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Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing severe
outbreaks in humans and livestock in sub-Saharan Africa and the Arabian Peninsula.
Human infections are characterized by fever, sometimes leading to encephalitis, retinitis,
hemorrhagic fever, and occasionally death. There are currently no fully licensed vaccines
or effective therapies for human use. Gene silencing mediated by double-stranded
short interfering RNA (siRNA) is a sequence-specific, highly conserved mechanism in
eukaryotes, which serves as an antiviral defense mechanism. Here, we demonstrate
that siRNA duplexes directed against the RVFV nucleoprotein can effectively inhibit
RVFV replication in human (MRC5 cells) and African green monkey cells (Vero E6
cells). Using these cells, we demonstrate that individual or complex siRNAs, targeting
the RVFV nucleoprotein gene completely abrogate viral protein expression and prevent
degradation of the host innate antiviral factor, protein kinase R (PKR). Importantly, pre-
treatment of cells with the nucleoprotein-specific siRNAs markedly reduces the virus
titer. The antiviral effect of the siRNAs was not attributable to interferon or the interferon
response effector molecule, PKR. Thus, the antiviral activity of RVFV nucleoprotein-
specific siRNAs may provide novel therapeutic strategy against RVFV infections in
animals and humans.

Keywords: short interfering RNA, RNA interference, antiviral, Rift Valley fever virus, nucleoprotein, protein
kinase R

INTRODUCTION

Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic pathogen that causes Rift Valley
fever (RVF) in humans and livestock in sub-Saharan Africa and the Arabian Peninsula (Flick and
Bouloy, 2005). The virus is classified as a Category A pathogen and a select agent by the National
Institutes of Health (NIH) and the Centers for Disease Control and Prevention (CDC). For decades,
RVFV has been associated with epizootics in animals and epidemics in humans in Africa and
since 2000, also in the Arabian Peninsula. For example, in 1987, an epidemic of RVF occurred
in the Senegal River basin of southern Mauritania and adjacent northern Senegal resulting in 232
human deaths in Mauritania alone, including high rates of abortion in sheep and goats (Jouan et al.,
1989). In 2000, for the first time, a RVF outbreak occurred in Saudi Arabia and Yemen resulting
in 245 human deaths and the loss of thousands of sheep and goats (Shoemaker et al., 2002).
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Apparently, the first known human fatality due to RVF was
recorded in 1934 in a laboratory worker in the USA soon
after the initial isolation of the virus in 1931 (Schwentker and
Rivers, 1934). Human RVFV infections are characterized by fever,
which may progress to encephalitis, retinitis, hemorrhagic fever,
and death (Ikegami and Makino, 2011; LaBeaud et al., 2015).
There are no therapies approved for human use. Significant
efforts have been directed at vaccine development including
development of 1NSs-1NSm recombinant RVFV (Bird et al.,
2011) and recombinant RVFV Gn/Gc (Faburay et al., 2016)
vaccines. Although both vaccines have shown to be safe and
efficacious in animals, neither is approved for human use;
and in the case 1NSs-1NSm recombinant RVFV, which is a
modified live attenuated virus, there are concerns about its use
in non-endemic areas. Meanwhile, higher human case fatality
rates, ranging from 20% to even 50%, have been reported
in recent outbreaks in Africa (Nguku et al., 2010; Heald,
2012; Nanyingi et al., 2015). With the potential of spread
of RVFV to non-endemic areas, as well as its potential as a
bioterror agent (Mandell and Flick, 2010), the development
of effective countermeasures against this pathogen is urgently
needed.

RNA interference is recognized as one of the most promising
platform for the development of therapeutics against viral
pathogens. It represents an endogenous mechanism employed
by many organisms used to silence the expression of genes that
control various events in a cell (Elbashir et al., 2001) and also
provides antiviral activity (Gitlin et al., 2002). Its high efficiency
(Bertrand et al., 2002), specificity (Brummelkamp et al., 2002;
Xia et al., 2004), and broad applicability could be harnessed to
develop a powerful new therapeutic approach for many infections
(Haasnoot and Berkhout, 2006; Medarova et al., 2007). The
search for novel antiviral agents has led to short interfering RNAs
(siRNAs), which act via sequence-selective inhibition of viral
replication (Haasnoot et al., 2003; Haasnoot and Berkhout, 2006).

