.000/ 3.1 ------; 5.000/ 1.5

PDDA ------; 0.005/ 7.5 ------; 4.810/ 3.3 ------; 0.010/ 5.8 ------; 0.048/ 0.5

PMMA/PDDA ------; 0.009/ 7.5 ------; 0.940/ 6.9 ------; 0.940/ 7.1 ------; 0.940/ 5.1

For DODAB/Gr combinations, the molar ratio is [Gr] = 0.1[DODAB].

DODAB BF or LV affected all bacteria tested with exception
of S. enterica. Mostly DODAB BF was more efficacious against
the bacteria than LV. The Gr peptide in DODAB BF reduced
MBC values against three bacteria strains (lines 2 and 3,
Table 1). This effect was important due to the toxicity of the
cationic lipid and the antimicrobial peptide. S. enterica was
the most refractory strain to the cationic agents alone or in
combinations with exception of PDDA or PMMA/PDDA NPs
(Table 1). In particular, the PMMA/PDDA NPs (last line on
Table 1) were very efficient against S. enterica. DODAB in the
PMMA/DODAB NPs displayed a reduced antimicrobial activity
whereas PDDA exposure as an outer shell on the PMMA/PDDA
NPs increased the antimicrobial activity (Table 1). The log
of viability reduction at MBC against S. enterica of DODAB
BF/Gr and DODAB LV/Gr was slightly lower than the one for
DODAB BF and DODAB LV possibly due to the bulky nature
of Gr tryptophans located at the bilayer/water interface, which
prevented the close electrostatic attraction between the cationic
moieties of the nanostructures and the anionic moieties of the
bacteria.

Antimicrobial activity can be determined as inhibition of
growth or minimal inhibitory concentration (MIC) or as cells
survival in log (CFU/mL) (MBC). Here MBC determinations
and reduction in log(CFU/mL) at MBC properly quantified the
antimicrobial effect of the cationic nanostructures (Table 1). As
concentrations required for inhibition are smaller than those for
death, the consistency of the results can be checked: MIC for Gr
against S. aureus was 2.5µM. (Wang et al., 2012) and MBC for
Gr against S. aureus was 10µM (Table 1), a value consistently
higher than the MIC value. Gr displayed a high toxicity against
mammalian (Sorochkina et al., 2012; Wang et al., 2012) and
eukaryotic cells such as S. cerevisae seen as 50% of cell viability
at 1µMGr (Ragioto et al., 2014). However, in formulations with
DODAB, Gr toxicity decreased against S. cerevisae (Ragioto et al.,
2014). Reductions in MBC for DODAB in the combinations with
Gr mean reduction in Gr doses since Gr concentration is always
10% of the DODAB concentration in each combination. Against
mammalian cells, 0.5mM DODAB killed 50% of fibroblasts in
culture (Carmona-Ribeiro et al., 1997). Despite the DODAB
relative toxicity in vitro, there were instances of good activity
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for DODAB formulations in vivo. For example, DODAB could
be used as an effective immunoadjuvant in combination with
peptides or proteins for vaccines (Tsuruta et al., 1997; Carmona-
Ribeiro, 2014) or could incorporate amphotericin B against
systemic candidiasis in mice inducing about 100% of mice
survival after treatment in absence of nephrotoxicity (Lincopan
et al., 2003, 2005).

DODAB and DODAB/Gr interacted with bacteria driven
by the electrostatic attraction and their mechanism of action
involved lysis of the bacteria with leakage of intracellular
compounds to the external medium and distortions in cell
morphology (Martins et al., 1997; Ragioto et al., 2014). Gr
required insertion in the bacterial cell membrane in order
to act as a channel for permeation of cations across the
membrane; this disturbed the ionic balance and ultimately led
to the observed Gr antibiotic activity (Harold and Baarda, 1967;
Clement and Gould, 1981; Hamada et al., 2010). Thus, for
the DODAB/Gr combinations, the mechanism involved would
include both the lytic aspects of DODAB interaction with the
bacteria and the Gr effects on membrane function and selectivity
in the transport of ions and nutrients and ion distribution in
the cell.

DODAB could be incorporated in a polymeric biocompatible
network of PMMA (Pereira et al., 2008) but displayed limited
antimicrobial activity therein (Table 1) in contrast to the one
of the more mobile CTAB surfactant which readily diffused
across the polymeric PMMA network, reached attached or
free bacteria and displayed good antimicrobial activity (Melo
et al., 2011). Therefore, the good miscibility of DODAB lipid in
the polymeric network of PDDA hampered DODAB diffusion
to the outer medium where DODAB would act against the
bacteria.

L. monocytogenes was very sensitive to the cationic lipid
DODAB and the antimicrobial neutral peptide Gr (Table 1).
Lysozyme and cationic peptides targeting the L. monocytogenes
cell wall to promoted bacterial lysis. The introduction of specific
modifications in components of the cell envelope as a strategy
developed by bacteria rendered them undetectable to both
immune recognition and to the bacteriolytic activity of host
defense enzymes such as lysozyme and cationic antimicrobial
peptides (Davis and Weiser, 2011; Carvalho et al., 2014).
It seems that L. monocytogenes did not develop yet any
mechanism against DODAB or Gr so that these might be
advantageously employed in anti- L. monocytogenes coatings.
On the other hand, the cationic antimicrobial polymer PDDA,
similarly to cationic peptides did not affect this pathogen
(Table 1).This is understandable from the already disclosed L.
monocytogenes mechanisms to fight the cationic antimicrobial
peptides. Curiously, the spherical assembly of PDDA as an
outer shell of a PMMA/PDDA NP exhibits a reduction of
5 logs against L. monocytogenes (Table 1), suggesting that
this bacterium is not prepared against this cationic NP and
this also may become an asset in the fight against the
pathogen.

Alternating layers of branched polyethylenimine and styrene
maleic anhydride copolymer were applied onto the surface of
polypropylene yielding coatings with low surface energy and
enhanced antimicrobial character due to the presence of both
cationic and N-halamine moieties; the coating inactivated L.
monocytogenes by ∼3 logarithmic cycles whereas in the form of
N-halamines there was more than 5 logarithmic cycles in the
viable cells counting (Bastarrachea and Goddard, 2015). In this
respect, it seemed advantageous to introduce PMMA/PDDANPs
as efficient assemblies to reduce L. monocytogenes cell viability by
5 logarithmic cycles (Table 1).

S. enterica is one of the most important foodborne pathogens,
leading to millions of cases of enteric diseases, thousands of
hospitalizations and deaths worldwide each year (Hur et al.,
2011). These bacteria were not sensitive to the majority of the
cationic assemblies tested (Table 1) with exception of PDDA (3
logs reduction in viability) or PMMA/PDDA (5 logs reduction
in viability) (Table 1). Although the antibacterial effect of
antimicrobial peptides and polymers was mediated by membrane
disruption with leakage of intracellular compounds (Carrasco
et al., 2015), it was not clear how they reached the bacterial
cytoplasmic membrane, crossing barriers such as the external
membrane of Gram-negative bacteria and the cell wall of Gram-
positive bacteria. Possibly the peptide or polymer first targets
the outer cell wall and then undergoes a self-promoted uptake
(Hancock, 1997; Yaron et al., 2003). In this respect, our results
suggested that only PDDA and PMMA/PDDA NPs targeted
the cytoplasmic membrane of S. enterica causing lysis and
death. In particular, the activity of the NPs was higher than the
one of the free polymer (Table 1), suggesting that they were
more effective in inducing membrane disruption than the free
polymer.
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