Rift Valley fever virus contains single-stranded, negative,
segmented RNA genome that encodes four structural proteins,
the nucleoprotein (N), the glycoproteins Gn and Gc, and the
L polymerase; two non-structural proteins, NSs and NSm, and
a 78-kDa protein of unknown function (Gerrard and Nichol,
2007; Won et al., 2007). Although both NSs and NSm are
dispensable for RVFV replication in vitro and in vivo (Ikegami
et al., 2006; Gerrard et al., 2007; Bird et al., 2008), both proteins
play a critical role in viral pathogenesis. NSm acts as an anti-
apoptotic protein (Won et al., 2007), whereas NSs, the major
viral virulence factor, inhibits host innate immune response
(Bouloy et al., 2001) through generalized downregulation of RNA
transcription, including suppression of interferon-β (IFN-β)
(Billecocq et al., 2004; Le May et al., 2004, 2008) and degradation
of protein kinase R (PKR) (Habjan et al., 2009; Ikegami et al.,
2009a). PKR is a host-encoded pattern recognition receptor
with innate antiviral activity (Ikegami et al., 2009b). The RVFV
N protein is associated with the viral genomic RNA and
together with the L protein makes up the ribonucleoprotein
(RNP) complex, which is responsible for RNA transcription and
replication of the RVFV genome. Both genes are highly conserved
(Ikegami, 2012). Therefore, the N and L proteins represent

ideal targets for developing antiviral interventions using siRNAs.
We therefore hypothesized that posttranscriptional silencing of
the RVFV N and L genes will have significant effects RVFV
replication. Using the attenuated RVFV strain MP12 (Caplen
et al., 1985), classified as a BSL-2 pathogen, we assessed the effect
of posttranscriptional silencing of the N and L polymerase genes
on RVFV replication.

MATERIALS AND METHODS

Cells, Virus, and Virus Titrations
Human lung fibroblast cells (MRC-5; ATCC, Manassas, VA,
USA) and African Green Monkey kidney cells (Vero E6
cells) were propagated in modified Eagle medium (MEM)
supplemented with 10% fetal bovine serum (FBS) at 37◦C with
5% CO2. MP12 is an attenuated RVFV strain (Caplen et al.,
1985) and was used as the RVFV strain for all cell infections. The
MP12 virus carries a functional virulence gene, NSs, and sequence
alignment of its nucleoprotein gene shows 100% identity to
the parent wild-type RVFV strain, ZH548 (unpublished data).
MP12 virus titers were quantified in Vero E6 cells using standard
protocols (Faburay et al., 2014) and titers were expressed as
plaque forming units per ml (pfu/ml).

Recombinant Plasmid Constructs
The plasmid pAcGFP (Takara Clontech, Mountain View, CA,
USA) was linearized with the restriction enzyme HindIII
(New England Biolabs, Ipswich, MA, USA). RVFV N coding
sequence, based on the RVFV strain ZH548, was amplified
from the donor plasmid, pFastBacNP (Faburay et al., 2013)
using gene-specific primers. The primers were designed using
the primer design software (Takara Clontech) that allowed
directional cloning of the PCR amplicon into a linearized
pAcGFP using the In-Fusion Cloning Plus kit (Takara Clontech).
The primers used were JAR121F 5′-TCTCGAGCTCAAGCTT
ATGGACAACTATCAAGACCTTGCGATCC-3′ and JAR122R
5′-GCAGAATTCGAAGCTTGGCTGCTGTCTTGTAAGCCTG
AGCG-3′ (vector sequences are underlined). PCR was
performed using proof-reading DNA polymerase, Pfx50
DNA polymerase (Life Technologies, Carlsbad, CA, USA) using
reaction conditions as specified by the manufacturer. The PCR
amplicons were purified using a PCR purification kit (Qiagen,
Valencia, CA, USA) and cloned into pAcGFP according to the
manufacturer’s instructions to create the recombinant expression
vector, pAcGFP-N. The RVFV N sequence was cloned without
the stop codon and in-frame with the coding sequence of
the Green Fluorescent protein (GFP) to allow expression of a
chimeric RVFV N-GFP fusion protein. The cloning reaction was
transformed into chemically competent E. coli Max Efficiency
(Life Technologies, Carlsbad, CA, USA) and transformants were
selected on Luria-Bertani (LB) agar plates containing kanamycin
(30 µg/ml). Recombinant plasmids were purified from overnight
E. coli cultures using a Miniprep kit (Qiagen, Valencia, CA,
USA). The presence and integrity of RVFV N-GFP chimeric
sequences were determined by restriction enzyme analysis and
DNA sequencing.
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Design and In vitro Screening of siRNAs
in Cotransfection Experiments
Several siRNA duplexes targeting different loci within the RVFV
N (si46N, si252N, si605N, si476N) and L polymerase (si5849L)
mRNA transcripts were designed using a conventional siRNA
design algorithm (Table 1). Additionally, siRNAs targeted at
GFP (si475GFP) and Renilla luciferase (si689RL) genes were
constructed for use as positive knockdown and scrambled
negative controls, respectively (Table 1). The Basic Local
Alignment Search Tool (National Center for Biotechnology
Information, Bethesda, MD, USA) was used to exclude siRNAs
with sequence homology to any human reference mRNAs
of 16 or more contiguous bases within the core duplex.
The siRNA duplexes were synthesized by Integrated DNA
Technologies (Coral Ville, IA, USA). Screening of siRNAs to
assess knockdown of gene expression was performed using a
Lipofectamine 2000 (Life Technologies, Carlsbad, CA, USA)
cotransfection protocol. Briefly, individual siRNA duplexes
were reconstituted in DNase and RNase-free water to a stock
concentration of 20 or 40 µM. For transfection, MRC5 cells
were seeded and grown overnight in 12-well plates to 80–90%
confluency. Thereafter, 150 ng of each plasmid, pAcGFP-N or
intact pAcGFP control plasmid, was mixed with 10 pmol of
the respective RVFV N-specific siRNAs, si46N/si605N mixed, or
individually, si475GFP (GFP positive control) or si689RL (Renilla
luciferase negative scrambled control) in Opti-MEM reduced
serum medium (Life Technologies, Carlsbad, CA, USA). After
20 min incubation, the reaction mixture was added dropwise
to MRC5 cells in Opti-MEM reduced serum medium. After 6 h
post transfection, the reduced serum medium was replaced with
complete cell culture medium and cells incubated in a humidified
incubator at 37◦C with 5% CO2 for 48 h. Knockdown of target
gene expression was assessed by fluorescent microscopy (Nikon,
Eclipse TE2000-S) and Western blot analysis.

Western Blot
Western blot analysis was performed to assess siRNA-mediated
knockdown of target protein expression (N and GFP). Also,
inhibition of cellular PKR (a constitutively expressed host
antiviral innate immune response factor) expression was assessed
as a function of intracellular RVFV replication. Beta actin
expression was used as a loading control. Briefly, MRC5 and Vero
cells were washed with PBS pH 7.4 and the cells resuspended
in lysis buffer (PBS pH 7.4 containing 1% Triton X-100
and 1x Roche Complete Protease Inhibitor). Approximately,
5 µg of total protein lysate was resolved in 12% Bis-Tris
polyacrylamide gel (Life Technologies, Carlsbad, CA, USA).
The proteins were transferred by electroblotting onto PVDF
membranes according to standard protocols. After blocking for
1 hr in PBS pH 7.4 containing 0.1% Tween20 and 3% bovine
serum albumin, the blots were probed with either mouse anti-
RVFV N (R3-ID8; 1: 2,000) (BEI Resources, NIH, Manassas, VA,
USA), anti-GFP (1:300) (Santa Cruz Biotechnology, Dallas, TX,
USA), anti-PKR (1:200) or anti-beta actin (1:200; Santa Cruz
Biotechnology, Dallas, TX, USA) monoclonal antibodies for 1 hr.
The membranes were washed and then incubated for 1 hr with

goat anti-mouse-HRP conjugated secondary antibody (1:5,000)
(Santa Cruz Biotechnology, Dallas, TX, USA) and specific
reactivity was detected using enhanced chemiluminescent (ECL)
detection system (GE Healthcare, Buckinghamshire, UK).

Determination of siRNA Effects on RVFV
Protein Expression
Vero E6 cells were seeded overnight in 12-well plates at 1 × 106

cells per well so that they are 80–90% confluent the next day
at the time of transfection. On the day of transfection, the old
medium was replaced with fresh medium. Transfection mixtures
were prepared using RNAiMax reagent (Life Technologies,
Carlsbad, CA, USA) in Opti-MEM reduced serum medium
using 50 nM (final concentration) of each siRNA. This was
empirically determined to be an optimal siRNA concentration
that inhibits viral replication without noticeable effect on cell
viability (data not shown). To assess inhibition of RVFV
nucleoprotein expression in Vero cells, the following siRNAs
were tested in duplicate wells: (i) si605N/si46N/si252N/si476N,
(ii) si605N, (iii) si46N, (iv) si605N/si5849L, (v) si5849L, (vi)
si475GFP and (vii) si689RL (scrambled negative control). At
24 h post transfection, cells were infected with MP12 virus at
multiplicity of infection (MOI) of 2. After 1 h adsorption period,
the viral inoculum was removed and replaced with 1 ml complete
culture medium (MEM supplemented with 10% FBS), and the
cells incubated at 37◦C for 48 h. Cell lysates were prepared as
described above and analyzed by Western blot.

Determination of siRNA Effects on
Prevention of Protein Kinase R
Degradation
The RVFV MP12 carries a functional NSs gene, a major RVFV
virulence factor, responsible for inhibition of host innate immune
response including degradation of PKR (Billecocq et al., 2008;
Habjan et al., 2009; Ikegami et al., 2009a). Thus viral degradation
of cellular PKR was assessed as a parameter to detect RVFV
replication in human cells and its response to siRNA treatment.
MRC5 cells were seeded overnight in 12-well plates at 1 × 106

cells per well so that they are 80–90% confluent the next day at the
time of transfection. On the day of transfection, the old medium
was replaced with fresh medium. Transfection mixtures were
prepared with RNAiMax reagent (Life Technologies, Carlsbad,
CA, USA) in OptiMEM reduced serum medium to contain 50 nM
(final concentration) of each siRNA as described above. At 24 h
post transfection, cells were infected with MP12 virus at a MOI of
1. After 1 h adsorption period, the viral inoculum was removed
and replaced with 1 ml complete culture medium, and the cells
were incubated at 37◦C for 48 h. Cell lysates were prepared as
described above and analyzed for expression of PKR by Western
blot.

Determination siRNA Effects on RVFV
Replication
Quantitative RT-PCR
To assess siRNA inhibition of RVFV RNA replication, viral RNA
was extracted from the culture supernatants using Qiagen Viral
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TABLE 1 | Sequences of small interfering RNAs used for knockdown of target gene expression.

siRNA ID Sense Antisense Target gene

si46N ggaccgcaaugagauugaauu uucaaucucauugcgguccuu RVFV nucleoprotein

si605N gcagugaauagcaacuuuauu uaaaguugcuauucacugcuu RVFV nucleoprotein

si252N cucucaucaacaaguauaauu uuauacuuguugaugagaguu RVFV nucleoprotein

si476N gacuaucuaagggcaauauuu auauugcccuuagauagucuu RVFV nucleoprotein

si5849L gucggaucuauguucucauuu augagaacauagauccgacuu RVFV RNA polymerase

si475GFP gaauggcaucaaggugaacuu guucaccuugaugccauucuu Green fluorescent protein

si689RL ccugacguuguacaaauuguu caauuuguacaacgucagguu Renilla luciferase

RNA extraction kit (Qiagen, Valencia, CA, USA). Briefly, Vero E6
cells were seeded overnight at 1 × 106 cells per well so that they
are 80–90% confluent the next day at the time of transfection.
Wells were transfected in duplicate with si605N, si46N,
si252N, si476N, and siPooledN (si605N/si46N/si252N/si46N) as
described above. At 48 h post transfection, cells were infected
with MP12 virus at MOI of 0.1. After 1 h adsorption, the virus
inoculum was removed and replaced with complete cell culture
medium. At 24 h post infection, supernatants were collected
and aliquots were used to determine viral RNA replication
by qRT-PCR and virus replication by plaque assay (described
below). Briefly, a quantitative RT-PCR (qRT-PCR) targeting the
L segment was performed (Faburay, unpublished). A SuperScript
III One-step RT-PCR protocol with forward primer BJF 5′-CTT
AGC TGA CAA GAC TGA CAG AC-3′ and reverse primer BJR
5′-GTA CCT ATA AAC CAT CTC CTC TGC-3′ and Taqman
Probe BJP FAM 5′-AGG GGA GAT GAA AGA GGT GCA
TTC CAG GCT-3′-IABKFQ (Iowa Black) was used. The assay
was performed using the following reaction conditions: 50◦C
for 15 min, and then 35 times 95◦C for 2 min and 60◦C for
15 s, using the CFX96 Real-Time System (Bio-Rad, Hercules, CA,
USA).

Flow Cytometry
To further assess the effect of siRNAs on viral replication,
flow cytometry analysis was performed. Briefly, cells were
seeded and transfected with the various siRNAs (si605N, si46N,
si252N, si476N, and siPooledN (si605N/si46N/si252N/si46N)
as described above. siRNA untreated but virus-infected (virus
control) cells, and untreated, non-infected cells were included as
relevant controls. At 48 h post transfection, cells were infected
with MP12 virus at a MOI of 0.1. After 1 h adsorption, the
virus inoculum was removed and replaced with complete cell
culture medium. At 24 h post infection, cells were harvested
using Accutase (MP Biomedicals, Solon, OH, USA) and were
used for flow cytometry analysis. Briefly, cells were pelleted
by centrifugation at 5,000 × g for 10 min and then fixed
in 4% paraformaldehyde for 30 min. The cell pellets were
resuspended in PBS pH 7.4 containing 10 mM glycine and
incubated overnight at 4◦C. Thereafter, the cells were stained
by incubating with mouse anti-RVFV N monoclonal antibody
(R3-4D8) (1:100 dilution; BEI Resources, NIH, Manassas, VA,
USA) in permeabilized buffer (PBS, 7.4 containing 0.1% saponin,
20 mm EDTA, 0.02% sodium azide, 2% FBS) for 1 h at 4◦C.
Following two washing steps, cells were incubated with Alexa

Fluor-488 conjugated goat-antimouse IgG antibody (5 µg/ml
final concentration) (Molecular Probes, Thermo Fisher Scientific,
Eugene, OR, USA) for 30 min at 4◦C. Cells were analyzed
by flow cytometry on BD LSR Fortessa X-20 using a 525/50
Band Pass Filter for the FITC detector off a 488 nm blue
laser.

Virus Titration by Plaque Assay
Virus titrations were performed in Vero E6 cells by plaque assay
according to previously described protocols (Faburay et al., 2014)
using supernatants collected from the experiments described
above for qRT-PCR. Briefly, 10-fold serial dilutions of the
supernatants from the various siRNA treatments were made and
used to infect monolayers of overnight cultures of Vero E6 cells
in 6-well plates. After 1 h adsorption of the virus at 37◦C and
5% CO2, the viral inoculum was removed and the monolayer
overlaid with 0.9% agarose. The plates were incubated at 37◦C
and 5% CO2 for 4 days. After fixing with 10% formalin for 3 h
(Faburay et al., 2014), monolayers were stained with 0.5% crystal
violet and plaques counted and quantified according to standard
protocol. Titers were expressed as plaque forming units per ml
(pfu/ml).

Statistical Analysis
Differences in response values between siRNA treated and
untreated controls were analyzed for statistical significance using
Graphpad Prism 6. An unpaired t-test was used to compare
mean response values between various siRNA treatments, as
well as compare the mean values of the siRNA treatments and
the controls. A P-value of ≤0.05 was considered statistically
significant.

RESULTS

Knockdown of GFP and RVFV N Protein
Expression Using siRNAs in pAcGFP
Transfected MRC-5 Cells
Knockdown of the expression of the RVFV N-GFP fusion
protein encoded by the plasmid pAcGFP-N was performed in
MRC-5 cells using the RVFV nucleoprotein-specific siRNAs
si605N/si46N. Co-transfection of the pAcGFP-N plasmid with
the siRNAs si605N/si46N resulted in inhibition of N-GFP
fusion protein expression as demonstrated by the absence of
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FIGURE 1 | siRNA-knockdown of exogenous gene expression in MRC5 cells. (A) Fluorescence analysis shows inhibition of pAcGFP-N and pAcGFP plasmid
expression. RVF N-specific si605N/si46N cotransfection (+) inhibited expression of GFP-N fusion protein in contrast to the untreated control (−); GFP-specific
si475GFP cotransfection (+) inhibited expression of the green fluorescent protein. si689RL, the scrambled non-specific Renilla luciferase-siRNA, shows no inhibition
of GFP-N protein expression. (B) Western blot analysis of siRNA knockdown of exogenous protein expression. Lane 1: expression of GFP (without siRNA treatment;
arrow shows an estimated 27 kDa molecular weight protein); lane 2: knockdown of GFP expression with si475GFP; lane 3: knockdown of GFP-N fusion protein with
si605N/si46N; lane 4: expression of GFP-N fusion protein (without siRNA treatment; arrow shows an estimated 54 kDa molecular weight protein); lane 5: cells only
control. β-actin serves as loading control.

specific GFP fluorescence (Figure 1A) and the fusion protein-
specific band in Western blot analysis (Figure 1B). Treatment
with the positive control siRNA, si475GFP, targeting the GFP
gene, abrogated expression or fluorescence of the GFP-N fusion
fusion protein (Figures 1A,B). In contrast, GFP fluorescence
was observed in all mock-treated cells transfected with the
recombinant plasmids pAcGFP-N or pAcGFP (Figure 1A).
Treatment of the MRC5 cells with the scrambled negative control

siRNA, si689RL, did not have any effect on fusion protein
expression as demonstrated by clear expression of the N-GFP
fusion protein (Figure 1A).

Inhibition of RVFV Nucleoprotein
Expression in MP12-Infected Vero Cells
Viral nucleoprotein expression in Vero E6 cells infected
with MP12 RVFV was completely abrogated by all the
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FIGURE 2 | RVFV siRNA-specific inhibition of viral nucleoprotein
expression in Vero E6 cells. Numbers above the panel depict various
siRNA treatments. Lane 1: si605N/si46N/si252N/si476N (siPooledN; RVFV
N-specific siRNAs); lane 2: si605N; lane 3: si46N; lane 4: si605N/si5849L;
lane 5: si5849L (RVFV L-segment specific siRNA); lane 6: si475GFP
(GFP-specific siRNA); lane 7: si689RL (Renilla luciferase-siRNA); lane 8:
untreated virus control; lane 9: uninfected cell only control; lane 10:
recombinant RVFV N protein control (∼30 kDa). Lanes 5, 6, 7, 8: show
expression of viral nucleoprotein (∼27 kDa). β-actin serves as loading control.
M, molecular weight marker.

RVFV N-specific siRNA treatments (lanes 1–4; Figure 2).
Specifically, pretreatment with a complex pool of siRNAs,
si605N/46N/252N/476N (siPooledN), si605N/si5849L or with
individual siRNA duplexes, si605N or si46N, completely
abrogated RVFV nucleoprotein expression following RVFV
infection. However, when cells were treated with siRNA si5849L
alone, which targets the viral L polymerase gene, no inhibition
of viral nucleoprotein expression was observed (Figure 2).
Similarly, pretreatment with non-specific scrambled siRNAs,
si475GFP, and si689RL, specific to transcripts of GFP and Renilla
luciferase, respectively, did not inhibit nucleoprotein expression
(Figure 2). Untreated MP12 infected cells showed distinct
nucleoprotein expression (Figure 2, lane 8). Uninfected and
siRNA-untreated cells controls did not show any nucleoprotein
expression (Figure 2, lane 9).

siRNA Treatment Prevents Degradation
of Protein Kinase R
Protein kinase R is a host-encoded interferon response effector
molecule that is subjected to degradation by the RVFV non-
structural protein NSs upon viral infection; this allows NSs to
suppress the host innate immune responses (Habjan et al., 2009).
The NSs coding sequence of RVFV strain MP12 is functionally
active as demonstrated by degradation of constitutively
expressed PKR in MP12-infected MRC5 cells (data not shown).
Thus, expression of PKR in MP12-infected MRC-5 cells treated
with RVFV N-specific siRNA should result in inhibition of
RVFV replication. Treatment with RVFV-specific siRNAs,
si605N/si46N/si252N/si476N (siPooledN), si605N/si5849L,
si605N or si46N, significantly inhibited degradation of PKR
in MP12- infected cells as demonstrated by detection of
the PKR-specific 68 kDa protein in Western blot analysis
(Figure 3). When si5849L, targeting the L polymerase gene,
was used, degradation and loss of PKR in MP12-infected cells

FIGURE 3 | Analysis of degradation of protein kinase R (PKR) in human
cells (MRC5) in response to RVFV replication. Numbers above the panel
depict various siRNA treatments. Lane 1: si605N/si46N/si252N/si476N
(siPooledN; RVFV N-specific siRNAs); lane 2: si605N; lane 3: si46N; lane 4:
si605N/si5849L; lane 5: si5849L (RVFV L-segment specific siRNA); lane 6:
si475GFP (GFP-specific siRNA); lane 7: si689RL (Renilla luciferase-specific
siRNA); lane 8: virus control (untreated); lane 9: uninfected cell only control.
Lanes 1, 2, 3, 4: show inhibition of PKR degradation due to RVFV-specific
siRNA treatment as indicated by detection of a 68 kDa specific cellular
protein. β-actin serves as loading control. M, molecular weight marker.

was observed. Similarly, treatment with non-specific siRNAs,
si475GFP, and si689RL, did not protect PKR from NSs-mediated
degradation (Figure 3).

siRNA Treatment Inhibits RVFV MP12
Replication
As shown above, RVFV N-specific siRNAs inhibit viral
nucleoprotein expression and prevent degradation host encoded
PKR. Here, their potential to inhibit viral replication was assessed
using qRT-PCR, flow cytometry and virus plaque assays. qRT-
PCR cycle threshold (Ct) values obtained in cells infected
with MP12 and treated with RVFV N-specific siRNAs were
significantly higher when compared to the untreated control cells
(P < 0.05) (Figure 4A). The amount of viral RNA produced
after treatment with N-specific siRNAs, individually or as pooled
complex, were at least 3 logs lower when compared to the
untreated MP12-infected control (P < 0.05). Specifically, si605
and si46 displayed the highest fold reductions in virus replication
of log10 3.74 and 3.63, respectively (Figure 4B). Flow cytometry
analysis confirmed these results. Only background fluorescence
was detectable in all N-specific siRNA treatments indicating
effective inhibition of MP12 replication. In contrast, a strong
positive fluorescence was detected in the untreated virus-infected
control cells (Figure 5). Quantitation by plaque assay confirmed
the above results. Production of viral progeny was significantly
inhibited by the N-specific siRNA treatments when compared
to the untreated infected control (P < 0.05) (Figure 6A).
Meanwhile, si605N, si46N, and siPooledN exhibited stronger
inhibition than si252N and si476N (Figure 6A). The magnitude
of inhibition of virus replication was demonstrated by the absence
of viral plaques in a 104 dilution of culture supernatants treated
with N-specific siRNAs (Figure 6B). In contrast, viral plaques
were easily detected in the untreated infected control (Figure 6B).
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FIGURE 4 | qRT-PCR analysis of RVFV replication in response to
RVFV-specific siRNA treatment. (A) Ct values of viral RNA amplification
using supernatants from the various treatments; the Ct values of the siRNA
treatments differed significantly from the untreated virus control (P < 0.05).
(B) Illustrates log10 fold reduction in viral titers relative to the untreated virus
control. si605N and si46N treatments show the highest fold-reductions.
Asterisks (∗∗) above horizontal bars compare differences between treatments
and denote significant differences. Fold reductions in viral titers of si605N or
si46N were not different from siPooledN viral titers (P > 0.05).

DISCUSSION

Since the first reported outbreak of RVF in 1931 (Daubney
and Garnham, 1931), RVFV has been associated with periodic
outbreaks of hemorrhagic fever in humans in Africa and the
Arabian Peninsula (Balkhy and Memish, 2003; Anyangu et al.,

2010; Sow et al., 2014; Boushab et al., 2015) with increasing
case fatality rates (Heald, 2012). There is currently no effective
therapy for RVFV infection in humans and animals; attempts
have been made to treat the disease with unproven antiviral
compounds such as ribavirin (Huggins, 1989). However, ribavirin
has been shown to cause serious undesirable side effects
following treatment (Snell, 2001; Scharton et al., 2014). Thus,
current therapies are palliative in order to relieve patients of
the symptoms of the disease. Considering the lack of good
therapeutic approaches for RVF, we aimed at developing effective
therapeutic intervention strategies for RVF. Therefore, this
study was carried out to investigate the potential application of
RNAi as a therapeutic approach to treat RVF in humans and
animals.

We assessed the impact of posttranscriptional siRNA
silencing of the RVFV nucleoprotein and the RNA-dependent
RNA polymerase L on viral replication using an in vitro cell
culture model and the MP12 strain of RVFV. All 4 siRNA
constructs targeting the viral nucleoprotein gene/mRNA
exhibited significant inhibition of RVFV protein expression and
replication. In contrast, si5849L, targeting the viral L polymerase
exhibited no detectable effect on RVFV protein expression
(Figure 2) and viral replication (data not shown). The reason
for the non-inhibition is unknown, and consequently, siRNA
si5849L was not studied further. The RVFV N gene represents
a good target for posttranscriptional RNAi silencing (Scott
et al., 2012) since the gene is highly conserved among all known
strains of RVFV (Sall et al., 1997), including the attenuated
strain MP12 used in this study. Although MP12 is reported to
contain mutations in all 3 of its genome segments (Saluzzo and
Smith, 1990; Ikegami et al., 2015), sequence analysis revealed
the absence of nucleotide mutations in the N gene, indicating
a 100% identity with the parent wild-type virus ZH548 (data
not shown). Similarly, the MP12 N nucleotide sequence has
a high homology with N genes from other wild-type RVFV
isolates such as ZH501 (Rossi and Turell, 1988), SA01 (Miller
et al., 2002), and Kenya 128B-15 (Sang et al., 2010) of 99.59,
97.15, and 97.15%, respectively (data not shown). This strongly
suggests that the siRNA constructs, especially the pooled cocktail
formulation, will have inhibitory effect on wild-type RVFV
strains.

Protein kinase R is a host-encoded interferon response
effector molecule constitutively expressed in mammalian cells.
Upon RVFV infection, it is degraded by the viral non-
structural protein NSs acting to inhibit host anti-viral innate
immune response (Habjan et al., 2009; Ikegami et al., 2009a,b).
Although the MP12 virus encodes attenuated M- and L-segments,
it carries a virulent NSs gene (Billecocq et al., 2008),
thereby retaining the inherent capacity to degrade constitutively
expressed PKR in infected mammalian cells. Thus, we indirectly
examined the inhibitory effect of the N-specific siRNAs
on RVFV replication by assessing the expression of PKR
as a function of RVFV replication. Treatment of infected
cells with the RVFV N-specific siRNAs completely inhibited
degradation of PKR, indicating the effectiveness of the siRNA
constructs at inhibiting viral replication and consequently
NSs activity (Figure 3). In addition, the antiviral effect of
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FIGURE 5 | Flow cytometry analysis of RVFV replication in response to RVFV-specific siRNA treatment. Only background fluorescence is detectable in the
various siRNA treatments in contrast to the intense fluorescence detected in positive gate of the virus-infected control. A cell only control (untreated and uninfected)
is also shown.

FIGURE 6 | Quantitation of RVFV replication by plaque assay. (A) shows titers of viral progeny detected in the supernatants of the various siRNA treatments.
Asterisks (∗∗) directly above the bars indicate significant differences compared to the virus control (P < 0.05). Asterisks (∗∗) above horizontal lines compare
differences between treatments and denote significant differences. (B) Demonstrates inhibition of viral replication using 104-fold dilution of culture supernatants from
the various treatments. In contrast to the untreated virus control, no plaque could be isolated from the supernatants of the siRNA treatments.

the N-specific siRNAs is not attributable to interferon or
interferon response effector molecules, since some studies
were carried out in an interferon deficient cell line, Vero E6
cells.

Using multiple quantitative assays, e.g., qRT-PCR, flow
cytometry and virus plaque assay, we further demonstrated
significant inhibition of MP12 replication following treatment

with the RVFV N-specific siRNAs (Figures 4–6). All N-specific
siRNAs, including the pooled formulation (siPooledN),
significantly reduced virus replication as determined by qRT-
PCR (P < 0.05) (Figure 4A). The levels of viral RNA were
reduced by at least 3 logs in comparison to the untreated
infected control (Figure 4B), with si605N, si46N and siPooledN
exhibiting significantly higher reductions compared to si252N
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and si476N (P < 0.05) (Figure 4B). A similar picture was seen
using flow cytometry analysis, whereby only the untreated virus-
infected control displayed RVFV-specific, positive fluorescence
(Figure 5). All N-specific siRNA treatments did not result in
RVFV protein expression, indicating effective suppression of
viral replication. The above findings were confirmed by virus
plaque assays (Figure 6A) in which the levels of inhibition of
virus replication was quantified. The complete absence of viral
plaques in a 104 dilution of culture supernatants treated with
the N-specific siRNAs (Figure 6B) confirms the efficacy of this
treatment regimen.

The development of resistance by RNA viruses to antiviral
drugs (Hayden and de Jong, 2011) is a global concern in
the fight to prevent potential viral epidemics or pandemics.
RNAi is considered a promising platform for therapeutic drug
development to overcome these challenges. Unlike conventional
therapeutic drugs, antiviral resistance to siRNAs due to single
nucleotide mutations could be easily addressed by redesigning
new constructs or using pooled formulations that target multiple
loci within the mRNA transcript. Once sequence data of a new
emergent strain are available, it is estimated that clinical grade
siRNA products can be produced in as little as 8 weeks if deemed
necessary (Thi et al., 2015). Thus, the application of RNAi as a
therapeutic option for hemorrhagic viral diseases should be given
serious consideration.

The recent outbreak of Ebolavirus in West Africa claimed
the highest number of human lives in the history of Ebolavirus
disease (ECDC, 2014). To combat the disease, several post-
exposure interventions including lipid nanoparticle siRNA
treatment, which has shown 100% protection in rhesus monkeys
against lethal Ebola virus challenge, have been used (Geisbert
et al., 2010; Thi et al., 2015). Although the Ebola siRNA treatment,
at the time, was not fully vetted, the dire circumstances of
the patients inflicted with the lethal disease provided enough
justification for the US Food and Drugs Administration (FDA)
to allow “compassionate use” of the drug to treat Ebola
patients (Grens, 2014; Bishop, 2015). In 2015, the Ebola siRNA
treatment underwent a Phase II clinical study in Ebola virus
disease patients in Sierra Leone, West Africa (Dunning et al.,
2016). In view of the societal, economic, and other disruptions,
which can be associated with outbreaks of hemorrhagic viral
infections in humans (Faburay, 2015; Kupferschmidt, 2015;
Nanyingi et al., 2015), consideration should be given to RNAi
as a therapeutic platform in outbreak situations. In the last
decades, outbreaks of RVF in various countries in Africa,
e.g., Kenya (Nguku et al., 2010), South Africa (Archer et al.,
2013), Mauritania (Sow et al., 2014; Boushab et al., 2015), and

Saudi Arabia (Al-Hazmi et al., 2003; Himeidan et al., 2014),
caused significant human deaths and economic hardships for
farmers.

CONCLUSION

We have demonstrated the feasibility of RVFV nucleoprotein-
specific siRNAs to inhibit RVFV replication, suggesting the utility
of this technology as a potential therapeutic tool for RVFV
infection. In future studies, we plan to assess the antiviral effect
of these siRNAs with wild-type RVFV isolates and in various
experimental animal models including murine, ruminant, and
non-human primates. Furthermore, we might examine co-
administration of siRNAs in conjunction with subunit vaccines;
this approach could provide protection during the period of the
immunity gap before the vaccine provides efficient protection
(Kim et al., 2015). Adopting such a vaccination scheme could
enhance vaccine efficacy and improve the overall efficiency of
RVF vaccination programs.
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